
1 

 

139 

SECOND GENERATION VIRTUAL SENSOR FOR HELICOPTER GROSS WEIGHT 
PREDICTION  

Miguel A. Morales 
CSC  

mmorales@csc.com 

David J. Haas 
NSWC Carderock 

david.haas@navy.mil 

Brian L. Fuller 
NSWC Carderock 

brian.fuller@navy.mil 

ABSTRACT 

A virtual sensor for the estimation of aircraft gross weight in a large naval helicopter has been developed and implemented as 
part of the post flight analysis module for this aircraft. The sensor is a second generation neural network model capable of 
predicting gross weight at the time of takeoff, as well as producing a continuous estimate of the gross weight throughout the 
duration of a flight based on values of fuel quantity recorded by the Health and Usage Monitoring System (HUMS) onboard 
the aircraft. As a result, changes in gross weight due to fuel burn and refueling are taken into account throughout the flight. In 
addition to fuel, aircraft empty weight, cargo and crew constitute the remaining components that define total aircraft gross 
weight. Because the virtual sensor developed in this effort performs estimations of the gross weight as the aircraft takes off, 
changes in cargo and crew that occur on the ground can be readily accounted for. As a second generation model, the domain of 
operation for this virtual sensor is fully defined in multi-dimensional space and its performance assessed through the 
application of statistical techniques for wide data.  

INTRODUCTION 

Aircraft gross weight is a particularly useful quantity for 
aircraft operations, from the determination of aircraft 
performance characteristics such as the ability to hover 
out-of-ground effect at altitude with a given payload, to the 
determination of aircraft structural life. However, most 
aircraft gross weight estimations are still performed and 
logged manually. As a result, they are prone to errors, as 
well as potential loss or misplacement. In contrast, aircraft 
monitoring and analysis has steadily migrated towards 
increased automation transitioning or discarding manual 
tasks. As a consequence, the need for autonomous gross 
weight estimation has now become a necessity. There are 
several proposed methods for autonomous gross weight 
estimation including the use of an Extended Kalman filter 
working in conjunction with an internal aircraft model [1], 
the use of corrected moment theory [2] and the use of 
artificial intelligence techniques. Given that dynamic 
models for an aircraft are difficult to obtain and validate, 
the selected approach is to develop an artificial neural 
network model capable of performing the estimations. 
Previously, the feasibility of utilizing this approach was 
demonstrated on the SH-60 aircraft [3] that later led to the 
deployment of a gross weight virtual sensor [4]. 

In this study, neural network predictive models developed 
through supervised learning will be used for the 
determination of aircraft gross weight. When utilizing this 
approach, it is important to keep track of the model’s state 
of development. In particular, accuracy and reliability are 
key properties that must improve as the model matures. 
Typically, a neural network model demonstrates its 
capability for performing estimations based on specific 
training, test and validation sets, while its domain of 
operation is determined based on the ranges of the 
parameters used for its development. In this study, this 
type of model development is construed as a first 
generation model and falls short from meeting the 
requirements for implementation in the field. Specifically, 
as the multi-dimensional composition of the data changes 
with new situations, the accuracy of the model’s 

predictions may also change. In addition, its reliability can 
also be compromised because its domain is only given in 
terms of ranges. A second generation model overcomes 
these limitations by defining a domain of operation in 
multi-dimensional space, as well as undergoing a much 
more rigorous validation that accurately characterizes 
model performance. In addition, a learning curve for the 
model can also be produced in order to demonstrate that 
learning has reached stability and thus has all the 
information necessary to perform the predictions. The 
intent of this effort is to develop a second generation 
neural network model for gross weight prediction that can 
be implemented as a virtual sensor on the H-53 post-flight 
data processing module. In this way, flight conditions 
where predictions take place can be well defined avoiding 
potential situations for errors. A detailed discussion on 
model development and validation is included in the next 
section.   

DATA CHARACTERIZATION AND MODEL 
VALIDATION 

Validating models developed through supervised learning 
is often difficult and in some cases may produce 
misleading results if the domain of operation for the model 
is not properly defined. The problem originates from the 
lack of data that is predominately the norm for applications 
defined in moderate to high dimensional space. As the 
number of dimensions increases, the possible space of 
operation for a model becomes exceedingly large and 
therefore is unlikely to be thoroughly represented by the 
available sample set. Yet, a common approach for defining 
a model’s domain is obtained by simply extracting the 
minimum and maximum values representing the range in 
the available set of observations for every dimension. This 
is not the appropriate way to define the domain when the 
available data represents only a small fraction of the space. 
Even in cases with low dimensionality, this situation can 
take place and lead to the same problem. This is illustrated 
in Figure 1 where four clusters of observations can be seen 
at specific locations in a three dimensional space.  
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Figure 1. Sparsely populated 3-dimensional space. 

If the data range were to be used to define the domain for 
the case depicted in Figure 1, its boundaries will be given 
by [0, a] in the X dimension, [0, b] in the Y dimension, 
and [0, c] in the Z dimension. Clearly from the figure, 
large spaces in the vicinity of locations [a, 0, 0], [a, b, 0] 
and [0, b, c] are unpopulated and thus unknown. As a 
result, declaring a domain for a model using the minimum 
and maximum values in the given set of observations has 
the potential to include regions where the accuracy of 
predictions is unknown and thus has a high likelihood of 
producing incorrect results. A preferable way to develop 
the model and define its operating domain can be achieved 
through the use of Design of Experiments (DOE) [5]. This 
approach ensures a well defined operating space that can 
be verified in accordance to well defined mathematical 
concepts. As a result, the predictions of a model developed 
in this form can be assigned a specific level of confidence 
in accordance to a selected experimental design and a 
selected set of verification samples. The most 
comprehensive type of design, a full factorial, utilizes 
records located at all edges of the space to develop the 
model, while records located mid-way between the edges 
are used for model validation. Figure 2 illustrates the 
approach in the same three dimensional space as that used 
in Figure 1. Based on the number of samples utilized in 
each of the validation locations, a prediction confidence 
for the model can then be calculated. For example, if five 
samples at the locations used for model development (i.e., 
experiment run locations) in Figure 2 are utilized and then 
verified by an additional five samples at the model’s 
validation location, a 99.5 confidence in the predictions 
will result everywhere in the space, assuming that the 
validation samples successfully confirmed the model. As 
can be seen, only a moderate number of samples are 
required to successfully develop a three dimensional 
model with a high level of confidence in its predictions. 
However, as the number of dimensions increase, the 
number of required samples increases as well. This 
increase can, nevertheless, be significantly mitigated by 
using alternative designs that require only a small fraction 
of the samples required by the full factorial design (these 
are thoroughly addressed in Reference 5). Another 
important consideration when utilizing the DOE approach 
is that it assumes relationships between endpoints in the 
model to be linear. This is a considerable drawback given 
that many problems do not fall into this category. DOE, 

nevertheless, addresses this issue by increasing the number 
of levels used in model development when nonlinear 
relationships are expected. This solution works well for 
low order nonlinear effects, a characteristic applicable to 
most problems. However, this comes at the expense of a 
larger number of samples required to develop the model. 
The case shown in Figures 2 illustrates a two level design. 
A three level design can be obtained by utilizing the 
samples at the mid-points in Figure 2 for model 
development and then validating at the mid-point location. 
Figure 3 illustrates this scenario for a full factorial design 
assuming all three dimensions are expected to have 
nonlinear relationships.  

 

 

Figure 2. Design of Experiments typical approach 
representation in 3-dimensional space. 

 

 

Figure 3. Design of Experiments full factorial design at 
three levels in 3-dimensional space. 

While DOE provides a disciplined approach for the 
determination of a model’s domain of operation, it cannot 
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be expected to be applicable in all situations. There will be 
cases where the data necessary to define the various edges 
and mid-way locations in multi-dimensional space will not 
be available. Specifically, cases where the problem may be 
poorly understood, as well as instances where the data 
itself is too expensive to obtain will either force the 
examination of numerous variables or restrict the 
collection of samples. These problems are common across 
many business practices and in particular have been the 
subject of extensive study in the medical field where 
patient data for rare illnesses are especially hard to obtain 
[6]. Datasets of this type where the number of features is 
large compared to the number of observations are 
characterized as “wide.” Traditional statistical problems do 
not focus on wide data, but rather on “tall” data, that is, 
data that contain many observations per feature. As a 
result, most statistical tools are designed for the analysis of 
tall data. Nevertheless, many of these tools with some 
modifications can also be applied to wide data. Among the 
principal concerns for developing a model with wide data 
is to avoid over-fitting and to maximize the use of the 
available data. One practical approach to meet these 
objectives is through the use of cross-validation [7]. In this 
approach, the available data are first subdivided into 
several subsets. Next, all but one of the subsets is utilized 
to develop a model that is then used to predict the 
remaining subset. This step is repeated as many times as 
there are subsets so as to predict each individual subset 
utilizing the remainder subsets. Performing this operation 
ensures that prediction results are obtained for every 
available observation without any of them ever being 
utilized for model development. Typically, five subsets are 
utilized for cross-validation. However, there are techniques 
available that can determine an optimum size for the 
subsets if so desired. 

Cross-validation effectively addresses the way to validate 
a model developed with wide data, but it cannot determine 
the model’s domain of operation. Proper characterization 
of the multi-dimensional space is necessary to accomplish 
this task, since the definition of the domain will need to be 
made in these terms to ensure accurate predictions. 
Another important concern that needs to be addressed is 
whether or not the available dataset completely describes 
the problem. A way to establish this is by extracting a 
random subset of the data similar in size to those used for 
cross-validation. Then, by utilizing several samples at a 
time from the remaining dataset, models are developed to 
predict the originally extracted subset. As more samples 
are used to develop the particular model, the error in the 
predictions is expected to decrease until it becomes stable 
and further addition of samples do not improve 
predictions. Observing this behavior is evidence that 
sufficient data is available to describe the problem. If the 
predictions, however, do not exhibit stability, then it can 
be concluded that more data is needed in order to properly 
represent the problem. Furthermore, if the stability 
condition is reached, a model constructed at the time 
stability is observed should in principle be able to predict 
the remaining samples at a similar level of accuracy as the 
originally extracted subset. It should be noted that there 
may still be cases not yet collected that are not represented 
in the dataset. However, the significance of this scenario 
can be dismissed by effectively defining the model’s 
domain of operation. 

In this effort, a wide dataset is used for the development of 
the gross-weight virtual sensor given that a significant 
number of variables are evaluated before a determination 
is made as to their contribution, while at the same time, the 
number of available samples is limited. As a result, a five-
fold cross-validation is used to verify the performance of 
every model. Once the best performing model is obtained, 
an operating domain is defined and enforced by 
constructing a multi-dimensional space identifier that acts 
as a pre-processor to the model. This pre-processor allows 
predictions only for known regions of the multi-
dimensional space. In addition, the final models are also 
tested to determine whether they have reached stability in 
learning and thus the problem is properly represented. The 
models are further verified by an independent set of flights 
that became available after model completion.  

MODEL DEVELOPMENT AND RESULTS 

In order to successfully develop a neural network model 
for the prediction of aircraft gross weight, the 
characteristics of how this parameter can vary must first be 
established. Principal among these is the distinctive quality 
of gross weight for not having any frequency content. 
Gross weight is a steadily decreasing function determined 
only by fuel consumption in the absence of any weight-
changing events. Weight-changing events include cargo 
and crew loading and unloading, and amount to a stepwise 
change in the gross weight. Only one event, refueling, 
produces a steady increase in the gross weight parameter. 
The challenge with developing an estimation model for 
gross weight is that the most influential parameters 
available for gross weight prediction are dynamic and thus 
have high frequency content. Unless the contribution of 
the various dynamic components for these signals can 
effectively cancel each other’s influence as to result in a 
steadily decreasing function, attempting to predict the 
gross weight parameter from dynamic signals will not 
generate a well conditioned model. Instead, model 
development should utilize the signals from flight regimes 
where signals are steady or can otherwise be accurately 
characterized by statistical measures over a period of time.  

In this effort, a total of 40 flights obtained from nine H-53 
aircraft conducting regular operations are utilized for 
model development in three distinct flight regimes. Given 
that the resulting virtual sensor is intended to conduct 
regular gross weight estimations for the H-53 fleet, both 
performance and frequency of prediction constitute the 
criteria for model success. In this section, model 
development is described individually for each of the three 
regimes investigated and the best of the resulting models is 
then selected. In addition, integration of this model as a 
virtual sensor is also discussed. 

Steady Hover Regime  

The first of the regimes evaluated is steady hover. This 
regime is the same as that utilized in Reference 3 and is 
selected because signals are reasonably steady in this 
regime. However, in this study the frequency of 
encountering this regime is also considered. To this end, 
the ten second window utilized in Reference 3 is reduced 
to five seconds in an effort to capture more instances of 
steady hover. Specifically, the steady hover condition 
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requires that the engine torque, as well as the radar altitude 
remain within 3% and 3ft respectively for the duration of 
the time window where they are evaluated. In addition, the 
GPS velocity must be below 5 Knots.  

When evaluating a regime for gross weight predictions, it 
is first necessary to determine if there are parameters 
possessing a strong relationship with gross weight that can 
serve as the inputs to the predictions. Close inspection of 
the steady hover regime reveals a good relationship 
between engine torque and gross weight. Figure 4 
illustrates this relationship by displaying those instances 
where a steady hover is identified within a five second 
window for the 40 flights in the development dataset. 
These instances are subdivided into four distinct gross 
weight ranges and assigned a unique color from lowest 
gross weight to highest gross weight in the sample. These 
values correspond to 43,400 lbs and 54,300 lbs 
respectively. The figure displays the relationship between 
engine torque and gross weight for varying radar altitude 
since operating in-ground-effect or out-of-ground-effect 
will affect this relationship. However, in this example, all 
altitudes for steady hover correspond to in-ground-effect 
and the relationship is only noticeable through close 
observation of the bottom values for engine torque that are 
seen to rise as the radar altitude increases. It should also be 
noted that if the conditions for steady hover are maintained 
beyond the required five seconds, the window is expanded. 
As a result, each point in the graph represents a single 
event. There are 169 events in the flight sample that are 
identified in 22 distinct flights. 

 

Figure 4. Relationship between engine torque and gross 
weight vs. radar altitude for the steady hover regime. 

It can be observed from the figure above that for a given 
value of the radar altitude, higher values of torque 
correspond to higher values of gross weight. However, the 
frequency of prediction is significantly restricted as this 
maneuver could only be detected in approximately half of 
the flights. As a result, this regime is discarded for virtual 
sensor development based on its low frequency of 
prediction. Yet, for purposes of comparison, a model 
utilizing the same inputs as those found in Reference 3 
was constructed and obtained a Root Mean Squared 
(RMS) error of 1,230 lbs.  

 

High Speed Steady Level Flight Regime  

The second flight regime considered for gross weight is 
high speed steady level flight. In this case, the relationship 
between gross weight and engine torque for different 
values of airspeed is investigated. Figure 5 illustrates this 
relationship for all instances meeting the conditions for 
steady level flight in a 10 second window.  

 

Figure 5. Relationship between the engine torque and 
gross weight as a function of calibrated airspeed for 
high speed steady level flight.  

As in Figure 4, gross weight is subdivided into four 
distinct ranges for clarity. However, in this case, multiple 
instances of the same event are displayed if the conditions 
for the 10 second window are met as the window moves 
forward in time. As can be observed in the figure, no clear 
increase of the gross weight for higher values of engine 
torque is detected for any given value of the airspeed. 
Despite this result, prediction of the gross weight is still 
attempted assuming additional parameters significantly 
influence the relationship. Model development is 
performed by constructing windows of different durations 
where statistics of selected signals are calculated to serve 
as inputs to the model. Window durations of 10, 8 and 7 
seconds are constructed. In each window, average values 
of engine torque, calibrated airspeed (CAS), longitudinal 
stick position, speed of sound, pitch attitude and density 
altitude are calculated and utilized as inputs to the models 
after careful evaluation of model response. The 10 second 
window model showed the best training results and 
attained a RMS error of 604 lbs, followed by the 8 second 
window model with 982 lbs RMS error and the 7 second 
window model with 1,268 lbs RMS error. Although longer 
window times improve accuracy, as the length of the 
window increases, the model becomes more restrictive and 
the frequency of prediction decreases. The 7 second 
window model is able to perform predictions in 39 of the 
40 flights, the 8 second window model is able to perform 
predictions in 34 flights and the 10 second window model 
is only able to perform predictions in 22 flights (just over 
half of the total). However, in addition to the drop in the 
frequency of prediction, all models in this regime 
exhibited poor performance in the cross-validation tests by 
producing RMS errors in the 2,500 lbs range, a clear 
indication that the models memorized the training data set. 
Attempts to generalize the models by decreasing the 
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number of nodes did not improve predictions. As a result, 
this regime was not selected for gross weight prediction. 

Ascents from Takeoff Regime 

The third flight regime evaluated is defined from the time 
of takeoff until the aircraft reaches a specific altitude. In 
this case, the intent is to measure the energy required to 
hover for a given time period in order to average the 
effects of fluctuations in torque, altitude and other 
parameters that are prevalent during steady hover 
conditions. Most importantly, this quantity is directly 
related to the aircraft gross weight, density altitude, radar 
altitude (i.e., in-ground-effect) and aircraft trim and can be 
expressed as,  

𝐸Q = �Q𝑖  (t𝑖  –  t𝑖–1)                              (1)
𝑇

𝑖=2

 

where EQ represents the energy term for a time period T 
(i.e., engine torque integral), t is time and Qi is the engine 
torque at a given time sample 𝑖. By defining the regime in 
this way, the aircraft is required to go through a fixed 
altitude range that maintains a consistent nominal in-
ground-effect, and thus accounts for altitude variation. 
Density altitude effects are accounted for directly by 
utilizing density altitude as an input to the model, and trim 
is accounted for by utilizing the pitch attitude as another 
input. It is further assumed that this energy term is the 
main component of the work performed by the engines and 
that changes in potential energy, and kinetic energy are not 
significant (calibrated airspeed is restricted to less than 41 
knots throughout the duration of the ascent for predictions 
to take place). Utilizing this approach generates a steady 
quantity that can more effectively be used to predict the 
steady gross weight function. Ascents from takeoff to three 
distinct altitudes are considered. Altitudes of 15ft, 30ft and 
50ft are chosen because ascents from takeoff are 
commonly performed to different altitudes. As the ascent 
altitude increases, the number of ascents reaching these 
higher altitudes decreases. Therefore, given that one of the 
measures of model success includes frequency of 
prediction, the altitudes are kept relatively low to ensure 
ascents will either reach or go beyond the prescribed 
altitude. As expected, most events are found at 15ft, 
followed by 30ft and 50ft. It should also be noted that if 
the prescribed altitude is exceeded, the interval considered 
ends when the aircraft reaches that altitude.  

The integral of engine torque is examined to determine if it 
has a strong relationship with gross weight. The results are 
shown in figures 6 through 8. As in figures 4 and 5, the 
gross weight is subdivided into four groups to highlight the 
gross weight relationship. However, in this case, every 
point represents a unique ascent from takeoff so there are 
no repetitions. Ascents are limited to nominal takeoffs 
(i.e., those that do not exhibit extreme values of the 
controls) and are accounted for by defining an operating 
domain.  

 

Figure 6. Relationship between the engine torque 
integral and gross weight as a function of duration for 
ascents from takeoff to 15ft. 

 

Figure 7. Relationship between the engine torque 
integral and gross weight as a function of duration for 
ascents from takeoff to 30ft. 

 

Figure 8. Relationship between the engine torque 
integral and gross weight as a function of duration for 
ascents from takeoffs to 50ft. 

As can be observed in figures 6 through 8, the relationship 
between gross weight and torque integral as a function of 
ascent duration is well behaved and shows higher gross 
weight as the values of torque integral increases for all 

0 5 10 15 20 25 30 35 40 45 50 55

Time (sec)

0

500

1000

1500

2000

2500

3000

3500

T
o

rq
u

e
 I

n
te

g
ra

l 
(%

 •
 s)

 

51,501 - 54,300 lbs

48,701 - 51,500 lbs

46,001 - 48,700 lbs

43,400 - 46,000 lbs

Gross Weight

0 5 10 15 20 25 30 35 40 45 50 55

Time (sec)

0

500

1000

1500

2000

2500

3000

3500

E
n

g
in

e
 T

o
rq

u
e
 I

n
te

rg
ra

l 
(%

 •
 s

)

51,501 - 54,300 lbs

48,701 - 51,500 lbs

46,001 - 48,700 lbs

43,400 - 46,000 lbs

Gross Weight

0 5 10 15 20 25 30 35 40 45 50 55

Time (sec)

0

500

1000

1500

2000

2500

3000

3500

E
n

g
in

e
 T

o
rq

u
e
 I

n
te

rg
ra

l 
(%

 •
 s

)

51,501 - 54,300 lbs

48,701 - 51,500 lbs

46,001 - 48,700 lbs

43,400 - 46,000 lbs

Gross Weight



6 

 

ascent altitudes. As a result, it can be concluded that there 
is a good relationship between gross weight and the 
integral of torque in this flight regime. However, as 
previously indicated, the torque integral and ascent 
duration are not the only parameters that have a physical 
relationship with gross weight. Density altitude, as well as 
aircraft trim are also important. Density altitude can easily 
be incorporated into the model as an input, but all the 
information necessary to determine aircraft trim, such as 
c.g. position are not available. Although this is a 
limitation, partial information for aircraft trim can still be 
derived from pitch attitude. It should be noted that density 
altitude exhibits little or no variation between zero and 
fifty feet, thus an average value is sufficient to define it. 
However, the pitch attitude is constantly changing 
throughout the ascent. It is for this reason that pitch 
attitude is incorporated into the model by obtaining the 
torque integral components at every instant through the 
ascent as defined by,  

𝐸Q1 = �Q𝑖 cos θ𝑖 (t𝑖 − t𝑖−1)
𝑇

𝑖=2

                             (2) 

 𝐸Q2 = �Q𝑖  sin θ𝑖 (t𝑖 − t𝑖−1)                            (3)
𝑇

𝑖=2

 

where EQ1 and EQ2 are the components of the integrated 
engine torque and θ is the pitch attitude. These two 
quantities in addition to average density altitude and ascent 
duration are referred to as the baseline input set.  

The model architecture selected to perform predictions is a 
back-propagation neural network with two layers 
composed of eight nodes in the first layer and four nodes 
in the second layer. This architecture is kept constant 
throughout the experiments in order to isolate the 
influence of each input parameter. For each experiment, a 
five-fold cross-validation is applied to assess model 
performance. This requires the main dataset to be broken 
into five distinct data subsets. Four of these are used to 
train the model to predict the remaining subset. This is 
done once for each subset. As a result, each experiment 
requires the development of five distinct models, each 
predicting a unique subset. The results reported are only 
those where the subset is not used for model development 
and thus are reflective of data that has never been seen by 
the models. It is also important to note that while each 
subset has approximately the same number of events, these 
are assigned to a subset on a flight-by-flight basis, that is, 
only whole flights are added to an individual subset at a 
time. In this way, information for the fundamental flight 
unit never appears in more than one subset and thus 
preserves the intent of cross-validation. 

In an attempt to improve model performance, several 
parameters in addition to those in the baseline input set are 
considered one at a time. However, to avoid numerous 
experiments that are unnecessary from a DOE perspective, 
only ascents to 50 ft are utilized for this purpose since they 
constitute the upper edge of the altitudes considered. The 
results are shown in Figure 9. Only the RMS error 
averages for all models involved in cross-validation for 
each experiment are displayed.  

 

Figure 9. Gross weight prediction model performance 
for different model inputs for ascents from takeoff to 
50ft. 

As can be seen in the figure, no improvements are 
obtained by including additional inputs. As a result, the 
baseline input set is selected for predictions. Only one 
additional modification to the definition of the regime is 
implemented. Specifically, the start of the regime is set at 
2 ft in order to unambiguously determine the start of the 
aircraft’s ascent. This modification proved to be of 
significant benefit to the predictions. 

Having defined the input parameter set, the next step is to 
determine where predictions show the best performance 
and are the most reliable. To this end, models are 
developed for ascents to 15ft and 30ft in addition to the 
ones already available for 50ft. Results for all models for 
the 40 flight set in terms of RMS error, maximum over and 
under-predictions and number of events predicted are 
given in Table1. At least one event is predicted in all 40 
flights for ascents to 15ft and 30ft, while predictions are 
performed in 39 flights for ascents to 50ft. In addition, a 
comparison between actual and predicted gross weight for 
each regime is shown in figures 10 to 12. Since maximum 
errors are desired to be within ±2,000 lbs, error boundary 
lines have been included in the figures for reference. 

Table 1. Gross weight prediction performance for 
ascents from takeoff to various altitudes.  

Regime Events 
Predicted 

RMS 
Error 
(lbs) 

Maximum 
Over-

prediction 
(lbs) 

Under-
prediction 

(lbs) 
Ascents to 

15ft 388 1,181 3,428 5,121 

Ascents to 
30ft 372 1,003 2,871 2,838 

Ascents to 
50ft 338 1,048 2,783 3,226 
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Figure 10. Baseline input set gross weight prediction 
performance for ascents from takeoff to 15ft.  

 

Figure 11. Baseline input set gross weight prediction 
performance for ascents from takeoff to 30ft. 
 

 

Figure 12. Baseline input set gross weight prediction 
performance for ascents from takeoff to 50ft. 

As can be seen in the figures, while ascents to 15ft contain 
the largest number of events, there is a noticeable number 
of significant outliers in the predictions. As a result, this 
regime is not sufficiently reliable. In contrast, ascents to 
30ft still contain a significant number of events and 
demonstrate better performance with only a few minor 
outliers. Results from this regime are also better in terms 

of performance and frequency of prediction than those 
obtained for the 50ft regime. As a result, it is the ascents to 
30ft regime that is selected for final virtual sensor 
development. It is speculated that the lower accuracy 
encountered in the 15ft regime is due to the fact that small 
errors originating from signal sampling frequency have a 
more significant effect for shorter ascents, while errors in 
the 50ft regime are comparable to those in the 30ft regime, 
but capture fewer events. As a result, a compromise 
between the two regimes at the edges produces the best 
results. 

At this point, it becomes necessary to determine if the 
current dataset is sufficient for model development. As 
previously discussed, this can be determined by selecting a 
random set of events that is then used to validate models 
that progressively utilize more events. The RMS error for 
each model can then be plotted as a function of the number 
of samples to produce a learning curve. If the curve is seen 
to reach stability (i.e., its slope approaches zero), it implies 
there is sufficient data to represent the problem within its 
operating domain. The learning curve for the selected 
model type is shown in Figure 13. Forty nine events from 
the 362 event set in the ascents to 30ft regime are chosen 
as the validation set.  

 

Figure 13. Learning curve for final model.  

As can be seen in the figure, the gradient of the curve is 
low enough to declare the model is reasonably stable and 
thus is properly characterized. As such, the model provides 
a good solution to the problem.  

Virtual Sensor Integration 

The last step necessary to complete the virtual sensor is the 
preparation of a pre-processor that will enforce its 
operating domain. This is obtained by defining confidence 
regions in multi-dimensional space based on the available 
data. Initially, small conservative boundaries for the 
regions are selected, but these are carefully extended by 
modifying each input by a given percent of its range. With 
each modification, results are observed to see how much 
they affect the original predictions. If a small effect is 
observed, the boundary for the parameter being varied is 
increased in all regions. If, however, a large effect is 
observed no change in the boundary is conducted. After all 
parameters have been varied throughout their ranges and 
the boundaries adjusted for all confidence regions, the pre-
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processor defining the model’s operating domain in multi-
dimensional space is finalized.  

Because development of the virtual sensor is conducted by 
utilizing five-fold cross-validation, every experiment 
produces five distinct models. No one model in this set is 
necessarily better than the other ones since distinct data is 
utilized for its development. As a result, in the final virtual 
sensor implementation, all five models are used and the 
average of their predictions constitutes the reported gross 
weight predicted value. A comparison of the actual vs. 
predicted gross weight as reported by the virtual sensor for 
the entire development dataset is shown in Figure 14.  

 

Figure 14. Virtual sensor performance on development 
dataset.  

As can be seen in the figure, the performance of the virtual 
sensor is noticeably better than that reported for cross-
validation shown in Figure 11. The maximum over and 
under-predictions are 1,900 lbs and 2,229 lbs respectively 
and the RMS error is only 831 lbs. This is expected since 
four out of the five models for any one event utilize the 
event during their development. Therefore, these results 
should be viewed as the ones to expect when events are 
very similar to those used during development. In contrast, 
the results from cross-validation are those to be expected 
for events that have never been seen before by the models, 
but are still within its operating range.  

After model completion, an additional eight flights with 
complete gross weight logs became available and were 
utilized for virtual sensor validation. Results are shown in 
Figure 15. 

 

Figure 15. Virtual sensor performance on 8 flight 
validation set.  

As can be seen in the figure, the results conform to 
expectations as the maximum over and under predictions 
are within the cross-validation values calculated for the 
virtual sensor and the RMS error is 1,052 lbs and is within 
49 lbs of the calculated cross-validation value. In addition, 
the virtual sensor correctly calculates the gross weight 
below its development range in two distinct instances.  

In its final implementation as part of the post analysis 
module for the H-53, the gross weight virtual sensor also 
utilizes the fuel recorded history from the HUMS to 
recreate the gross weight throughout the entire flight. A 
fuel reconstruction algorithm is implemented as a pre-
processor to the fuel signal in an attempt to minimize the 
time when fuel signals are unavailable. A gross weight 
reconstruction time history for one of the flights in the 
validation set is shown in Figure 16. 

 

Figure 16. Gross weight reconstruction for a flight in 
the validation dataset.  

A particularly important function that the current 
implementation of the gross weight virtual sensor is not 
able to perform is to account for sling load pick-up and 
drop. This is because the helicopter needs to hover at a 
prescribed altitude above ground to perform this operation, 
and therefore, does not meet the selected prediction regime 
requirements. Nevertheless, sling load pick-up and drop 
patterns can be identified by autonomous procedures. 
Therefore, in principle, a similar regime as that currently 
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used to perform gross weight predictions could be defined 
from higher start and end altitudes to account for sling 
loads. This is expected to be part of a future effort.  

SUMMARY AND CONCLUSIONS 

A second generation virtual sensor for the prediction of 
aircraft gross weight in the H-53 helicopter was 
successfully developed. The sensor was designed to 
perform predictions for ascents from takeoff to 30ft and 
then reconstruct aircraft gross weight throughout a flight 
with the help of fuel signals monitored by the HUMS. The 
operating domain for the sensor was fully defined in multi-
dimensional space in order to ensure accuracy and 
reliability through a pre-processor. A nominal takeoff was 
also defined and implemented as part of the pre-processor. 
The accuracy for the virtual sensor was calculated at 1,003 
lbs of RMS error for a range of gross weights between 
43,400 lbs and 54,300 lbs. Maximum over and under-
estimations on a 40 flight set were found to be 2,871 lbs 
and 2,838 lbs respectively (under three times the 
calculated RMS error expected for a normal distribution). 
A frequency of estimation of 78% was attained for the 
takeoffs in the dataset (i.e., more than three out of every 
four takeoffs were predicted). Yet, all 40 flights in the 
sample were predicted in at least one instance because 
some flights contained multiple takeoffs, thus a 100% 
frequency of prediction on a per flight basis was achieved. 

It was also found that the steady hover regime does not 
generate frequent enough opportunities for prediction and 
as a result was not selected. Similarly, attempts at 
predicting gross weight during high speed steady level 
flight resulted in unreliable predictions as determined 
through cross-validation. The initial model performance 
assessment in training demonstrated promising results, but 
then performed poorly when cross-validated. This is a 
significant concern since it indicates that there are trends 
in the data that can minimize the difference between the 
actual gross weight and the predictions. However, these 
trends were not quantifiable. As a result, the high speed 
level flight regime was not selected for gross weight 
prediction. In contrast to these regimes, the prediction 
approach applied to ascents from takeoff to a prescribed 
altitude was found to be the most reliable and showed 
consistent results at three different prescribed altitudes. At 
the same time, it was found that the number of 
opportunities for prediction is significantly greater than the 
steady hover or high speed level flight regimes. In 
addition, the frequency of prediction only decreases by a 
small amount as the prescribed ascent altitude increases. 
As a result, the prediction approach applied to ascents 
from takeoff was found to be the most useful for gross 
weight prediction. In particular, it was found that ascents 
to 15ft are too short to properly measure the energy 
expended during the ascent, while ascents to 50ft had a 
reduced frequency of prediction. Therefore, the ascents 
from takeoff to 30ft were found to constitute the best 
regime for predictions.  

Given that the virtual sensor for gross weight prediction 
developed in this effort is a second generation model 
verified through statistical measures applicable to wide 
data, it is expected that its accuracy and frequency of 
prediction will conform to the calculated values for RMS 

error and flight prediction frequency when processing 
flights outside its development set. An initial opportunity 
to demonstrate this capability became available through 
the identification of eight flights with complete gross 
weight log records after the gross weight virtual sensor 
was completed. Gross weight prediction for these flights 
returned 1,052 lbs of RMS error with one or more 
predictions taking place for every flight (100% flight 
prediction frequency). As a result, by independently 
verifying the performance values for the virtual sensor, 
these results provide significant evidence that the virtual 
sensor will perform as intended in the flight post-
processing module of the H-53 aircraft. 
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