

38 REQUIREMENTS VERIFICATION USING A MODEL BASED APPROACH
Dipl. Ing. (FH) Bernd Freyenberg-Richter
Dipl. Ing. Alexander Piechullek-Königer

Dr.-Ing. Thomas Sutor
T-Systems International GmbH

Ottobrunn, Germany

Abstract

Requirements verification can be established by the
use of formal requirement description. From safety
critical areas (e.g. flight control software) formal
concepts emerged into other fields of application.
Although formal languages deliver fail proof
requirement verification due to their mathematical
rigor, they suffer low acceptance. Especially huge
learning curves for the non intuitive expression
languages used for problem description render this
approach difficult. In this paper the authors will
compare the capabilities of formal requirement
verification with a light weight model based
approach. Our method offers easy handling in daily
service. Because theoretic optimality properties as
known from formal languages are hard to achieve
and complicate usability, they will be considered in a
limited way only.

Within the NH90 avionic project a method for
effective and quick requirements verification was
developed. Verification in this context not only
investigates isolated requirements but moreover tries
to cover the complex relationships between a set of
requirements. As consequence the method is not
restricted to bare requirements but also has to cover
the functional breakdown or even system
engineering aspects. In doing so a link to well used
system engineering processes like DoD 2167 or the
V-model can be established. As additional benefit
testing staff is automatically familiar with this
approach and does not need extra training.

As stated previously formal requirement description
languages deliver fail proof verification results. No
other method known to date has this capability. In
comparison the limitations of our approach have to
be considered. Originally the method was developed
as rapid verification tool. In the meantime the set of
covered requirements has been extended. The
model also had to be refined which immediately
unveiled maintainability issues. Another aspect is the
complexity of the model which has to be kept within
a reasonable size. These two topics will be explained
in detail before the integration of the method into
existing process and tool chains will be
demonstrated. Finally possible solutions for further
applications will be described briefly.

Requirements Verification Using a Model Based
Approach

1. Importance of requirement engineering

The most important stage in the development of any
real-time system is the generation of a consistent
design that satisfies a mandatory specification of
requirements. Almost always requirements are
based on informal wishes expressed by one or
several customers. Requirement engineering has to
understand and specify the customer’s needs
through transformation from natural language to a
suited domain. The latter is a critical activity since it
is at the basis of a contractual relationship between
customers and suppliers.

Four major kinds of requirement engineering
activities can be distinguished [4]:
� Elicitation: collects information from customers
� Modeling: processes the collected information

and maps the informal descriptions into concepts
of a specification method

� Analysis: aims at the detection of problems in
the requirements documentation

� Validation: controls the adequacy of
requirement specifications

This paper mainly deals with analysis activities.

2. Formal requirement engineering methods

The specification language of choice must be
expressive to support a straight forward mapping
between the requirements collected from customers
and the specification language concepts available. If
the language is not expressive enough, extra
artificial elements will have to be incorporated into
the specification to capture requirements. These
elements are not necessary from the customers view
but are necessary to restrict the set of possible
solutions at the implementation level. Verification
and validation may become difficult, because
reference to artificial elements introduced in the
specification will have no meaning to customers. Any
specification language should be a formal language
built on formal semantics that give a precise
meaning to all specifications written in the language.
Because any syntax can be easily stated formally
(using some form of backus-naur-form) most
attention should be paid to the semantics. Semantics

38-1

based on imprecisely-worded prose render useless,
because they will get subject of interpretation and
misunderstanding. All semantic issues better shall be
solved once for all and there will be no more critical
phase in the system life cycle [6]. Useful products
like counterexamples, failure scenarios, test cases,
proof obligations, refinements, code fragments then
can be generated automatically.

A formal specification serves as a single, reliable
reference point for all requirement engineering
activities. Especially mathematical/logical semantics
will permit (automated) discovery of potential
incompleteness or inconsistencies by
� Rules of deductive inference
� Theorem proving and model checking
� Abstract interpretation frameworks
� Decomposition
Unfortunately the tools supporting the formal
analysis of requirements specifications are not ideal,
because considerable knowledge and experience is
still required to achieve a formal automated analysis
[7].
A number of formal specification languages have
been proposed for the purpose of describing
software components. Older methods and design
goals thereof can be found in [2]. Today the
languages Albert II [1], Troll, VDM and Z gain the
most support and attention.

2.1 An example for formal specification

Nevertheless both VDM and Z are not capable to
deal with real-time issues, we will use a fragment of
a specification written in Z to demonstrate automatic
requirements verification in brief. The approach is
similar for other formal specification languages. Z is
popular with governments, academics and parts of
industry, especially those developing critical systems
where the reduction of errors and quality of software
is extremely important.
The formal notation Z is based on set theory and
predicate calculus and has been developed at the
Oxford University Computing Laboratory since the
late 1970’s. Data is described by means of predicate
logic which allows to describe the effect of each
operation abstractly. In addition schemas which
decompose the specification are used to describe
both static and dynamic aspects. An international Z
standardization effort was completed in 2002.

A Z specification document consists of interleaved
passages of formal, mathematical text and informal
prose explanation. The formal text consists of a
sequence of paragraphs which gradually introduce
the schemas, global variables and basic types of the
specification, each paragraph building on the ones
which come before it. Each paragraph may define
one or more names for schemas, basic types, global
variables or global constants. The scope of each

global name extends from its definition to the end of
the specification [5].

Figure 1: Fragment of a Search-And-Rescue
(SAR) pattern expressed in Z.
The symbol [P] defines the set of patterns. There is
neither a restriction of the pattern shape (ladder,
expanding square, clover leaf) nor an assumption
how to represent this type. Beginning with the next
paragraph, the schema PatternGenerator specifies
patterns as sequences. There is a predicate which
demands a minimum number of points for the
pattern. Initially the pattern only consists of an
arbitrary start point as is expressed in schema
InitPatternGenerator. Finally there exists a schema
AddPoint which allows adding of points to the
pattern. Additional schemas would refine the
specification e.g. to only cover patterns of ladder
form or would constrain the type point to
geographical coordinates.

As a first example for requirements verification,
expansion shall be applied.

Figure 2: Inference through expansion.

pattern � seq P
� min_points � �1
� min_points � # pattern
� pattern' � seq P
� min_points' � �1
� min_points' � # pattern'
� point? � P
� �pattern� �point?	
 � dom �_�_

�
PatternGenerator

�
�pattern: seq P
�min_points: �1
�

�
�min_points � # pattern
�

�

�
InitPatternGenerator

�
�PatternGenerator
�startPoint?: P
�

�
�pattern = �� �startPoint?	
�

�

�
AddPoint

�
��PatternGenerator
�point?: P
�

�
�pattern' = pattern � �point?	�
�

38-2

All predicates required to add a point to the pattern
obtained are stated in figure 2. Notably there are
three deduced rules, which apply after a point was
added to the pattern. Besides expansion, reduction
and normalization also theorems can be proven in a
explicit manner. Roughly spoken theorems provide
formal spot checks.

Figure 3: Sequential composition.
Results of sequences of operations can be
investigated by defining a test case schema. Figure
3 shows, that the outputs of Case1 are input to
Case2. Thereby symbolic evaluation for theorems
can be carried out. Figure 4 demonstrates the result
obtained for the theorem evaluate in figure 3.

Figure 4: Conjectures after proofing.
Both the expected sequence �start�A B	�and
additional properties are obtained by symbolic
evaluation. A great part thereof deals with number
spaces related to state or result variables. Besides
the relation between minimum number of points and
pattern elements unveiled conjectures which by sure
would have been missed by manual analysis
concentrating on the correct sequence.
Remarkably the used proofing tool was able to do
symbolic evaluation, but was unable to simplify the
pattern sequence.

2.2. Drawbacks of formal requirements engineering

As already mentioned most formal specification
languages do not completely deal with the
specification of real-time systems. This deficiency
was recognized and influenced the development of
Albert II. But the expressiveness of Albert II is so
rich, that most system engineers will either have
difficulties to understand the formal notation or will
fail to extract the right subset of the notation that is
proper for problem description. Apart from this formal
methods have inherited well-known disadvantages
from water-fall models, because they try to specify
the complete system at any level in its entirety. And
most important there is no doubt that structured or
formal notation will not capture the requirements that
the customer has failed to mention (irrespective that
no known method will handle this situation).

Another important reason for not using a formal
approach is the already presence of requirements.
Nearly always a huge amount of knowledge is
accumulated implicitly with the requirements and
cannot be transferred or transformed easily. Besides
decisions of the past which influenced choice of
method or representation might even be of
contractual interest.

3. Self developed model based approach

The NH90 avionics project suffers a similar situation.
Since some time a set of requirements is engineered
and maintained. Knowledge of staff is closely tied to
the constituted form of the specification. The set of
requirements describes complex functionalities of
different categories at various levels of detail. Initially
this specification was written in natural language.
Unfortunately the attempt to migrate to a dedicated
toolset failed. Because no additional funding could
be raised and time was getting short, members of
the formal qualification test team within the NH90
project at Eurocopter Germany decided to develop a
light weight model based approach. A formal
approach would have not been possible due to the
stated constraints and therefore a lightweight model
based verification was developed.

As an example for the model based approach again
a Search-And-Rescue pattern is chosen. To prevent
violation of secrecy with respect to the content of the
requirements specification document (SRS) used,
the information within this presentation is modified
and obliterated.

3.1. Initial situation

The behavior of the Search-And-Rescue pattern is
specified by a set of requirements within the SRS
document. Mostly all of the functionality is expressed
as pseudo-code (see figure 5). The correctness and

�start, A, B: P
�

�
��start� A� B	 � seq P

Case1�� InitPatternGenerator[startPoint? := start]
Case2�� Case1
 � AddPoint[point? := A]
 � AddPoint[point? := B]

theorem evaluate
 Case2

min_points � �
� min_points' � �
� pattern � � �� � P
�
� pattern' � � �� � P
�
� ��min_points__0: �
 ���pattern = �� � �start	�
 � pattern' = �� � �start	 � ��A	 � �B	
�
 � �� � �start	 � seq P
 � min_points � 1
 � min_points � # ��� � �start	
�
 � min_points__0 � 1
 � min_points__0 � 1 + # ��� � �start	
�
 � min_points' � 1
 � min_points' � 2 + # ��� � �start	

38-3

the consistency of the requirements was unknown
and had to be proven. For this purpose a huge
number of test definitions and test procedures had to
be developed in short time.

Figure 5: Example for pseudo-code (obliterated).

3.2. Using a spreadsheet tool

Because the available pseudo-code can not be
executed within the tool chain, a transformation of
the specification becomes necessary. Consequently
all available information was extracted from the SRS
document and implemented in a spreadsheet. Only
small modifications of the terms (see figure 6) were
applied. To verify the correctness of the defined
algorithms (e.g. parameters used for the generation
of the pattern) an x/y-diagram was applied for direct
visualization. In doing so, the implementation of
special test algorithms which in turn would have to
be proven to work correctly, can be avoided. Due to
the fact that the displayed information of the diagram
can only be seen as a rough guide to verify the
validity of the parameters, algorithms to control the
output should be added to the final solution of the
verification model.

Figure 6: Snapshot of the spreadsheet solution.

3.3 Lessons learned from the spreadsheet solution

Using the spreadsheet approach as described in the
previous paragraph, it became possible to verify the
correctness of the specified algorithms and to
improve them considerably in a straightforward
manner. Several specification errors and
inconsistencies were discovered at an early stage of
the project. Because our systems engineering model
is based on the waterfall-model, detecting these
class of errors during later development would have
a great impact on the time and cost schedule of the
project. Therefore simply animation of the
specification helped saving of cost and time. One
major advantage is the fact that for this coarse
solution only very low effort and standard
applications are required. Approximately one man-
month had to be spent to reach the status shown in
figure 6.

The development of this verification approach
unveiled both advantages and disadvantages to be
considered.

Advantages:
� Complex algorithms can be easily verified with

low effort.
� Discrepancies and errors can be found and

solved at early stages and accelerates
specification change management.

� Graphical visualization can be done with suitable
spreadsheet diagram - types tailored to the
application under verification.

Disadvantages:
� The implemented algorithms remain difficult to

read and trace (now because of the spreadsheet
pseudo-code).

� The structure of the methodology is static and
can hardly be modified or expanded.

� The simulation of graphical input devices (e.g.
Man-Machine-Interface, MMI) is not possible
with this solution.

--
---- creation of the L A D D E R pattern ----
--
--
-- inputs required for Ladder:
--
-- TYPE = Ladder
-- WIDTH = usually the small side of the complete search area
-- SPACE = distance between the legs 1,3,5,7...
-- DIRECTION = angle towards north of the long side of the area
-- SIDE = left/right turn onto the second leg; default: RIGHT--
--
--
--
-- calculation of some constant values;
-- ..LAT, ..LON etc in deg+tenth of degrees
-- 999 means: value is not defined / not to be used
--
[LADD_WIDTH/=999 and LADD_SPACE/=999]/
LADD_D:=LADD_WIDTH LADD_SPACE;; --length of transverse legs

--
-- first corner position of the right turn Ladder pattern:
--
[LADD_SIDE= R]/
LADD_LAT_CO(1):=LADD_CSP_LAT+LADD_DLAT1;
LADD_LON_CO(1):=LADD_CSP_LON+LADD_DLON1;;
--
-- first corner position of the left turn Ladder pattern:
--
[LADD_SIDE= L]/
LADD_LAT_CO(1):=LADD_CSP_LAT LADD_DLAT1;
LADD_LON_CO(1):=LADD_CSP_LON+LADD_DLON1;;
--
-- second corner position of right and left turn Ladder pattern:
--
/LADD_LAT_CO(2):=LADD_C_1_LAT+LADD_DLAT2;
LADD_LON_CO(2):=LADD_C_1_LON+LADD_DLON2;;
--
-- remaining corner positions of right and left turn Ladder patterns:
--
[PATX_TYPE= LADDER and LADD_WIDTH/=999 and
LADD_SPACE/=999 and LADD_DIR/=999]/

...

38-4

3.4. Upgrade of the spreadsheet solution in favor of
a common programming language

In order to solve the first two disadvantages
mentioned (readability and structure of method), it
has been decided to use a common programming
language. Preferably the language itself should be
compatible to the spreadsheet application in order to
allow comparison to our baseline approach.

Figure 7: Snapshot of the common programming
language modules.

The algorithms to be verified have now been taken
nearly unchanged from the specified pseudo-code
(directly from the SRS, not from the previous
approach) and were translated into programming
language modules. Also the backwards link to the
spreadsheet solution was dropped completely
because is rendered useless.

Only advantages of the approach are summarized,
because the Man-Machine-Interface still has to be
considered in the next paragraph.

Advantages:
� The algorithms to be verified and modeled can

be taken nearly unchanged from the original
source.

� By using modules it becomes possible to
structure the model.

� The model can be maintained and expanded in a
straightforward manner.

� Libraries and re-usable components become
feasible.

� Cyclic references can now be implemented.

The use of modules and thus the structuring of
specified and required algorithms turned out to be
the greatest improvement with regards to
methodology. Furthermore the tool became now
capable of running dynamic simulations.

3.5 Development of an MMI simulation

Besides the verification of the specified algorithms of
the Search-And-Rescue pattern, also the facility to
test the behavior of the Man-Machine-Interface
became evident. With help of both an MMI-
simulation and requirements verification especially
the interaction of functionality in conjunction with the
MMI can be shown in a comprehensive way. It
should be noted that the conditions and settings for
the output on the MMI are not specified within the
SRS but within another document. Due to this fact
we again stress the importance of an integrated
verification tool. Our experience shows, that the
verification of requirements originating from arbitrary
and different sources can become cumbersome and
error prone if only isolated parts of the specification
are considered. More elaborated models, which
preferable should be run capable, promise simulation
and verification of the functional chain and its entire
properties from an integration viewpoint.

Figure 8: Snapshot of an approach with
integrated Man-Machine-Interface.
In order to minimize the amount of human labor and
time exposure a rapid prototyping solution emulating
an input and output unit was added to the
spreadsheet solution. By doing though, MMI specific
aspects could be verified by visual inspection.
The example presented for the first implementation
consists of an operational function, that is located on
the target computer of the NH90. Mainly the
“Display-And-Keyboard Unit (DKU)” has been
modeled as MMI, using simple format features and
control buttons (see figure 8).

Advantages:
� Model based requirements verification with

simultaneous graphical simulation for rapid
prototyping can be performed by using
spreadsheets with low effort and low time
budget.

� Manual analysis missed a lot of inconsistencies
which were clearly apparent from our approach.

� Due to the dynamic simulation across different
requirement sources even more inconsistencies
were found.

38-5

� Algorithms verification can be performed
sufficiently.

Unfortunately the possibilities for graphical
representation are limited to the capabilities of the
spreadsheet used and the modularity of graphical
elements does not convince.

3.6 Final solution

Again the spreadsheet solution was somehow
limited. Therefore a redesign of method for future
extension has been carried out. As advantage
customization and flexibility for new application areas
are obtained.
Especially for the modeling of graphical interfaces
utmost flexibility is required. Ease of handling,
adherence to well-known interface standards and
customer preferences are essential for successful
deployment.

Figure 9: Snapshot of the final solution.
Further useful features like simulation control panels
or state diagrams have also been implemented and
have proven useful (see figure 9).

4. Conclusions

In the preceding paragraphs two different strategies -
the formal requirement engineering method and the
model based approach – have been introduced. Both
cover the analysis phase of the requirement
engineering process with different methodology.
Analysis in this case is focused on the detection of
problems or errors during the phase of specification
of requirements.
Formal requirement methods enforce system
engineers to create consistent specifications. As
consequence a formal notation is precise and
unambiguous. Thus the formal notation always
provides the definitive description in the case of any
misunderstanding. Using a formal notation increases
the understanding of the operation of a system,

especially at early stages. Thereby it becomes
possible to reason about a system by stating and
proving theorems about it. This provides a check that
the system will behave as expected.
On the other hand formal techniques require a
significant amount of training effort and practical
experience to be applied successfully. E.g.
nevertheless some specification languages are
designed to be executable (although very
inefficiently) there seems to be a general lack of
convenient tool support and integration. Still insight
and invention of staff is necessary, because there is
no fool-proof methodology or magic formula that will
automatically ensure a good or even feasible
specification. Even if a system is proofed correct,
there are still many assumptions which may be
invalid. The specification must be ‘obviously right’.
There is no way that this can be formally verified to
be what is expected [3].

In contrast to the formal requirement methods the
light weight model based approach seems to be a
suitable way to cope with the analysis phase.
Experience from use of the spreadsheet application
showed, that it is possible to both verify algorithms
and simulate man-machine-interfaces. This
advantage gains importance, as customers are less
interested in methodology discussions than rapid
deployed results. The lessons learned that have
been captured during the development of the model
based approach can be summarized as the following
statements:
� Errors can be detected in an early stage of the

process.
� The handling is easy.
� Run capable models can be achieved very

quickly.
� Rapid prototyping is possible.
� Exchange of data between different applications

of the same supplier is possible.

5. Future prospects

As mentioned above both methods, the formal
specification language and the model base
approach, proved both useful during the verification
process. The methodologies are mutually exclusive
and can therefore be seen as complementary.
Furthermore both methods could be used in a single
project. For example the cost of proving a system
correct may be justified in safety-critical systems
where lives are at risk. Many systems are less
critical, but could still benefit from formalization
earlier on in the design process. Further
development will have to consider a list of decision
criterions in order to support engineers in future
projects to find the best method.
Development of the model based approach is at the
moment targeted towards tool integration. Especially
the Functional Analysis Database, which holds

38-6

elements to support the requirements engineering
process, shall be expanded.
Roughly spoken all requirements of the system and
accompanying additional information shall be
connected in order to support testing and formal
qualification. Scattered information sources
originating from different and separated documents
have to be provided as single source. Users of the
database will be able to access requirement
specifications as original source (or any other
inherited instantiation). Immediate verification of
specified algorithms will also be possible from this
entry point. Feedback can be written back in the form
of comments. The creation and definition of single
test steps intended to carry out requirement testing
can also be done directly within the database. On
that basis a complete integrated specification system
especially suited for testing needs will be
established. Nevertheless the described topics are
rather requirement management tasks. The
complexity of the NH90 avionics project demands an
approach considering not only requirement
engineering tasks. The work has already begun, but
is still ongoing.

Figure 10: Snapshot of the Functional Analysis
Database.

Acknowledgements

We’d like to thank our colleagues within the NH90
avionics project for many helpful discussions and
suggestions. Also we’d like to thank Eurocopter
Germany for allowance and support.

Literature

[1] Bois, P.D. (1995): Semantic definition of the

Albert II language. Technical Report RP-95-007,
Computer Science Dept., University of Namur,
Namur (Belgium)

[2] Burns, A. and Wellings, A. (2001): Real-Time
Systems and Programming Languages (third
edition). Addison Wesley

[3] Davis, J. and Woodcock, J. (1996): Using Z:
Specification, Refinement and Proof. Prentice
Hall

[4] Dubois, E., Bois, P.D., and Zeippeny J-M.
(1995): A Formal Requirements Engineering
Method for Real-Time, Concurrent, and
Distributed Systems_. Technical Report RP-95-
004, Computer Science Dept., University of
Namur, Namur (Belgium)

[5] Spivey, M. (1989): The Z Notation: A Reference
Manual. Prentice Hall

[6] Xiashan, L., Zhiming, L. and Jifeng, H. (2001):
Formal and Use-Case Driven Requirement
Analysis in UML. Technical Report 23, UNU/IIST

[7] Zeippen, JM., Dubois, E., Bois, PD. (1998):
Supporting the Analyst when Reasoning on
Requirements Specifications for Real-Time and
Distributed Systems. Technical Report RP-98-
016, Computer Science Dept., University of
Namur, Namur (Belgium)

[8] Information Technology - Z Formal Specification
Notation - Syntax, Type System and Semantics,
ISO/IEC 13568:2002, ISO

38-7

	Kopf:
	drucken:
	ganz zurück:
	zurück:
	vor:
	ganz vor:
	Zurück (P):
	Bild(P):
	Autor: B. Freyenberg-Richter et al.
	29th: 29TH EUROPEAN ROTORCRAFT FORUM
	wann: Friedrichshafen, Germany, 16-18 September 2003
	Titel: Requirement Verification Using A Model Based Approach
	Zurück (A):
	_Autor:

