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Abstract

The method of lines (MOL) is applied to the equations of
helicopter rotor vortex wakes, and converts the govern-
ing partial differential equations into a system of ordi-
nary differential equations (ODE). These ODE can then
be coupled to other ODE modeling helicopter dynamics,
for time-marching simulations or to extract linearized
models. The MOL is applied to a simplified set of wake
equations that has an analytical solution. Because these
simplified equations neglect key wake physics, the study
is only a first step toward applying MOL to realistic mod-
els. Therefore, the conclusions only apply to the simpli-
fied problem considered. The results show that the MOL
is a suitable method to formulate vortex wake models in
state-space form. The solutions are accurate and numer-
ically stable. Refining the space discretization increases
the stiffness of the ODE, but explicit solvers can still be
used. Computational efficiency increases when the ac-
curacies of space and time discretizations are matched.
Formulas of several orders are used in the space dis-
cretization. In all cases, the explicit solver DE/STEP
is much more computationally efficient than the implicit
solver DASSL. Linearized state-space wake models can
be easily obtained. The MOL could also provide a sys-
tematic methodology to extract state-space models from
CFEFD formulations, and therefore to increase the accu-
racy of helicopter simulation models.

Notation

[A¢] Linearized matrix of ODE system; also,

finite difference matrix
e Local error tolerance for the ODE solvers
ij, k Unit vectors of rotor coordinate system
N¢ Number of intervals in the (-discretization
r Distance of a vortex point from the hub
R Rotor radius
Ty Tys T2 Components of r along i, j, k
as, Bo Rotor shaft angle and flapping angle
¢ Angular distance of a vortex point from

the blade
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Al Step size of the finite difference
discretization along ¢

I Advance ratio

P Blade azimuth angle

Abbreviations

BDF Backward Differentiation Formula(s)

CFD Computational Fluid Dynamics

DAE Differential-Algebraic Equation(s)

MOL Method of Lines

ODE Ordinary Differential Equation(s)

PDE Partial Differential Equation(s)

2PCD2 Two-point central difference scheme
(2nd order)

2PU1 Two-point upwind difference scheme
(1st order)

3PU2 Three-point upwind difference scheme
(2nd order)

4PCD4 Four-point central difference scheme
(4th order)

5PBU4 Five-point biased upwind difference

scheme (4th order)
Introduction

The solution of several practical problems in rotor-
craft aeromechanics is much simpler if the mathematical
problem is formulated in state-space form, i.e., in the
form of systems of ODE. For example, the simplest and
most direct way to compute the aeroelastic stability of
a helicopter rotor is to perform an eigenvalue analysis
of a linearized version of the equations of motion. Also,
many quantities of interest in flight dynamics, such as
dynamic stability and frequency response to pilot input,
can be calculated directly from a linearized mathemat-
ical model in state-space form. State-space models are
also very important for the design of rotor and flight
control systems, because the vast majority of control de-
sign techniques relies on the availability of such models.
Finally, although time-marching solutions of the equa-
tions of motion can be obtained if the equations are a
combination of ODE and PDE, they are usually easier
to achieve if the equations are all in ODE form.

The structural and inertia portions of the typical equa-
tions of motion of a helicopter can usually be written in
state-space form with no major difficulty. On the other
hand, several components of the aerodynamic portion



are not currently available in ODE form. State-space
models are available for the calculation of the aerody-
namic properties of airfoils (see, for example, Refs. [1]
and [2]). State-space models of rotor inflow are also cur-
rently available. The largest body of work in this area
has been developed over the last three decades by Pe-
ters and his coworkers (Ref. [3] contains an extensive
review of such work). These widely used models trace
their origin back to the theory developed by Joglekar
and Loewy [4], which is based on an unsteady actuator
disk theory. Other state-space inflow models are those
of Keller and Curtiss [5], Basset [6], and Rosen [7, 8].
Simple but accurate state-space inflow models can also
be extracted using frequency domain system identifica-
tion, either from experimental [9] or simulation [10, 11]
data.

All the state-space models just mentioned are of a
“global” nature, in the sense that they take the form
of actuator disk theories of various degrees of sophis-
tication. Therefore, they have intrinsic limitations in
the level of detail of the flowfield that they can resolve.
There are several wake theories that model vortex dy-
namics and do not suffer from this limitation, but most
of them is formulated in state-space form (see Ref. [12]
for a comprehensive review of these free-vortex filament
methods). The only exception is the state-space free
wake model developed by Johnson [13]

The time-dependent geometry of a wake vortex is gov-
erned by the following PDE [14]
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where r is the position vector of a point on the vortex
filament (collocation point), ¥ is the blade azimuth, ¢ is
an angular distance measured along the vortex starting
from the vortex release point on the blade trailing edge,
Q) is the rotor speed, and V is the local convection veloc-
ity of the vortex [15]. Equation (1) has an exact analyt-
ical solution [15] for the special case of constant velocity
V throughout the wake, which is equivalent to assum-
ing a constant value of the inflow )\;, uniform across the
disk. For this case it is [15] V = QRui + QR \;k, and
therefore
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which has the exact solution [15]

r(y¢ ) =

— Rpi+ RAK (2)

[Ru¢ + 74 (cos Bo cos(vp — ) cos as+
+ sin fp sin o)) i
+7y cos Bo sin(y — €)j
+ [RA: ¢ + 7y (sin Fp cos a
—cos fpcos(yp — () sinagl k  (3)
The main objective of this paper is to propose a

methodology for the reformulation of vortex wake mod-
els in state space form, suitable for direct coupling with

time-marching simulations, and for linearized stability
and response analyses. This methodology is based on
the use of the method of lines, which is a technique for
the numerical solution of PDE, in which only the depen-
dency on space is discretized in finite difference form [16],
with the result that the PDE are converted into a system
of coupled ODE. In this paper, the MOL will be applied
to the solution of the simplified vortex wake equation,
Eq. (2).
The specific objectives of the paper are:

1. To summarize the main features of the method of
lines;

2. To discuss the main issues concerning the space
discretization of Eq. (2), and the subsequent time-
marching solution;

3. To extract a linearized state-space model of the vor-
tex wake in first-order form, suitable for eigenanal-
ysis; and

4. To present results showing the main numerical char-
acteristics of the MOL-based technique, as a func-
tion of a variety of discretization and solution pa-
rameters.

It is important to point out that the nonlinear term
on the right-hand-side of the complete vortex equation,
Eq. (1) contains many key aspects of the problem, both
from the physical and the computational point of view.
It is in the correct formulation and treatment of this
term that many of the challenges of accurate free vortex
wake analyses lie. Therefore, the results presented in
this paper, which are limited to the simplified version of
Eq. (2), should be considered as just a first step toward
the objective of deriving accurate free wake models in
state-space form.

Finally, because the MOL can be applied to any PDE,
it can provide a systematic solution to the problem of
coupling CFD models to helicopter simulation models
composed of systems of ODE.

Method of Lines

The main features of the MOL will be described in this
section, and applied to the simplified vorticity transport
equation, Eq. (2). The equation, rewritten in scalar form
component by component is:

Ory  Ory

£ + a—g = Rug (4)
ory Ory _

or, Oor. ,

% + 8_C = R)( (6)

with r = 7;i + ryj + r.k. The azimuth angle ) and
the the angular location ( take, respectively, the role



of time and space. The three component equations are
first-order hyperbolic PDE and, in particular, Eq. (5) is
the basic advection equation.

Introduction

The MOL consists of discretizing a PDE with respect
to only the space or the time variable, typically the for-
mer. Considering Eq. (5) as an example, and assuming a
central difference approximation to the {-derivative, this
partial discretization results in:

ory(y€ o) _ _ .
yﬁw T TOAC [ry (U & + AQ) — 7y (¥ 4

AQ)]
(7)

which is an ordinary differential equation in ry (3¢ ;).
If the spatial domain ¢ is divided into N — 1 inter-
vals, then the MOL leads to N ODE like Eq. (7) with
i = 1,2,...,N. The solution of the system of ODE
yields the solution of the original PDE. The quantities
ry(Y¢ 3),i=1,2,..., N become the states of the model.
Each 7, (¢¢ ;) represents the position along the y-axis of
a collocation point on the vortex filament. Equations (4)
and (6) are treated in the same way.

The vorticity transport equation is first order in
and ¢, and therefore it requires an initial condition and
a boundary condition. From the exact solution, Eq. (3),
the initial conditions for the three components of the
equation are

r2(0,¢() = Rud+

+7,(cos ag cos B cos ¢ + sinagsin Gy)  (8)
ry(0,{) = —rycosfGysing (9)
r.(0,{) = ry(cosassinfy — sinag cos By cos () (10)

When specialized for ¢ = (;, the equations above provide
the initial conditions for the corresponding ODE, such
as Eq. (7) for ry(¥¢ ;). Equation (3) also provides the
boundary conditions:

rz(3 0) = ry(cosascos fycostp + sinagsin Fy) (11)
re(1 0) = r,cosfBysiny (12)
ro(1p 0) = 7,(cosagsin By — sin a; cos Gy cos ) (13)

which are used in Eq. (7) for i = 1 and ¢; = 0 (similarly,
for r, and r;).

Equations (7), written for all points ¢;, can be grouped
together in matrix form as:

ty(¢) = [A] vy (V)
after defining () = 0/0y and

ry(¥) = [ry(¥C 1) ry(¥C 2)
and with the matrix [A¢] given by

(14)

ry(U¢ N)]" (15)

(-3 4 -1
-1 0 1
1 -1 0 1
A= ——— 16
[Ac] A (16)
-1 01
1 -4 3

(all the terms outside the diagonal band are equal to
zero). The first and last columns of [A¢] come from
special three point approximations to the derivative at
the two ends of the ¢ domain, that is [16]

67“35 (’;LC )
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ﬁ[mxx o) — Ara(C 1)+ 3 (U )]
(18)

All approximations to the first (-derivative in Eq. (16)
have errors of order O(A¢?). The ODE correspond-
ing to the first row of [A.], is treated slightly differ-
ently from the other equations. In fact, although the
derivative dry (¢¢ 1)/0% is computed anyway, the quan-
tity ry (¥ 1) computed by the ODE solver is overridden
at each time step by the corresponding value given by
the boundary condition, Eq. (12) (similarly, for r, and
r.).

The complete state-space model for the vorticity
transport equation in the form of Eq. (7) is

iy (1) [AJ 0 0 (1)
Iy (¢) = 0 [4] O ry(y) o+
(1) 0 0 [A] r. ()
Ru¢
+ 0 (19)
RA ¢

where r, and r, are defined similarly to r, in Eq. (15),
and ¢ is defined as
¢=[ G ¢

e (20)

Equation (19) is now ready to be coupled, for example,
to a system of rotor-fuselage ODE for a time-marching
solution.

Space discretization

An appropriate spatial discretization is clearly a key in-
gredient for accurate PDE solutions using the MOL. This
section summarizes five space discretizations appropri-
ate for the solution of the vorticity transport equation.
These discretizations are taken from Ref. [16], which also
contains additional details of their derivation. All the
formulas are written for a generic function f(().
1—Two-point central differences (2PCD2)

This is the discretization used in all the equations of
the previous sections, and no additional details will be
provided here.

2—Four-point central differences (4PCD4)



The general formula is

of o o |
ac - AL [2f(Cim2) — 16f(Ci-1)
16 (Civ1) — 2f (Ciga)] + O(ACH)

(21)

The formulas at the beginning and the end of the (-
domain are:

of B
ac o YNNG [—50f(C1) +96f(C2)

—T72f(C3) +32f(¢a) — 6(C5)] (22)

of] 1
ac e YNNG [—6f(C1) —20f(C2)

+36/(C3) — 12/ (Ca) + 2/ (C5)] (23)

of 1
| ¢y, 24AC [2f(Cn—a) + 12f(Cn—3)

—36f(Cn—2) +20f(Cn—1) +6f(CN)]

of 1
ac o 2IAC [6f(Cn—a) —32f(CN—3)

+72f((n-2) = 96f(Cv-1) +50f(Cw)]  (25)

All the formulas above have an error of order O(A(?).
Using the expressions above, the [A¢] matrix in Eq. (16)
becomes

(24)

—50 96 —T72 32 —6
-6 —-20 36 —12 2
2 -16 0 16 =2

2 -16 0 16

1
4] = ~3iac D
2
-2
I 6
-2
(26)
0 16 —2
16 0 16 -2
12 -36 20 6
~32 72 96 50 |

3—First-order two-point upwind approzimation (2PU1)
When applied to the solution of the advection equation
with a discontinuity in the flow, the two centered approx-
imations just described tend to produce a strong oscil-
latory behavior in the solution, especially downstream
of the discontinuity [16]. This can be partially remedied
using upwind approximations, the simplest of which is a
first-order, two-point approximation. Equation (2) does
not contain the physics necessary to develop disconti-
nuities, and therefore the use of upwind approximations

is not expected to produce any improvement in the ac-
curacy of its solution. However, the behavior of these
approximations in the simplified model will be studied
anyway, as a first step toward the application to more
realistic wake models.

Using the same notation as in the previous section
above, the [A.] matrix in Eq. (16) with this type of ap-
proximation becomes

. ) _
-1 1
1 -1 1
A= —— 27
[Ad=-7¢ N (27)
-1 1
L - 1 -

This approximation has an error of order O(A().
4—Second-order three-point upwind approximation

(3PU2)

A more accurate, second-order upwind approximation
can be built using three points. The [A¢] matrix in
Eq. (16) with this type of approximation is

3 4 -1
10 1
1| 1 4 3
Ad = =3¢ (28)
1 4 3

1 -4 3

This approximation has an error of order O(A(?).
5—Fourth-order five-point biased upwind approximation
(5PBU4)

The two-point upwind formula eliminates the down-
stream oscillations of the centered formulas, but intro-
duces numerical diffusion; the three-point upwind for-
mula reduces the diffusion, but reintroduces some os-
cillation upstream of the discontinuity [16]. A fourth-
order five-point biased upwind approximation, as a com-
bination of centered and upwind formulas, helps reduce
both the numerical diffusion and the oscillatory behav-
ior [?16]. The [A¢] matrix in Eq. (16) with this type of
approximation is

1
A] = ———
[Ac] oac
[ 925 48 —36 16 3 1
-3 10 18 -6 1
1 -8 0 8 -1
x| -1 6 —-18 10 3 (29)
1 6 —-18 10 3
I 3 —16 36 —48 25 |

This approximation has an error of order O(A(?).
Other space discretization methods

When the finite difference formulas above are used to
solve a problem, the space (or ¢-) discretization is held



fixed throughout the solution. This is not the most de-
sirable strategy when rapid spatial variations occur only
in some portions of the problem, because the (fixed)
discretization must be appropriately refined to capture
these variations, but might be needlessly fine everywhere
else. A growing body of research has addressed the is-
sue of adaptive space discretizations, and is reviewed in
Ref. [18]. Because of the simplicity of the PDE studied
in this paper, however, no such discretization scheme will
be considered here.

Stiffness
Refining the space discretization, i.e., reducing A(, in-
creases the accuracy of the solution, but also increases
the stiffness of the resulting system of ODE. The stabil-
ity of the ODE solution algorithm must also be taken
into account. The discussion that follows is based on
Ref. [16].

Consider for simplicity, because it is homogeneous,
Eq. (5), and assume that a two-point central difference
approximation is used. This results in (dropping the de-
pendency on % in the notation):

Iry(Gi) 1

o0 = - NG [y (Ci1) — 7y (Cim1)]

Assuming a solution of the general type

ry(C ) =Cn(¥)p(¢)  with ¢(¢) = e/, j = =1

(30)

(31)
and substituting into Eq. (30) gives:
@ _ 1/} (ejk:Aw _ e—jkA:v)
oY 2A(¢
_ Y
= —j G sin(kAQ) (32)
Rewriting the equation in terms of an eigenvalue A gives:
g—Z =M\ with A = _ALC sin(kAQ)  (33)

Therefore, the ODE resulting from a space discretiza-
tion with two-point central differences have purely imag-
inary eigenvalues, which are inversely proportional to the
space step size A(. This has two potentially important
consequences. The first is that the spectrum of eigen-
values Ar will become broader as A{ becomes smaller
or, equivalently, the ratio between the largest and the
smallest eigenvalue of the solution will increase as A(
decreases. In other words, the equations become stiffer
as the space discretization is refined. At some point,
a stiff ODE solver will be needed. The second conse-
quence is that the ODE solution scheme must be chosen
carefully, because for many schemes the stability proper-
ties for solutions with purely imaginary, high frequency
eigenvalues, are poor.

The preceding comments were based on the discretiza-
tion with a two-point central difference formula. How-
ever, they are generally valid for the other four dis-
cretization previously presented, although the details of

the derivations are obviously different. Eigenvalues for
all five schemes will presented later, in the “Results”
section.

Differential equation solvers

Two publicly available ODE solvers, namely DE/STEP
and DASSL, will be used in this study to integrate the
equations resulting from the MOL. Both are very well-
known, reliable, robust solvers.

DE/STEP [19] is a variable-step, variable-order ODE
solver based on Adams-Bashforth formulas. This is a
predictor-corrector, explicit solver that is not designed
to integrate stiff systems of equations. Stiffness is de-
tected indirectly, by monitoring the number of function
evaluations required to advance the solution. When the
ODE are stiff, the solver issues an error message and
stops execution. DE/STEP adjusts step size and order
of the integration formula to achieve user-specified ab-
solute and relative error tolerances. Formulas of up to
order 12 can be used. The Adams-Bashforth algorithm is
based on building a polynomial of sufficient order to in-
terpolate the actual solution function: this polynomial is
easily accessible during the integration, and can be used
to reconstruct additional values of the solution (i.e., of
T3, Ty, and ;) beyond those calculated by DE/STEP if
desired.

DASSL [20]
is a variable-step, variable-order Differential-Algebraic
Equations (DAE) solver based on Backward Differen-
tiation Formulas (BDF). Because a system of ODE is
simply a special case of system of DAE with no alge-
braic equations, DASSL can also be used as an ODE
solver. Several advantages of using DASSL as the pri-
mary solver for rotorcraft aeromechanic problems have
been discussed in Ref. [21]. The most important is that it
can solve ODE in the general implicit form f(x,x,t) =0
rather than requiring the usual explicit form x = f(x, ¢),
and this simplifies considerably the formulation of the
equations of motion. DASSL is a predictor-corrector, im-
plicit solver that can integrate stiff systems of equations.
(Note that the word “implicit” is used here in two dif-
ferent contexts: an implicit solver like DASSL can solve
equations in the explicit form x = f(x,t), and equa-
tions in implicit form can be solved by explicit solvers
with special iterative procedures [21].) Like DE/STEP,
DASSL adjusts step size and order of the integration for-
mula to achieve the desired local error tolerances. BDF
formulas of order up to 5 can be used. The formulas
are unconditionally stable only for order 1 and 2. The
order selection algorithm monitors some stability met-
rics and lowers order if necessary, even if this requires
smaller time steps and more function evaluations [22].
Similarly to DE/STEP, the BDF formulas are available
during the integration, and can be used to reconstruct
additional values of 7;,7,, and r, beyond those calcu-
lated by DASSL if desired.

Equation (19) is already in the form required by



DE/STEP. A minor modification is necessary for use
with DASSL, which requires the residual when the ten-
tative solution vectors for states and derivatives (both
provided by DASSL at each time step) are substituted
into the system of ODE. The modified version of Eq. (19)
is

(1) ()
ey(¥) = Iy ()
e-(¥) r. ()
[AC] 0 0 ry W)
- 0 [A] 0 ry (1)
0 0 [A] r.(y)
Rug
- 0 (34)
RA\¢

where the vector on the left-hand-side is the vector of
residuals.

Both DE/STEP and DASSL are written so that they
can easily provide the solution either at the end of the
interval of integration or at user defined intermediate
points such as at equispaced time points. If these inter-
mediate points do not correspond to the points selected
by the solver for its integration, the solution is recon-
structed from the interpolation polynomials (with the
same accuracy as the the actual computed solution).

Linearized model

From the system of ODE obtained with the MOL it is ob-
viously possible to extract a linearized state-space model
of the wake, either in isolation or as part of a larger
helicopter simulation model. The linearized model can
then be used for the solution of a variety of problems in
rotorcraft aeromechanics and flight dynamics. They in-
clude the calculation of aeroelastic stability eigenvalues,
the calculation of rigid body dynamic poles, the calcula-
tion of the frequency response to pilot inputs, including
bandwidth and phase delay, and the design of active ro-
tor control and flight control systems.

The simplified vortex wake model used in this study,
Eq. (2), is already linear. Therefore, the matrix [A¢]
obtained as described in the previous section is already
the linearized state-space wake model.

In a more sophisticated and realistic wake model, the
terms on the right-hand-side of Eq. (1) will make the
ODE of Egs. (19) or (34) nonlinear and more compli-
cated. Therefore, the linearized model will have to be
obtained by linearizing numerically the ODE about a
reference equilibrium position, such as a trimmed flight
condition. Clearly, regardless of the complexity of the
wake model, the linearized model will depend on the
specific space (or ¢-) discretization, and on the specific
time (or v-) perturbation scheme.
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Figure 1: Example of rigid wake geometry; numerical
and exact solutions.

Results

All the numerical results presented in this section have
been obtained for the following configuration parame-
ters: as = 2 deg, By = 3 deg, u = 0.3, A = 0.05, and
r, = R = 20 ft. These are reasonable values for heli-
copter rotor blades, but are otherwise completely arbi-
trary. Only one rotor blade will be considered. Because
Eq. (2) does not contain the physics of interblade aero-
dynamic interaction, no additional information would be
gained by considering more than one blade. Similarly,
the length of a vortex filament is set to 720 deg only be-
cause this is a reasonable representative value [14], but
otherwise the filament length does not have any effect on
the solution because Eq. (2) does not model the mutual
interaction between wake geometry and rotor inflow. All
time (i.e., 1-) integrations will be carried out from ¢ = 0
deg to ¥ = 720 deg. For all the results, DE/STEP and
DASSL have been set up so that they return the solution
values ten times per rotor revolution, or every Ay = 36°,
for a total of 20 outputs. These numbers are only chosen
for convenience, and do not affect in any way the step
sizes selected by the solvers to perform the integrations.
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Figure 2: Absolute value of relative error as a function
of ¢-discretization; DE/STEP with e = 1075,

The key parameters that will be explored in the results
are the number of intervals N¢ in which the (-domain has
been discretized, and the local error tolerances e required
from the ODE solvers. The local error tolerances, abso-
lute e4 and relative er, will always be set to the same
value e. Both ODE solvers and all five (-discretization
schemes will be used.

An example of graphical representation of the solution
is shown in Fig. 1. The wake geometry in the figure was
calculated using DE/STEP with e = 1075 and N, = 80.
There is clearly an excellent agreement between com-
puted and exact solution.

The relative error of the numerical solution as a func-
tion of the number of (-intervals V¢ is presented in Fig. 2.
The “relative error” is a RMS measure of the error, and
is defined as the square root of the sum of the squares of
the relative errors for each component at each i output
point and at each ( point, divided by the total number
of points. For example, for the case Vo = 320, the RMS
value consists of the square root of the sum of the squares
of 3(components of r)x20(y) output points)x320(N¢) =
19200 values, further divided by 19200. The relative er-
ror is expressed in %. The solver is DE/STEP, with a
local error tolerance e = 107%. With this value of e, the
error is primarily due to the (-discretization, rather than
the 1-discretization.

Figure 2 shows that, as expected, the more accurate
formulas are the higher order ones. Central difference
and upwind formulas of the same order have similar ac-
curacy, with the central difference formulas being slightly
more accurate. The slopes of the curves, when plotted
on logarithmic axes as in the figure are consistent with
their order of accuracy. The slight slope change for the
4PCD4 formula at N = 320 may be attributed to the
fact that the error has reached the limit of accuracy of
the ODE solver for that value of e. The fourth-order
formulas produce a relative error of less than 1% even
with the coarsest discretization, N; = 20, corresponding
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Figure 3: Absolute value of relative error as a function
of (-discretization; DASSL with e = 1076.

to A( = 36°. For Ny = 80, or A = 9°, the relative
error is less than 0.01%.

Figure 3 shows the same type of results as Fig. 2, but
computed using DASSL. The behavior of the first and
second order formulas is virtually identical in both cases,
and so is that of the fourth order formulas for the first
three values of V¢ considered. The errors for the two
finest discretizations is slightly higher, probably because
of the tendency of DASSL to produce somewhat higher
errors than DE/STEP for the same value of e [21].

10°
Relative \
error 101 8 [—
(Abs. value) \ e=1.10"
% | |
| ——
10° ;<
\E e=110" |
10° N
—o— DASSL T
-~ ~-- DE/STEP e =1.10"
5PBU4 Discretization Nyt NG
4 N |
10 =0 e=110°
10° e=110"
e=1.10"
Dz = 40° 20 10° 5° 2°
10°® L L 1 : ,
10 100

Number of z intervals

Figure 4: Absolute value of relative error as a function of
(-discretization, for both ODE solvers and several values
of the local error tolerance e; 5PBU4 discretization.

To improve computational efficiency, it is useful to
use harmonized (- and 1-discretizations. Figure 4 helps
clarify this concept. Again, the figure shows the rel-
ative error as a function of N¢ for both solvers and
several values of local error tolerance e. The results
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for e = 107 have already been shown in Figs. 2 for
DE/STEP and 3 for DASSL: they are representative of
the best i-accuracy, and the relative error is entirely due
to the (-discretization. These results essentially lie on a
straight line with slope consistent with the fourth order
accuracy of the 5PBU4 discretization. First, consider
the solid lines in the figure, which refer to the DASSL
results. For e = 1073, the error line initially lies on that
straight line, but as V¢ increases the error does not de-
crease, because the error tolerance e of the ODE solver
is not tight enough. In other words, if e is set to 1073,
there is no point in using a A smaller than about 20°
because the errors in the integration with respect to vy
will nullify any gains in accuracy brought about by a
finer ¢ mesh. For e = 107*, the error curve leaves the
“fourth order slope” line for a A of about 10°, which is
therefore the appropriate match for that value of e. Sim-
ilarly, for e = 107® and e = 107% there is no accuracy
advantage in reducing A( to less than about 5° and 2°,
respectively.

The same general considerations also apply to the
DE/STEP results, shown in Fig. 4 with dashed lines.
However, for the same value of e, the DE/STEP results
are more accurate than the DASSL results. Therefore,
for a tolerance e = 1073 it is justified to use values of
A( as small as about 5°, and the smallest value used in
this study A¢ = 2.25° is appropriate for all tolerances
equal to 10~ and tighter.

The same type of information for the 2PCD2 and the
2PU1 discretizations is presented in Figg. 5 and 6, re-
spectively. For the second-order 2PCD2 the error toler-
ance e is almost never the driver for the RMS error, with
the only exception of the DASSL solution with e = 1073,
which is not tight enough to justify values of A{ smaller
than about 10°. For the first order 2PU1 formula, only
A( determines the error, and e = 1072 is sufficient for
every value of A(.

Figures 2 through 6 obviously took advantage of the
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Figure 6: Absolute value of relative error as a function of
(-discretization, for both ODE solvers and several values
of the local error tolerance e; 2PU1 discretization.

availability of an exact analytical solution. With more
realistic and sophisticated wake models, where an ana-
lytical solution would not be available, a high accuracy,
grid independent solution could be obtained and used as
a “truth” model.
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Figure 7: Number of function evaluations as a function of
(-discretization, for both ODE solvers and several values
of the local error tolerance e; 5PBU4 discretization.

The number of function evaluations required is shown
in Fig. 7 as a function of N¢ for both solvers and several
values of e. One function evaluation is one evaluation of
Eq. (19) for DE/STEP or one evaluation of Eq. (34) for
DASSL. Clearly, the computational effort for one func-
tion evaluation increases with N¢ because the number of
ODE to be integrated increases. As a consequence, the
number of function evaluations is not a completely rep-
resentative measure of CPU time. On the other hand,
CPU time would not be completely representative either,



because Eqgs. (19) and (34) have a very simple structure
that would not be present if instead of Eq. (2) one would
solve the more precise and realistic Eq. (1). The y-axis in
Fig. 7 does not show a A step size, which could perhaps
be more intuitive. In fact, both DASSL and DE/STEP
are variable-step and predictor-corrector solvers, which
means that the 1-step size is far from constant, espe-
cially at the beginning of the integration, that the solver
may try different Avy in the same step before deciding
which one to accept, and that Eqgs. (19) and (34) could be
evaluated more than once for the same value of 1. There-
fore, even an “equivalent” A1) obtained by dividing the
number of function evaluations by the total integration
length would be essentially meaningless.

Figure 7 clearly shows that DASSL is the more ex-
pensive solver, requiring about one order of magnitude
more function evaluations than DE/STEP for the same
local error tolerance e. This is to be expected, because
implicit solvers like DASSL are typically more computa-
tionally expensive than explicit solvers like DE/STEP.
Also, the number of function evaluation for DE/STEP
increases more slowly with tighter local tolerances: com-
pared with e = 1073, only about 25% more function
evaluations are needed for e = 107, The corresponding
figure for DASSL is of about 55%. The number of func-
tion evaluations also increases more slowly with N for
DE/STEP than DASSL. The very gradual increase of
function evaluations for DE/STEP shown in Fig. 7 can
be interpreted as a sign that the potential increase in
stiffness for decreasing A( does not materialize in prac-
tice, at least for the range of A considered. Therefore,
DE/STEP is perfectly adequate, despite being an ex-
plicit solver.
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Figure 8: Number of function evaluations as a function of
(-discretization, for both ODE solvers and several values
of the local error tolerance e¢; 2PCD2 discretization.

The corresponding data for the 2PCD2 and the 2PU1
discretizations are shown in Figg. 8 and 9, respectively.
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Figure 9: Number of function evaluations as a function of
(-discretization, for both ODE solvers and several values
of the local error tolerance e; 2PU1 discretization.

It is interesting to note that the number of function eval-
uations does not change noticeably with the type of (-
discretization. This can be probably explained by the
modest amount of coupling among the ODE indicated
by the banded structure of the various [A¢] matrices for
the simplified Eq. (2). For a more sophisticated wake
model, blade-vortex and vortex-vortex interactions may
create transients or discontinuities that will be captured
in different ways by different (-discretizations and this,
in turn, could create a stronger connection between num-
ber of function evaluations and specific discretizations.
The computational effort using DASSL is not uni-
formly distributed throughout the integration. Figure 10
shows the cumulative number of function evaluations as
the integration progresses, for both solvers, the 5PBU4
discretization, Ny = 320, and several values of e. (The
DE/STEP data essentially lie on a straight line for all
values of e.) The figure shows three interesting features.
The first is that a considerable portion of the computa-
tional effort, especially for the higher accuracy solutions,
is expended at the beginning of the integration. This
is the phase in which DASSL determines an appropri-
ate initial step size and BDF formula order. The sec-
ond feature is that the computational effort shows clear
“jumps” in selected phases of the integration. These are
caused by the finite-difference recalculation of the Jaco-
bian of the system of ODE [21]. Because Jacobian calcu-
lations are expensive, DASSL attempts to perform them
as infrequently as possible, and will do so only when the
Newton iteration inherent in the implicit method fails to
converge [20]. Many Jacobian calculations are needed at
the beginning of the integration, and this explains the
computational effort there. The third feature apparent
in Fig. 10 is that, after the initial step size and order
have been determined, and whenever Jacobians are not
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recalculated, DASSL requires fewer function evaluations
than DE/STEP (the slope of the lines in the figure is
smaller).

The implications for the use of DASSL in a more real-
istic situation (e.g., in the solution of Eq. (1) instead of
the simpler Eq. (2) are threefold. First, on the positive
side, the computational effort can probably be reduced
by providing DASSL with better information on initial
step size and order. This was not done in the present
study. Second, also on the positive side, after the initial
overhead the difference in number of function evaluations
between DASSL and DE/STEP is not as great as Fig. 7
indicates. This is important if the integration is con-
tinued beyond the two rotor revolutions of the present
study. Third, and this on the negative side, the compu-
tational effort is likely to increase in more realistic situ-
ations. Although DASSL can handle discontinuities and
sharp transients very well, the stronger the discontinuity
the more DASSL needs to adjust step size and order. For
a true step change in forcing function, i.e., one with infi-
nite slope, DASSL tends to behave as if it were restarting
the integration from the time of the step change, i.e., it
computes many Jacobians and it requires many function
evaluations [21]. In a typical application to Eq. (1) one
should expect, depending on the flight condition, to en-
counter strong transients associated with vortex-vortex
and blade-vortex interaction.

All this attention to the behavior of DASSL, when the
results clearly indicate that DE/STEP is the more ef-
ficient solver, is for two main reasons. The first, and
more important, stems from one key motivation for
the conversion of the vortex wake model to state-space
form, namely, the consistent coupling with an ODE-
based model of helicopter dynamics (the other motiva-

tion, i.e., the extraction of a linearized model, does not
involve integration). Because the most sophisticated dy-
namic models of a helicopter end up being of the form
x = f(x,x;t), with no convenient way to convert them
to the explicit form %x = f(x;t) required by most ODE
solvers, the ability of DASSL to accept equations in the
general implicit form f(x,x;t) = 0 can dramatically re-
duce the effort of formulating or modifying the helicopter
equations of motion (see Ref. [21] for a more detailed dis-
cussion of this issue). In other words, even if DASSL is
not the most efficient solver for a MOL-based solution
of the wake equations, its use could still be justified for
the benefits in the formulation of the overall helicopter
model.

The second reason for the focus on DASSL is that,
with a more realistic wake model, the (-discretization
might have to be refined (whether by static or adap-
tive remeshing) to capture discontinuities or transients
in the (-direction. This could make ODE stiffness an
issue, even if it is not one in the present study. The
computational effort required by an explicit solver like
DE/STEP might then become greater than that of an
implicit solver like DASSL.
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The eigenvalues (or poles) of the linearized state-space
wake model are shown in Fig. 11, for the 5PBU4 dis-
cretization, and several values of the number of intervals
N¢. Obviously, in each case there will be N¢ eigenvalues,
which will appear as real or complex conjugate pairs.
The vast majority of the eigenvalues follow a charac-
teristic pattern that starts in the neighborhood of the
origin and ends near the real axis, with increasing real
parts, and imaginary parts that first increase and then
decrease. Frequency and damping ratio increase con-
stantly from the beginning to the end of the pattern.
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discretizations; N = 320. (Note: the offset with respect
to the imaginary axis of the pure imaginary 2PCD2 poles
is only for visual clarity.)

The figure clearly shows that as NN¢ increases, i.e., as
the (-discretization is refined, the maximum frequency
of the eigenvalues also increases, i.e., the system of ODE
becomes stiffer.

A few eigenvalues appear outside the pattern for ev-
ery value of N¢, and are most likely caused by the fact
that the coefficient of first and last rows of the [A¢] ma-
trix are different from those of the rest of the diagonal
band. Some of these “spurious” eigenvalues have a fre-
quency that is far lower than the rest and, in turn, some
of them have positive real parts, i.e., they are unsta-
ble. For example, for N; = 20, there is a real positive
eigenvalue at 0.0023 and a complex conjugate pair at
0.0007 4+ 0.00216¢. They both correspond to a frequency
of about 0.0023 rad/sec, whereas the next higher eigen-
value has a frequency of 1.44 rad/sec, and the highest has
a frequency of 2.27 rad/sec. The corresponding eigenval-
ues for N¢ = 320 are 0.0488 and 0.0151 + 0.04664, corre-
sponding to a frequency of about 0.049 rad/sec, with the
rest of the eigenvalues ranging in frequency from 1.77 to
59.9 rad/sec.

To verify that these very low frequency, slightly unsta-
ble eigenvalues would not affect negatively the stability
of long term wake calculations, the solution for N = 320
and the 5PBU4 discretization was carried out for 150
revolutions, instead of the 2 used throughout this study.
No instability in the solution or degradation of accuracy
occurred.

Finally, Fig. 12 shows the eigenvalues of [A¢] for all five
discretizations considered in this study, and N, = 320.
Except for the “spurious” eigenvalues, which occur for
all five discretizations, the eigenvalues appear in clearly
defined patterns. If [A¢] is obtained from central dif-
ference formulas (2PCD2 and 4PCD4), the eigenvalues
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are purely imaginary (those corresponding to 2PCD2 are
shown in the figure as slightly offset from the imaginary
axis, for visual clarity). If upwind formulas are used
(2PU1 and 4PU2) the eigenvalues collapse into a single
value for each case. The pattern for the biased upwind
formula (5PBU4) has already been discussed.

Because of their strong dependence on the discretiza-
tion scheme, it is clear that the eigenvalues shown in
Figs. 11 and 12 reflect more the numerical characteris-
tics of [A¢] than the underlying physics. The results ob-
tained with the upwind formulas 2PU1 and 4PU2 seem
to be more in line with physical intuition, because the
eigenvalues are all the same (except for a few spurious
ones) and correspond to asymptotic, well damped mo-
tions. However, a better grounded interpretation will
require a careful study of the poles of the more complete
wake model, Eq. (1), rather than the simplified model
of the present study. Future research should also ex-
plore the eigenvectors of the linearized model, whether
they can be used in a modal coordinate transformation
to reduce the size of the system of wake ODE, and the
relationship with the wake modes recently identified and
studied by Bhagwat and Leishman [23] starting from a
perturbation analysis of the governing wake equations.

Summary and Conclusions

This paper has presented the application of the
method of lines to the vorticity transport equation,
which is the foundation for many mathematical mod-
els of helicopter rotor vortex wakes. The method of lines
transforms the governing PDE into a system of ODE,
and therefore into a state-space model. This model can
then be coupled to other ODE modeling helicopter dy-
namics, or used to extract a linearized model suitable
for flight dynamic and aeroelastic stability analyses, fre-
quency response calculations, and rotor and flight con-
trol system design applications.

In this paper, the MOL has been applied to a sim-
plified version of the vorticity transport equation, corre-
sponding to a rigid vortex wake and uniform inflow, for
which an exact analytical solution exists. Because this
simplified equation does not model very important wake
physics, such as the interaction between wake geome-
try and inflow, the study should be considered only as a
first step toward the application of the MOL to realistic
vortex wake models. Therefore, the conclusions listed
below only apply to the simplified problem considered.
Future research will determine whether they can also be
extended to more sophisticated wake models.

The main conclusions of the present study are:

1. The method of lines is a convenient, rigorous, easy
to apply method to formulate vortex wake models
in state-space form. The solutions it generates are
accurate and numerically stable.

Refining the space discretization of the equations in-
creases the stiffness of the resulting system of ODE,



but not to the point that explicit ODE solvers can-
not be used. For the finest discretization used in
this study, corresponding to a A( of about 2°, no
stiffness was apparent.

. The best computational efficiency is obtained when
the accuracies of the space (or ¢-) and time (or -
) discretizations are matched. They can be con-
trolled, respectively, through the step size A( and
the local error tolerance e of the ODE solver. First-,
second-, and fourth-order formulas were used in the
(-discretization, and did produce errors consistent
with the respective orders of accuracy.

For all the cases studied, the explicit, Adams-
Bashforth based solver DE/STEP was much more
computationally efficient than the implicit, BDF
based solver DASSL. However, DASSL greatly sim-
plifies the formulation of the helicopter model to
which the wake is likely to be coupled, and there-
fore it should still be considered as an option for
the wake solution itself. Additionally, the required
(-discretization in more realistic problems could be-
come so fine that stiffness would in fact become a
problem, and require implicit solvers like DASSL.

. The number of required function evaluations for
each solver depends primarily on the desired local
error tolerance and the step size A(, but very little
on the type of {-discretization.

. Linearized state-space wake models can be easily
obtained. For the cases studied, the eigenvalues re-
flected the numerics of the problem, rather than the
physics. Further research should clarify the connec-
tion between these eigenvalues and the wake dynam-
ics.

Finally, because the method of lines can be applied in
principle to any PDE, or system of PDE, its potential
usefulness is not limited to vortex wakes. In fact, it could
provide a systematic methodology to obtain state-space
models from a wide variety of CFD formulations, and
therefore increase the accuracy of simulation models for
helicopter aeromechanics and flight dynamics.
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