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ABSTRACT 

An amended six-degree-of-freedom helicopter stability and control 
derivative model was developed in which body acceleration and control-rate 
derivatives were included in the Taylor series expansion. These additional 
derivatives were derived from consideration of the effects of the higher-order 
rotor-flapping dynamics, which are known to be inadequately represented in the 
conventional six-degree-of-freedom, quasi-static stability-derivative model. 
The amended model was found to be a substantial improvement over the conven­
tional model, effectively doubling the usable bandwidth and providing a more 
accurate representation of the short-period and cross-axis characteristics. 
Further investigations assessed the applicability of the two stability­
derivative model structures for flight-test parameter identification. Param­
eters were identified using simulation data generated from a higher-order base­
line model having sixth-order rotor tip-path-plane dynamics. Three lower-order 
models were identified: one using the conventional stability-derivative model 
structure, a second using the amended six-degree-of-freedom model structure, 
and a third model having eight degrees of freedom that included a simplified 
rotor tip-path-plane tilt representation. 

Al = -8 
s lc 

Bl -8 
s ls 

~B 

c* 

LIST OF SYMBOLS 

= main-rotor lateral cyclic pitch-control input 

main-rotor longitudinal cyclic pitch-control input 

nonlinear equations of motion for fuselage/body 

= nonlinear equations for higher-order dynamics 

state, control, and control-rate matrices for the amended 
six-degree-of-freedom model 

submatrices of F resulting from partitioning the state 
vector into ~B and ~R 

= state and control matrices for the conventional six-degree-of­
freedom quasi-static model 

= matrix of body acceleration derivatives 

submatrices of G resulting from partitioning the state vector 
into ~B and ~R 

matrix of control-rate derivatives 
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identity matrix 

pitch-axis moment of inertia 

rolling-moment derivative 

pitching-moment derivative 

= yawing-moment derivative 

roll, pitch, and yaw rates 

Laplace operator 

time 

longitudinal, lateral, and vertical velocities 

= control vector 

fuselage/body state vector = [/!,u /!,v /!,w /!,p /!,q /!,r /!,4 /!,8]T 

state vector for all higher-order dynamics; also can represent 
any one of several simplified rotor models (see Table 1) 

components of decomposed rotor response 

longitudinal force derivative 

= lateral force derivative 

= vertical force derivative 

blade-flapping angle, for ith blade: 
Si = S0 + S1 cos ~i + S1 sin ~i (tip-path-plane assumption) 

c s 

= elevator deflection 

indicates perturbation of quantity in parenthesis 

= body pitch attitude 

blade pitch angle, for ith blade: 
eb· =eo+ el cos ~i + el sin ~i 

l c s 

= tail-rotor collective pitch input 

= body roll attitude 

main-rotor blade azimuth position, (~ 

matrix inverse 

matrix transpose 

time derivative 
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1. Introduction 

Stability and control derivatives are used for evaluating helicopter 
flight dynamics about a given operating point or trim condition. They are a 
source of information about small-perturbation stability and response to control 
inputs, and are necsssary for a wide variety of applications, including 
handling-qualities analysis, flight-control systems design, and real-time 
simulation. 

Stability and control derivatives are attributed to Bryan (Ref. [1]) who, 
in 1911, developed them to investigate the stability of airplanes. Using his 
method, the change in an aerodynamic force or moment associated with each of 
the primary six degrees of freedom (6 DOF) of an aircraft is expressed as a 
Taylor series consisting of perturbation terms in each of the six primary motion 
states and the controls. The series is truncated such that only the linear 
terms are retained in the stability-derivative expansion. In the years since, 
airplane flight dynamicists recognized that additional unmodeled degrees of 
freedom above the basic six contribute to aircraft flight dynamic behavior. Of 
significance are air-mass dynamics, which cause a lag in downwash at the hori­
zontal tail, and control-surface dynamics, which are necessary for evaluating 
aircraft stick-free stability. In order to approximate these unmodeled degrees 
of freedom, flight dynamicists selectively introduced body acceleration and 
cm1trol-rate derivatives, such as MW, ZW, and Ml into the stability-derivative 
expansion. 

Helicopter flight dynamicists have traditionally used the same stability­
derivative expansion formulation as that used for airplane analysis (except that 
asymmetric cross-coupling derivatives have been retained), and have justified 
their action based on the assumption of the quasi-static perturbation derivative. 
The perturbation derivative for the change in pitching moment resulting from a 
change in vertical velocity, for example, is defined as: 

M =. _l_ 3M • l LIM I 
W I 3w l Llw · 

Y Y holding all other components of ~B and ~ at tr1m 
value; allowing ~R to reach new equilibrium 

where the change in pitching moment (~M) owing to an instantaneous change in 
vertical velocity (Liw) is calculated by suppressing the integration of the body 
states (~B), holding the controls (~) at the trim value, and allowing the 
higher-order rotor degrees of freedom (~R) to reach their new equilibrium. The 
quasi-static stability derivative is the steady-state LIM divided by both the 
constant-perturbation Llw and the pitch-axis inertia Iy• (To be strictly 
correct, the stability derivative is the limit of this quantity as ~w + 0; 
however, practical considerations generally require an assessment of linearity 
by varying the size of Llw.) 

Figure 1 demonstrates the ~M 11 response" resulting from a constant­
perturbation ~w for several systems. For an ideal six-degree-of-freedom sys­
tem, the ~M response is instantaneous and time-invariant, indicating that the 
system can be perfectly represented using the stability-derivative formulation 
of Bryan. For an airplane, the response is very similar. Ihere may be some 
initial transients because of air-mass dynamics or, perhaps, structural wing 
bending; however, for most practical purposes, airplane flight dynamics can be 
well modeled by the constant-coefficient stability derivatives. Inclusion of 
body acceleration and control-rate derivatives to approximate the initial tran­
sients in LIM is generally an attempt to fine-tune an already good model. 
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For a helicopter, Fig. 1 shows a significant initial transient lasting 
about 0.25 sec as the rotor flaps to its new equilibrium position. The 6M 
response is made up of two distinct contributions - first, an instantaneous 
contribution owing to body and tail aerodynamics, as well as rotor shears trans­
mitted via the blade-hinge offset, and a second transient contribution resulting 
from all higher-order degrees of freedom (above the basic six) achieving a new 
equilibrium. The quasi-static stability derivative, as advanced by Hohenemser 
in 1939 (Ref. [2]), assumes that the rotor instantaneously reaches its new 
equilibrium, as is indicated by the dotted line in Fig. 1. The figure shows 
that from a strictly 6-DOF point of view, the perturbation derivative is actu­
ally time-varying. The conventional six-degree-of-freedom stability-derivative 
model, which has the time-invariant quasi-static stability and control deriva­
tives as its elements, is a poor approximation, because the dynamics of the 
rotor response are not well separated from those of the basic airframe dynamics. 

Use of the conventional quasi-static stability-derivative model is ade­
quate for many applications associated with low-frequency (such as phugoid) and 
steady-state flight-dynamic behavior; however, it is often not representative 
of the higher frequency short-period dynamics, owing to the strong influence of 
the unmodeled rotor modes. In the literature, Ellis (Ref. [3]) discusses the 
shortcomings of using the 6-DOF quasi-static model for design analyses of 
angular rate and attitude feedback systems. He concluded that use of this con­
ventional model would result in inaccurate estimates of the stability bound­
aries for high-gain feedback systems, and would lead to an overly optimistic 
appraisal of true system capabilities. In an extensive control system design 
effort for the AH-56A (Ref. [4]), it is stated that the use of the 6-DOF quasi­
static derivatives is found to give a deceptive impression of greater aircraft 
stability, because the regressing flapping mode is neglected. In Ref. [5], two 
optimal controllers are designed, based on a 6-DOF quasi-static model and on a 
model that included the rotor tip-path-plane tilt dynamics. It was concluded 
that for very tight control, rotor dynamics should be included in designing 
such controllers. 

Attempts to extract stability and control derivatives from flight data 
have raised further questions about the validity of quasi-static derivatives. 
Molusis (Ref. [6]) has indicated that identified derivatives can take on con­
siderably different values from those of the analytic perturbation derivatives, 
owing to the fact that in flight, the rotor is continuously being excited by 
pilot control inputs and turbulence, and is not operating in a quasi-static or 
steady-state fashion. Reference [7] also indicates that for a Bo-105 heli­
copter, there are significant discrepancies between flight-identified values 
and manufacturer-supplied analytic and wind-tunnel startup values. Increasing 
the a priori weighting made the identified derivatives more consistent with the 
startup values, but only at the expense of degraded curve fits with the flight 
data. In Ref. [8], Gould and Hindson incorporated selected body acceleration 
and control-rate derivatives in an identification of the lateral-directional 
stability characteristics of a teetering-rotor helicopter. In thei~ study, 
these derivatives were introduced by assuming that the lags in the main-rotor 
tip-path-plane response and the side-wash at the tail rotor can each be approxi­
mated by first-order time-constants. No general theory for body-acceleration 
and control-rate derivatives exists in the literature, and the implications of 
including these terms in the stability-derivative expansion are not clearly 
understood. 

In spite of all its problems, use of the conventional stability­
derivative formulation persists in the helicopter community. Perhaps this is 
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because linear rotor + body models are not readily derived by analytic means 
and must be extracted from the more comprehensive nonlinear models. More 
likely, it persists because there is a certain loss of physical interpretation 
that goes with the higher-order rotor + body models. Except in those cases in 
~vhich it is clearly necessary to go with a higher-order model, it is preferred 
to stay in the 6-DOF domain. Because of this, it is necessary to develop a 
better understanding of the limitations of the conventional model, and to inves­
tigate potential improvements that c.an extend its applicability. 

2. Helicopter Linear Hodeling 

General Formulation 

The nonlinear differential equations of motion for the dynamics of any 
flight vehicle can be written in a partitioned state-vector notation as follows: 

O:B (l) 

(2) 

where the first vector differential equation represents the dynamics of the 
basic six degrees of fuselage/body motion, and the second vector equation rep­
resents all higher-order dynamics that may be of significance. For a heli­
copter, the second equation would, in its most general form, include rotor­
blade dynamics (e.g., flapping, lead-lag, and torsion), inflow/air-mass 
dynamics, control-system dynamics, and bending modes). 

Linearization of the nonlinear equations results in equations that are 
periodic with rotor azimuth. A constant-coefficient formulation is obtained by 
averaging each periodic term over one rotor revolution. Further discussion of 
the linearization of nonlinear equations for helicopter flight dynamics can be 
found in Refs. [9) and [10). 

Rotor + Body Hodels 

Linearization and averaging of the nonlinear equations (l) and (2) will 
result in the following linear matrix equations of motion: 

(3) 

(4) 

where 

~R = state vector for higher-order dynamics 

Equations (3) and (4) are partitioned in order to specifically break out the 
individual effects of the rotor and the body. The FR and GR matrices alone 
represent the dynamics of the isolated rotor (in a wind tunnel, for instance). 
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The FB and GB matrices represent the body-only aerodynamic effects that occur 
in the absence of rotor-flapping dynamics. (Direct hub forces and moments act­
ing at the rotor head are included in these matrices.) The FBR and FRB 
matrices account for the rotor-to-body and the body-to-rotor coupling, 
respectively. 

For many flight-dynamic applications, only the rotor-flapping degrees of 
freedom need to be considered in the ~R vector~ Table 1 shows several typi­
cal rotor + body models. The nine-degree-of-freedom (9-DOF) model incorporates 
the rotor as a three-degree-of-freedom tip-path-plane, with each degree of 
freedom represented by a second-order differential equation. This results in 
a sixth-order rotor-flapping system of equations which have three periodic nor­
mal modes of motion: the advancing flapping mode, the coning mode, and the 
regressing flapping mode. 

The advancing (progressing) flapping mode, its frequency being roughly 
twice the rotor rotational frequency, is not of significance for helicopter 
flight dynamics (Ref. [ll]) and should be eliminated; only the coning and 
regresSing modes should be retained. The coning model, as it is called, still 
has 9 DOF, but the longitudinal and lateral tip-path-plane tilt equations are 
now each of first order and couple to give the regressing flapping mode. The 
coning mode is generally only significant for those helicopters that have low 
rotor rotational rates, that is, for high gross weight or slowed rotor vehicles. 
If the coning mode is also eliminated, one has the 8-DOF tip-path-plane tilt 
model that retains only the regressing mode in addition to the fuselage/body 
modes. 

Stability Derivative Models 

Mathematical manipulation of equation (4) will yield a solution in terms 
of ~B· ~· and higher-order derivatives. Taking the Laplace transform of 
equation (4): 

(5) 

Solving for ~R(s) gives, 

(6) 

The matrix inverse term (si - FR)- 1 may be expressed as an infinite series, 

(7) 

This series can be shown to converge absolutely in that region of the s-plane 
inside a circle of convergence centered at the origin with a radius equal to the 
magnitude of the smallest eigenvalue of FR. That eigenvalue generally corre­
sponds to the rotor regressing mode, and consequently the series is convergent 
for the range of frequencies of interest to the flight dynamicist. 

Substituting equation (7) back into equation (6), and taking the inverse 
Laplace transform will yield the following solution to equation (4): 
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Equation (8) includes terms for the body states, the controls, and all their 
higher-order derivatives. It can be easily verified by substitution that it is 
a solution to equation (4). 

Conventional Quasi-Static Model. The first two terms of the series shown 
in equation (8) are identical to the solution from the residualization method of 
model order reduction, where ~R is set equal to zero, and the rotor state 
vector ~R can be expressed as a function of ~B and ~ alone. This is equiva­
lent to the quasi-static assumption discussed previously, where the rotor is 
assumed to reach its new equilibrium instantaneously, and can therefore be 
expressed in terms of the immediate body states and control positions: 

-lF -lG 
~R ~ -FR RB~B - FR R~ 

Substituting this approximate solution back into equation (3) results in the 
standard expression for the quasi-static model: 

Fqs 

(9) 

(10) 

The quasi-static state matrix Fqs and control matrix Gqs are defined as 
shown in terms of the fundamental rotor +body submatrices. The elements of the 
matrices Fqs and Gqs are identical to the conventional quasi-static perturba­
tion derivatives, except that the L, M, and N derivatives now reflect the 
effects of vehicle cross-products of inertia, and the usual linearized inertial 
terms have been included. 

Amended 6-DOF Model. The conventional model can be improved by including 
the third and fourth terms of equation (8) in the solution: 

(11) 

The use of those two additional terms is equivalent to including body­
acceleration and control-rate derivatives in the solution for the higher-order 
dynamics. Substituting this solution for the rotor into equation (3) yields the 
solution 

(12) 

F* c* 

where the body-acceleration matrix F* and control-rate matrix G* are defined 
as shown. It should be noted that in the general case in which ~R includes 
the effects of the rotor dynamics (i.e., blade flapping, lead-lag, and torsion) 
and the air-mass dynamics (i.e., inflow, lag in downwash, etc.), contributions 
are introduced into the F* and c* matrices from all of these sources. If a 
rotor +body model is used as a basis for generating the amended model matrices, 
only the 11 pseudo 11 unsteady derivatives coming about because of rotor-flapping 
dynamics alone will be reflected in the F* and c* matrices. 
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Equation (12) can be rewritten into an alternative form by grouping the 
body-acceleration terms to give 

• (I F*)- 1F + (I F*)- 1G + (I F*)- 1 G*':• ~B ~ - QS~B - QS': - (13) 

where the matrices FAM, GAM, and G!M are defined as shown. 

Rotor-Response Decomposition Models 

Rotor-response decomposition models are an intermediate formulation fall­
ing between the rotor + body models and the stability-derivative models. The 
idea is to decompose the response of the higher-order states into a response 
that is self-induced and a response that is forced by the body motions. Decom­
posing ~R as follows, 

where 

owing 

xR is the response owing to rotor motions and x_Rb is the response 
- r 

to body motions. (4) then splits to give 

(14) 

(15) 

(16) 

A solution for can be written using the same approach as for equation (8), 

(17) 

If only the first term is retained, the assumption is that the body dynamics are 
slow compared with the rotor motions, and the rotor response to the body motions 
only are assumed to be instantaneous. The rotor state vector ~R can then be 
written as 

(18) 

Substituting this into equation (3) yields 

(19) 

(20) 

where Fqs is the state matrix derived for the conventional quasi-static model 
in equation (10). An approximation similar to this was used in Ref. [3], except 
that the GB~ term was neglected. When this is the case, the combined 
rotor + body dynamics can be treated as the product of two transfer functions, 
that is, a rotor transfer function XR (s)/U(s) multiplying a body transfer 

- r -
function ~s(s)/~Rr(s) (notation used actually implies multiplication of trans-

fer function matrices). 
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If the second term of equation (17) is included in the solution (as was 
done in the amended model formulation), a solution to ~R including body accel­
eration terms can be written: 

(21) 

The differential equations then become 

. *)-1 ( *)-1 ~B ~ FAM~B + (I - F FBR~Rr + I - F GB~ (22) 

(23) 

where FAM is identical to that state matrix used in the amended model equa­
tion (13). 

Equations (22) and (23) may provide a particularly good model structure 
for combined rotor + body parameter identification. The isolated rotor equa­
tion (23) might already be well known or could be obtained from rotor testing 
in a wind tunnel. The matrices in equation (22) could then be identified from 
flight testing. (Note, however, that xR is not directly measurable.) 

- r 

3. Evaluation of Linear Flight Dynamics Models 

Method of Approach 

Since the principal purpose of this study is to assess the effects of the 
rotor-flapping dynamics on the 6-DOF stability derivatives, a 9-DOF helicopter 
model was chosen as the baseline model - the "absolute" with which all lower­
order models are to be compared. The model was intentionally chosen to be 
linear, in order to avoid any problems in differentiating between linear and 
nonlinear effects, and to have only the rotor-flapping dynamics included as the 
higher-order modes, in order to assess their effect alone. The additional 
degrees of freedom not included (air-mass dynamics, inplane motions, etc.) are 
assumed to be quasi-statically lumped into this baseline structure. The model 
used was a linear fourteenth-order (sixth-order rotor) model of the CH-53A at a 
100-knot, level-flight trim condition (published in Ref. [12]). 

The general approach, consisting of two parts, is shown in Fig. 2. The 
first involves model-order reduction,. where the baseline model is mathematically 
reduced into three models - the conventional 6-DOF quasi-static stability­
derivative model, the amended 6-DOF model, and the 8-DOF tip-path-plane tilt 
model. The objective is to evaluate the stability-derivative models against the 
baseline model and to directly assess the effects of the rotor dynamics on these 
models. The 8-DOF model is included because it is the lowest-order rotor + body 
model and represents the next higher model in complexity above the stability­
derivative models. 

The second part of the approach is a system-identification approach in 
which three models are identified from baseline model simulation data, using the 
structures of each of the evaluation models. The purpose is to see how well 
each of the models can be identified in these idealized conditions. It is 
expected that the identified models would be somewhat different from the reduced 
models, since the identification is a curve-fitting process that will be attempt­
ing to fit the baseline data with a lower-order model. 
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The system-identification results are expected to provide guidelines for 
the interpretation of stability derivatives extracted from flight data. The 
identified models can be considered to represent an upper bound on the quality 
of results that can be obtained from flight testing; that bound will probably 
be somewhat optimistic considering the measurement and testing difficulties 
associated with parameter-identification flight experimentation. 

Mathematically Reduced Models 

Reduced-order models for the conventional 6-DOF model, the amended 6-DOF 
model, and the 8-DOF tip-path-plane model were generated by mathematically 
reducing the baseline model. The baseline model was partitioned into its F8 , 
FBR' FRB' FR, GB, and GR matrices, and the two stability-derivative models were 
computed from equations (10) and (13), respectively. The 8-DOF model was gen­
erated using standard residualization techniques, whereby the baseline model is 
partitioned such that the residual vector is [6S 0 6S0 6S 1 6S 1 ]T, and the time-

c s 
derivative of this residual vector is set equal to zero. 

Comparison of Time-History Responses. Time-histories from simulations 
of each of the three mathematically reduced models and the baseline model are 
shown in Fig. 3. The control excitation is a 2.1-rad/sec sinusoidal pitch axis 
(B

1
s) input. Only plots for the primary-axis response (pitch rate) and the 

cross-axis (roll-rate) responses are shown in Fig. 3, for these satisfactorily 
represent the extremes of the comparison. 

In the primary axis, the responses from all three reduced-order models 
closely resemble the baseline-model response. If the primary-axis response is 
considered alone, it could be concluded that the conventional 6-DOF quasi-static 
model is adequate for predicting handling-qualities behavior. However, there 
are considerable differences in the cross-axis response of the four models. 
Whereas the 8-DOF model does duplicate the baseline response, the mathematically 
reduced conventional model (having the usual stability-derivative formulation) 
does not. This conventional model incorrectly predicts the initial transient 
response in the first second, and does not correctly predict the phase response 
for the subsequent motion. On the other hand, the amended 6-DOF model (which 
includes the body-acceleration and control-rate derivatives) does provide a 
more reasonable prediction of the roll-rate response, correctly predicting the 
initial response direction and the correct phase relationship; however, it does 
have some problems in predicting the correct amplitude behavior. 

Frequency-Response Comparison. Phase and amplitude discrepancies in 
Fig. 3 prompted a closer inspection of the frequency-response characteristics 
of the reduced-order models, in order to determine the usable bandwidth of each. 
(Usable bandwidth can be defined as that bandwidth for which a given model will 
duplicate the true frequency-response characteristics.) Normalized amplitude 
and phase plots for two transfer functions are shown in Fig. 4. The pitch-rate 
response to a pitch-axis input (primary-axis response) and the roll-rate 
response to pitch-axis input (cross-axis response) have been normalized by the 
corresponding baseline-model responses. The baseline-model response is then 
indicated by the unity axis on the normalized amplitude plot and the zero axis 
on the relative phase plot. A frequency range from 0.2 to 5.0 rad/sec is shown, 
with the phugoid frequency typically being between 0.2 and 0.5 rad/sec), the 
Dutch roll between 1.0 and 2.0 rad/sec, and the short period between 2.0 and 
5.0 rad/sec. 
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Although the reduced-order models all duplicate the low-frequency 
response characteristics of the baseline model, major discrepancies show up in 
the higher-frequency cross-axis response. The conventional model shows a 
departure from the baseline response at about 0.3 rad/sec, the amended model 
at 0.8 rad/sec, and the 8-DOF model at about 1.3 rad/sec. The usable bandwidth 
of the amended model is roughly twice that of the conventional quasi-static 
perturbation der·ivative model. 

Eigenvalue Comparison. Characteristic roots for the basic 6-DOF 
fuselage/body motion are compared in Fig. 5. As expected, all the models cor­
rectly predict the low-frequency modes, with some slight differences showing 
up in the Dutch roll mode, and the significant discrepancies occurring in the 
short-period dynamics. Both the 8-DOF and amended models give a good account­
ing of the baseline short-period eigenvalues; however, the conventional model, 
although it correctly predicts the natural frequency, gives an optimistic esti­
mate of the damping. Note that inclusion of the body-acceleration derivatives 
in the amended model is sufficient to modify the state matrix of the conven­
tional model (i.e., FAM = (I - F1

')- 1 Fos) and to yield improved short-period 
eigenvalues without changing the low-frequency characteristics. This might 
lead one to conclude that the body-acceleration derivatives alone are respon­
sible for the significant increase in the usable bandwidth of the amended model; 
however, that is not the case. Additional analyses of a model that included the 
body-acceleration terms but not the control-rate derivatives showed frequency­
response characteristics comparable to those of the conventional model, indicat­
ing that the control-rate derivatives are a necessary component of the amended 
model. 

Identified Models 

System identification from analytic models is discussed in Ref. [10]. 
The procedure used in this study consists of two parts - parameter identifica­
tion and evaluation of the identified models. 

Identification from Simulation Data. The baseline model was excited 
using two representative inputs for each of the four control axes, the first 
being a doublet with a period of 3 sec and the second a 3-2-1-1 input (intervals 
in seconds) that is often used for parameter identification because of wide-band 
excitation (see Ref. [13]). The doublet was chosen specifically to excite the 
short-period aircraft dynamics. The amplitude used for both input waveforms in 
all axes was 0.02 rad. The eight maneuvers were simulated for 10 sec each (a 
total of 80 sec) and were then sequentially processed, using a least-squares 
algorithm. Three sets of parameters were identified, using each of the reduced­
order model structures. 

The least-squares algorithm is the standard solution to the equation­
error formulation of the parameter-identification problem and will, in the 
absence of measurement noise, yield optimum unbiased parameter estimates. Since 
there is no noise associated with the simulation itself, except perhaps negli­
gible computer round-off and integration routine errors, the least-squares algo­
rithm is best for this application. All unmodeled higher degrees of freedom are 
treated as process noise (the assumption when using the equation-error 
formulation). 

A large amount of data (80 sec in all) was used to assure convergence of 
the parameters. It should be noted that using different control input waveforms 
and inter-axis amplitudes (i.e., relative amplitudes between control axes) is 
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expected to yield slightly different converged parameter values. The conver­
gence properties generally will depend on control-input waveform, amplitude, 
and spectral content, as well as on basic considerations, such as number of 
maneuvers, maneuver length, and sample rate. Investigation of all these factors 
was beyond the scope of this effort and remains an area for continuing research. 

Evaluat"ion of Identified Models. The crucial test for evaluating the 
11 goodness 11 of any identified model is simulation and comparison with an input 
not used in the identification. For the evaluation, a 2.1-rad/sec sinusoidal 
pitch-axis input was used to drive both the baseline model and the identified 
model. The simulated time-histories were then compared. 

Figure 6 shows the results of the simulation and comparison of the models. 
As done previously for the mathematically reduced models, only the primary axis 
(pitch rate) and cross-axis response (roll rate) are shown. Again, there is 
very little difference in the primary-axis response, with major discrepancies 
occurring in the cross-axis response. The identified model using the conven­
tional model structure is unable to predict the correct cross-axis response, 
being grossly in error. It does not even come close to the incorrect reduced 
model response of Fig. 3. The amended model, on the other hand, does show con­
siderably better agreement with the actual baseline model response and, in fact, 
does not display the shortcomings of the mathematically reduced amended model 
(Fig. 3), which had the incorrect amplitude behavior. 

Identified Derivatives and Eigenvalues. In addition to the direct com­
parison of the time-history responses, it was also desirable to eValuate the 
stability derivatives and eigenvalues of the identified models. A selection of 
several important stability derivatives is shown in Fig. 7, where the identified 
derivatives are compared with the time-varying baseline model-perturbation 
derivatives. 

The baseline reference derivatives are plotted in their 6-DOF time-varying 
perturbation form, where the initial value (t = 0) is identical to the coeffi­
cient of the FB submatrix of the 9-DOF baseline model, and the steady-state 
value is the same as the mathematically reduced conventional 6-DOF quasi-static 
derivative. The 8-DOF identified derivative is also plotted as an equivalent 
6-DOF time-varying perturbation derivative. Its initial value corresponds to 
the appropriate coefficient of the identified FB matrix for the 8-DOF model, 
and the steady-state value is that derivative value that would result should the 
8-DOF identified model be mathematically reduced into quasi-static derivatives. 
The conventional 6-DOF stability derivatives are time-invariant and are repre­
sented by a constant-valued line across the plot. 

The plots in Fig. 7 show that identification of parameters, using the 
conventional 6-DOF model structure, will yield derivative values that are quan­
titatively different from the conventional (i.e., mathematically reduced) quasi­
static derivative (this was first noted in Ref. [6]). The identified deriva­
tives are always smaller in magnitude than the conventional value, but are in 
all cases within the extremes of the fluctuations of the time-varying baseline 
derivative. This indicates that for the data used in the identification, the 
rotor is not operating in its steady-state equilibrium; rather, because of 
excitation from the control inputs and body motions, it is operating in a tran­
sient manner. 

The 8-DOF time-varying derivatives generally attempt to duplicate the 
dynamic nature of the time-varying baseline derivative. In most cases, its 

12 



steady-state values are closer to the conventional derivative (i.e., mathemati­
cally reduced) values than the identified values from the conventional 6-DOF 
stability derivative model. 

The eigenvalues for each of the identified models are shown in Fig. 8 
(body roots only). All models compare favorably with the lower frequency base­
line characteristic roots; however, there are marked discrepancies in the short­
period roots. The short-period eigenvalues for the identified 8-DOF model show 
fairly good agreement with the baseline model roots, correctly estimating the 
natural frequency but slightly underestimating the damping. The eigenvalues of 
the model identified using the amended-model structure, although still periodic, 
greatly overpredict the short-period damping, and are not in as good agreement 
with the baseline roots as they were for the amended reduced model in Fig. 5. 
The eigenvalues of the model identified using the conventional model structure 
are aperiodic and provide even worse correlation. 

It is interesting to note that the discrepancies in the short-period 
eigenvalues can be shown to be related to the low values of the identified 
derivatives. Since the trace of any square matrix (i.e., the sum of the diag­
onal elements) is equal to the sum of the eigenvalues of that matrix (see 
Ref. [14]), the sum of the damping derivatives Xu, Yv, Zw, Lp, Mq, and Nr for 
a given 6-DOF model will be equal to the sum of the real parts of the eigen­
values of that model (the imaginary parts cancel out). Evidence of the lower 
parameter estimates can be seen in Fig. 8, where the mean of the real parts of 
the short-period eigenvalues (for either of the 6-DOF identified models) is 
visibly less than that for the baseline model. This is an indication that the 
accuracy of identification of the helicopter short-term response is likely to 
have a strong effect on the values of the parameters identified. 

4. Conclusions 

The validity of several helicopter models that can be used for flight­
dynamics analysis has been investigated. The purpose of the study was to assess 
the effect of the rotor-flapping dynamics on the helicopter handling-qualities 
motion spectrum, and to evaluate various simplified model representations. The 
effects of nonlinearities and additional degrees of freedom above the rotor tip­
path-plane flapping dynamics were not included in the analysis. 

Three models were investigated - the conventional 6-DOF model, which is 
composed of the conventional quasi-static stability derivatives; an amended 
6-DOF model, which includes body-acceleration and control-rate derivatives; and 
the 8-DOF tip-path-plane tilt model,.which is evaluated because it represents 
the next higher level of complexity above the 6-DOF stability-derivative models. 
Another model, a linear 9-DOF (fourteenth order) body + rotor model, which 
includes rotor advancing, coning, and regressing flapping modes, in addition to 
the fuselage/body modes of motion, was used as a baseline model. It was from 
this baseline model that the mathematically reduced models were generated, and 
it was against this model that all the lower-order models, including the iden­
tified models, were evaluated. 

System identification of models using each of the three model structures 
was undertaken in order to assess the effects of the higher-order rotor dynam­
ics on parameter identification and to determine how well the parameters could 
be identified under these idealized circumstances. The identified derivatives 
provide an upper bound on the quality of results that can be obtained from 
flight-test stability derivative extraction using dynamic testing techniques. 
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The following conclusions can be made about the mathematically reduced 
models: 

1. The conventional quasi-static stability derivative model was found 
to have problems in predicting the short-period cross-axis response. 

2. The amended model, which included the body-acceleration and control­
rate derivatives, essentially doubled the usable bandwidth and resulted in 
better predictions of the helicopter cross-coupling dynamics. 

3. The 8-DOF model provided the best correlation with the baseline model 
dynamics. 

The following conclusions can be made about the identified models: 

1. Parameters identified using the conventional model structure were 
grossly in error, and were unable to predict the helicopter cross-axis response. 

2. Parameters identified using the amended model structure [eq. (13)] 
were able to predict accurately the helicopter cross-coupling behavior. 

3. The 8-DOF identified model provided little noticeable improvement 
over the' amended model in the time-history comparisons, but did provide better 
agreement with the baseline short-period eigenvalues and with many stability 
derivatives. 

4. Derivatives identified under the conditions of this study were quan­
titatively different from the conventional derivatives currently used by heli­
copter flight dynamicists. True helicopter 6-DOF perturbation derivatives are 
time-varying, and identified derivatives reflect this by effectively 11averaging11 

the time variations of the derivative. 
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TABLE 1.- ROTOR + BODY MODELS 

Rotor +body Rotor model Rotor states Rotor modes Order 
model 

9 DOF Second-order 
• • • T 

Advancing 14 :>'OR = [S 0 ,S1c'Sls'So,Slc'Slsl 
(baseline) tip-path-plane flapping (8 + 6) 

dynamics Coning 
Regressing 
flapping 

Coning Second-order • T Coning 12 :>'OR = [So,Blc'Bls'Bol 
coning Regressing (8 + 4) 

First-order flapping 
tip-path-plane 
tilt 

8 DOF Tip-path-plane :>'OR = [B1c'S1 6 lT Regressing 10 
tilt only flapping (8+ 2) 
(first order 
each DOF) 
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