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Abstract 
 
Requirements verification can be established by the 
use of formal requirement description. From safety 
critical areas (e.g. flight control software) formal 
concepts emerged into other fields of application. 
Although formal languages deliver fail proof 
requirement verification due to their mathematical 
rigor, they suffer low acceptance. Especially huge 
learning curves for the non intuitive expression 
languages used for problem description render this 
approach difficult. In this paper the authors will 
compare the capabilities of formal requirement 
verification with a light weight model based 
approach. Our method offers easy handling in daily 
service. Because theoretic optimality properties as 
known from formal languages are hard to achieve 
and complicate usability, they will be considered in a 
limited way only. 
 
Within the NH90 avionic project a method for 
effective and quick requirements verification was 
developed. Verification in this context not only 
investigates isolated requirements but moreover tries 
to cover the complex relationships between a set of 
requirements. As consequence the method is not 
restricted to bare requirements but also has to cover 
the functional breakdown or even system 
engineering aspects. In doing so a link to well used 
system engineering processes like DoD 2167 or the 
V-model can be established. As additional benefit 
testing staff is automatically familiar with this 
approach and does not need extra training.  
 
As stated previously formal requirement description 
languages deliver fail proof verification results. No 
other method known to date has this capability. In 
comparison the limitations of our approach have to 
be considered. Originally the method was developed 
as rapid verification tool. In the meantime the set of 
covered requirements has been extended. The 
model also had to be refined which immediately 
unveiled maintainability issues. Another aspect is the 
complexity of the model which has to be kept within 
a reasonable size. These two topics will be explained 
in detail before the integration of the method into 
existing process and tool chains will be 
demonstrated. Finally possible solutions for further 
applications will be described briefly.  
 

Requirements Verification Using a Model Based 
Approach 

 
1. Importance of requirement engineering 
 
The most important stage in the development of any 
real-time system is the generation of a consistent 
design that satisfies a mandatory specification of 
requirements. Almost always requirements are 
based on informal wishes expressed by one or 
several customers. Requirement engineering has to 
understand and specify the customer’s needs 
through transformation from natural language to a 
suited domain. The latter is a critical activity since it 
is at the basis of a contractual relationship between 
customers and suppliers. 
 
Four major kinds of requirement engineering 
activities can be distinguished [4]: 
� Elicitation: collects information from customers 
� Modeling: processes the collected information 

and maps the informal descriptions into concepts 
of a specification method 

� Analysis: aims at the detection of problems in 
the requirements documentation 

� Validation: controls the adequacy of 
requirement specifications 

 
This paper mainly deals with analysis activities. 
 
2. Formal requirement engineering methods 
 
The specification language of choice must be 
expressive to support a straight forward mapping 
between the requirements collected from customers 
and the specification language concepts available. If 
the language is not expressive enough, extra 
artificial elements will have to be incorporated into 
the specification to capture requirements. These 
elements are not necessary from the customers view 
but are necessary to restrict the set of possible 
solutions at the implementation level. Verification 
and validation may become difficult, because 
reference to artificial elements introduced in the 
specification will have no meaning to customers. Any 
specification language should be a formal language 
built on formal semantics that give a precise 
meaning to all specifications written in the language. 
Because any syntax can be easily stated formally 
(using some form of backus-naur-form) most 
attention should be paid to the semantics. Semantics 
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based on imprecisely-worded prose render useless, 
because they will get subject of interpretation and 
misunderstanding. All semantic issues better shall be 
solved once for all and there will be no more critical 
phase in the system life cycle [6]. Useful products 
like counterexamples, failure scenarios, test cases, 
proof obligations, refinements, code fragments then 
can be generated automatically. 
 
A formal specification serves as a single, reliable 
reference point for all requirement engineering 
activities. Especially mathematical/logical semantics 
will permit (automated) discovery of potential 
incompleteness or inconsistencies by 
� Rules of deductive inference  
� Theorem proving and model checking 
� Abstract interpretation frameworks  
� Decomposition 
Unfortunately the tools supporting the formal 
analysis of requirements specifications are not ideal, 
because considerable knowledge and experience is 
still required to achieve a formal automated analysis 
[7]. 
A number of formal specification languages have 
been proposed for the purpose of describing 
software components. Older methods and design 
goals thereof can be found in [2]. Today the 
languages Albert II [1], Troll, VDM and Z gain the 
most support and attention. 
 
2.1 An example for formal specification 
 
Nevertheless both VDM and Z are not capable to 
deal with real-time issues, we will use a fragment of 
a specification written in Z to demonstrate automatic 
requirements verification in brief. The approach is 
similar for other formal specification languages. Z is 
popular with governments, academics and parts of 
industry, especially those developing critical systems 
where the reduction of errors and quality of software 
is extremely important. 
The formal notation Z is based on set theory and 
predicate calculus and has been developed at the 
Oxford University Computing Laboratory since the 
late 1970’s. Data is described by means of predicate 
logic which allows to describe the effect of each 
operation abstractly. In addition schemas which 
decompose the specification are used to describe 
both static and dynamic aspects. An international Z 
standardization effort was completed in 2002.  
 
A Z specification document consists of interleaved 
passages of formal, mathematical text and informal 
prose explanation. The formal text consists of a 
sequence of paragraphs which gradually introduce 
the schemas, global variables and basic types of the 
specification, each paragraph building on the ones 
which come before it. Each paragraph may define 
one or more names for schemas, basic types, global 
variables or global constants. The scope of each 

global name extends from its definition to the end of 
the specification [5]. 
 

 
Figure 1: Fragment of a Search-And-Rescue 
(SAR) pattern expressed in Z. 
The symbol [P] defines the set of patterns. There is 
neither a restriction of the pattern shape (ladder, 
expanding square, clover leaf) nor an assumption 
how to represent this type. Beginning with the next 
paragraph, the schema PatternGenerator specifies 
patterns as sequences. There is a predicate which 
demands a minimum number of points for the 
pattern. Initially the pattern only consists of an 
arbitrary start point as is expressed in schema 
InitPatternGenerator. Finally there exists a schema 
AddPoint which allows adding of points  to the 
pattern. Additional schemas would refine the 
specification e.g. to only cover patterns of ladder 
form or would constrain the type point to 
geographical coordinates. 
 
As a first example for requirements verification, 
expansion shall be applied.  
 

 
Figure 2: Inference through expansion.  

pattern � seq P 
� min_points � �1 
� min_points � # pattern 
� pattern' � seq P 
� min_points' � �1 
� min_points' � # pattern' 
� point? � P 
� �pattern� �point?	
 � dom �_�_
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All predicates required to add a point to the pattern 
obtained are stated in figure 2. Notably there are 
three deduced rules, which apply after a point was 
added to the pattern. Besides expansion, reduction 
and normalization also theorems can be proven in a 
explicit manner.  Roughly spoken theorems provide 
formal spot checks. 
 

 
Figure 3: Sequential composition.  
Results of sequences of operations can be 
investigated by defining a test case schema. Figure 
3 shows, that the outputs of Case1 are input to 
Case2. Thereby symbolic evaluation for theorems 
can be carried out. Figure 4 demonstrates the result 
obtained for the theorem evaluate in figure 3. 

 
Figure 4: Conjectures after proofing.  
Both the expected sequence �start�A B	�and 
additional properties are obtained by symbolic 
evaluation. A great part thereof deals with number 
spaces related to state or result variables. Besides 
the relation between minimum number of points and 
pattern elements unveiled conjectures which by sure 
would have been missed by manual analysis 
concentrating on the correct sequence.  
Remarkably the used proofing tool was able to do 
symbolic evaluation, but was unable to simplify the 
pattern sequence. 

2.2. Drawbacks of formal requirements engineering 
 
As already mentioned most formal specification 
languages do not completely deal with the 
specification of real-time systems. This deficiency 
was recognized and influenced the development of 
Albert II. But the expressiveness of Albert II is so 
rich, that most system engineers will either have 
difficulties to understand the formal notation or will 
fail to extract the right subset of the notation that is 
proper for problem description. Apart from this formal 
methods have inherited well-known disadvantages 
from water-fall models, because they try to specify 
the complete system at any level in its entirety. And 
most important there is no doubt that structured or 
formal notation will not capture the requirements that 
the customer has failed to mention (irrespective that 
no known method will handle this situation). 
 
Another important reason for not using a formal 
approach is the already presence of requirements. 
Nearly always a huge amount of knowledge is 
accumulated implicitly with the requirements and 
cannot be transferred or transformed easily. Besides 
decisions of the past which influenced choice of 
method or representation might even be of 
contractual interest.  
 
3. Self developed model based approach 
 
The NH90 avionics project suffers a similar situation. 
Since some time a set of requirements is engineered 
and maintained. Knowledge of staff is closely tied to 
the constituted form of the specification. The set of 
requirements describes complex functionalities of 
different categories at various levels of detail. Initially 
this specification was written in natural language. 
Unfortunately the attempt to migrate to a dedicated 
toolset failed. Because no additional funding could 
be raised and time was getting short, members of 
the formal qualification test team within the NH90 
project at Eurocopter Germany decided to develop a 
light weight model based approach. A formal 
approach would have not been possible due to the 
stated constraints and therefore a lightweight model 
based verification was developed. 
 
As an example for the model based approach again 
a Search-And-Rescue pattern is chosen. To prevent 
violation of secrecy with respect to the content of the 
requirements specification document (SRS) used, 
the information within this presentation is modified 
and obliterated. 
 
3.1. Initial situation 
 
The behavior of the Search-And-Rescue pattern is 
specified by a set of requirements within the SRS 
document. Mostly all of the functionality is expressed 
as pseudo-code (see figure 5). The correctness and 

 
�start, A, B: P 
�














�
��start� A� B	 � seq P 
 
Case1�� InitPatternGenerator[startPoint? := start] 
Case2�� Case1 
   � AddPoint[point? := A] 
   � AddPoint[point? := B] 
 
theorem evaluate 
   Case2 

min_points � � 
� min_points' � � 
� pattern � � �� � P
�
� pattern' � � �� � P
�
� ��min_points__0: � 
      ���pattern = �� � �start	�
         � pattern' = �� � �start	 � ��A	 � �B	
�
         � �� � �start	 � seq P 
         � min_points � 1 
         � min_points � # ��� � �start	
�
         � min_points__0 � 1 
         � min_points__0 � 1 + # ��� � �start	
�
         � min_points' � 1 
         � min_points' � 2 + # ��� � �start	
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the consistency of the requirements was unknown 
and had to be proven. For this purpose a huge 
number of test definitions and test procedures had to 
be developed in short time.  
 

 
Figure 5: Example for pseudo-code (obliterated). 
 
3.2. Using a spreadsheet tool 
 
Because the available pseudo-code can not be 
executed within the tool chain, a transformation of 
the specification becomes necessary. Consequently 
all available information was extracted from the SRS 
document and implemented in a spreadsheet. Only 
small modifications of the terms (see figure 6) were 
applied. To verify the correctness of the defined 
algorithms (e.g. parameters used for the generation 
of the pattern) an x/y-diagram was applied for direct 
visualization. In doing so, the implementation of 
special test algorithms which in turn would have to 
be proven to work correctly, can be avoided. Due to 
the fact that the displayed information of the diagram 
can only be seen as a rough guide to verify the 
validity of the parameters, algorithms to control the 
output should be added to the final solution of the 
verification model. 

 

Figure 6: Snapshot of the spreadsheet solution. 
 
3.3 Lessons learned from the spreadsheet solution 
 
Using the spreadsheet approach as described in the 
previous paragraph, it became possible to verify the 
correctness of the specified algorithms and to 
improve them considerably in a straightforward 
manner. Several specification errors and 
inconsistencies were discovered at an early stage of 
the project. Because our systems engineering model 
is based on the waterfall-model, detecting these 
class of errors during later development would have 
a great impact on the time and cost schedule of the 
project. Therefore simply animation of the 
specification helped saving of cost and time. One 
major advantage is the fact that for this coarse 
solution only very low effort and standard 
applications are required. Approximately one man-
month had to be spent to reach the status shown in 
figure 6. 
 
The development of this verification approach 
unveiled both advantages and disadvantages to be 
considered. 
 
Advantages: 
� Complex algorithms can be easily verified with 

low effort. 
� Discrepancies and errors can be found and 

solved at early stages and accelerates 
specification change management. 

� Graphical visualization can be done with suitable 
spreadsheet diagram - types tailored to the 
application under verification. 

 
Disadvantages: 
� The implemented algorithms remain difficult to 

read and trace (now because of the spreadsheet 
pseudo-code). 

� The structure of the methodology is static and 
can hardly be modified or expanded. 

� The simulation of graphical input devices (e.g. 
Man-Machine-Interface, MMI) is not possible 
with this solution. 

---------------------------------------------------------------------- 
----               creation of the L A D D E R pattern            ---- 
---------------------------------------------------------------------- 
-- 
-- inputs required for Ladder: 
-- 
-- TYPE      = Ladder 
-- WIDTH     = usually the small side of the complete search area 
-- SPACE     = distance between the legs 1,3,5,7... 
-- DIRECTION = angle towards north of the long side of the area 
-- SIDE      = left/right turn onto the second leg; default: RIGHT--  
---------------------------------------------------------------------- 
-- 
---------------------------------------------------------------------- 
-- calculation of some constant values; 
--    ..LAT, ..LON etc in deg+tenth of degrees 
--    999 means: value is not defined / not to be used 
-- 
[LADD_WIDTH/=999 and LADD_SPACE/=999]/ 
LADD_D:=LADD_WIDTH LADD_SPACE;; --length of transverse legs 
 
---------------------------------------------------------------------- 
-- first corner position of the right turn Ladder pattern: 
-- 
[LADD_SIDE= R ]/   
LADD_LAT_CO(1):=LADD_CSP_LAT+LADD_DLAT1; 
LADD_LON_CO(1):=LADD_CSP_LON+LADD_DLON1;; 
---------------------------------------------------------------------- 
-- first corner position of the left turn Ladder pattern: 
-- 
[LADD_SIDE= L ]/  
LADD_LAT_CO(1):=LADD_CSP_LAT LADD_DLAT1; 
LADD_LON_CO(1):=LADD_CSP_LON+LADD_DLON1;; 
---------------------------------------------------------------------- 
-- second corner position of right and left turn Ladder pattern: 
-- 
/LADD_LAT_CO(2):=LADD_C_1_LAT+LADD_DLAT2; 
LADD_LON_CO(2):=LADD_C_1_LON+LADD_DLON2;; 
---------------------------------------------------------------------- 
-- remaining corner positions of right and left turn Ladder patterns: 
-- 
[PATX_TYPE= LADDER  and LADD_WIDTH/=999 and  
LADD_SPACE/=999 and LADD_DIR/=999]/ 

... 

38-4



 

3.4. Upgrade of the spreadsheet solution in favor of 
a common programming language 
 
In order to solve the first two disadvantages 
mentioned (readability and structure of method), it 
has been decided to use a common programming 
language. Preferably the language itself should be 
compatible to the spreadsheet application in order to 
allow comparison to our baseline approach. 
 

 

Figure 7: Snapshot of the common programming 
language modules. 
 
The algorithms to be verified have now been taken 
nearly unchanged from the specified pseudo-code 
(directly from the SRS, not from the previous 
approach) and were translated into programming 
language modules. Also the backwards link to the 
spreadsheet solution was dropped completely 
because is rendered useless.  
 
Only advantages of the approach are summarized, 
because the Man-Machine-Interface still has to be 
considered in the next paragraph. 
 
Advantages: 
� The algorithms to be verified and modeled can 

be taken nearly unchanged from the original 
source. 

� By using modules it becomes possible to 
structure the model. 

� The model can be maintained and expanded in a 
straightforward manner. 

� Libraries and re-usable components become 
feasible. 

� Cyclic references can now be implemented. 
 
The use of modules and thus the structuring of 
specified and required algorithms turned out to be 
the greatest improvement with regards to 
methodology. Furthermore the tool became now 
capable of running dynamic simulations. 

3.5 Development of an MMI simulation 
 
Besides the verification of the specified algorithms of 
the Search-And-Rescue pattern, also the facility to 
test the behavior of the Man-Machine-Interface 
became evident. With help of both an MMI-
simulation and requirements verification especially 
the interaction of functionality in conjunction with the 
MMI can be shown in a comprehensive way. It 
should be noted that the conditions and settings for 
the output on the MMI are not specified within the 
SRS but within another document. Due to this fact 
we again stress the importance of an integrated 
verification tool. Our experience shows, that the 
verification of requirements originating from arbitrary 
and different sources can become cumbersome and 
error prone if only isolated parts of the specification 
are considered. More elaborated models, which 
preferable should be run capable, promise simulation 
and verification of the functional chain and its entire 
properties from an integration viewpoint.  
 

 

Figure 8: Snapshot of an approach with 
integrated Man-Machine-Interface. 
In order to minimize the amount of human labor and 
time exposure a rapid prototyping solution emulating 
an input and output unit was added to the 
spreadsheet solution. By doing though, MMI specific 
aspects could be verified by visual inspection. 
The example presented for the first implementation 
consists of an operational function, that is located on 
the target computer of the NH90. Mainly the 
“Display-And-Keyboard Unit (DKU)” has been 
modeled as MMI, using simple format features and 
control buttons (see figure 8). 
 
Advantages: 
� Model based requirements verification with 

simultaneous graphical simulation for rapid 
prototyping can be performed by using 
spreadsheets with low effort and low time 
budget.  

� Manual analysis missed a lot of inconsistencies 
which were clearly apparent from our approach. 

� Due to the dynamic simulation across different 
requirement sources even more inconsistencies 
were found. 

38-5



 

� Algorithms verification can be performed 
sufficiently. 

 
Unfortunately the possibilities for graphical 
representation are limited to the capabilities of the 
spreadsheet used and the modularity of graphical 
elements does not convince. 
 
3.6 Final solution  
 
Again the spreadsheet solution was somehow 
limited. Therefore a redesign of method for future 
extension has been carried out. As advantage 
customization and flexibility for new application areas 
are obtained. 
Especially for the modeling of graphical interfaces 
utmost flexibility is required. Ease of handling, 
adherence to well-known interface standards and 
customer preferences are essential for successful 
deployment. 
 

 

Figure 9: Snapshot of the final solution. 
Further useful features like simulation control panels 
or state diagrams have also been implemented and 
have proven useful (see figure 9). 
 
4. Conclusions 
 
In the preceding paragraphs two different strategies - 
the formal requirement engineering method and the 
model based approach – have been introduced. Both 
cover the analysis phase of the requirement 
engineering process with different methodology. 
Analysis in this case is focused on the detection of 
problems or errors during the phase of specification 
of requirements. 
Formal requirement methods enforce system 
engineers to create consistent specifications. As 
consequence a formal notation is precise and 
unambiguous. Thus the formal notation always 
provides the definitive description in the case of any 
misunderstanding. Using a formal notation increases 
the understanding of the operation of a system, 

especially at early stages. Thereby it becomes 
possible to reason about a system by stating and 
proving theorems about it. This provides a check that 
the system will behave as expected. 
On the other hand formal techniques require a 
significant amount of training effort and practical 
experience to be applied successfully. E.g. 
nevertheless some specification languages are 
designed to be executable (although very 
inefficiently) there seems to be a general lack of 
convenient tool support and integration. Still insight 
and invention of staff is necessary, because there is 
no fool-proof methodology or magic formula that will 
automatically ensure a good or even feasible 
specification. Even if a system is proofed correct, 
there are still many assumptions which may be 
invalid. The specification must be ‘obviously right’. 
There is no way that this can be formally verified to 
be what is expected [3].  
 
In contrast to the formal requirement methods the 
light weight model based approach seems to be a 
suitable way to cope with the analysis phase. 
Experience from use of the spreadsheet application 
showed, that it is possible to both verify algorithms 
and simulate man-machine-interfaces. This 
advantage gains importance, as customers are less 
interested in methodology discussions than rapid 
deployed results. The lessons learned that have 
been captured during the development of the model 
based approach can be summarized as the following 
statements: 
� Errors can be detected in an early stage of the 

process. 
� The handling is easy. 
� Run capable models can be achieved very 

quickly. 
� Rapid prototyping is possible. 
� Exchange of data between different applications 

of the same supplier is possible. 
 
5. Future prospects 
 
As mentioned above both methods, the formal 
specification language and the model base 
approach, proved both useful during the verification 
process. The methodologies are mutually exclusive 
and can therefore be seen as complementary. 
Furthermore both methods could be used in a single 
project. For example the cost of proving a system 
correct may be justified in safety-critical systems 
where lives are at risk. Many systems are less 
critical, but could still benefit from formalization 
earlier on in the design process. Further 
development will have to consider a list of decision 
criterions in order to support engineers in future 
projects to find the best method.  
Development of the model based approach is at the 
moment targeted towards tool integration. Especially 
the Functional Analysis Database, which holds 
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elements to support the requirements engineering 
process, shall be expanded. 
Roughly spoken all requirements of the system and 
accompanying additional information shall be 
connected in order to support testing and formal 
qualification. Scattered information sources 
originating from different and separated documents 
have to be provided as single source. Users of the 
database will be able to access requirement 
specifications as original source (or any other 
inherited instantiation). Immediate verification of 
specified algorithms will also be possible from this 
entry point. Feedback can be written back in the form 
of comments. The creation and definition of single 
test steps intended to carry out requirement testing 
can also be done directly within the database. On 
that basis a complete integrated specification system 
especially suited for testing needs will be 
established. Nevertheless the described topics are 
rather requirement management tasks. The 
complexity of the NH90 avionics project demands an 
approach considering not only requirement 
engineering tasks. The work has already begun, but 
is still ongoing. 
 

 

Figure 10: Snapshot of the Functional Analysis 
Database. 
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