
ERF2013-075

COMPARISON BETWEEN SLIDING AND CHIMERA GRIDS

Mikolaj Jarkowski, Mark Woodgate and George N. Barakos

CFD Laboratory, Department of Engineering

University of Liverpool, L69 3GH, U.K.
http://www.liv.ac.uk/flightscience/PROJECTS/CFD/ROTORCRAFT/index.htm

Abstract

The Overset Mesh Method (chimera) is popular in rotorcraft research, since the use of multiple, non-

matching grids makes the Computational Fluid Dynamics simulations of bodies in relative motion much simpler.

Consequently, the relative motion between the helicopter blades and fuselage can be accurately accounted

for. In this paper, the method for treating overset grids within CFD codes is presented and compared against

other methods like sliding planes and fully matched grids.

The proposed method is based on hierarchy of overset, non-matching grids, whose cells are automatically

identified as computational or non-computational and localised with respect to all grids they overlap with. The

efficiency of the method relies on the fast, cell-in-solid detection, based on combined Bounding Box - Ray

Tracing method, the hierarchical, multi-step approach, for the overset mesh localisation and the use of a tree

search. Due to the high efficiency of the algorithm the search for overlapping cells can be carried out on-the-fly,

during time-marching of the unsteady, implicit CFD solver.

The chimera method algorithm will be described in details, together with its extensions, that improve the

localisation of the solution as well as allow for the computation of the cases with intersecting solid boundaries.

Nomenclature

LP Localisation Pre-processing

OMS Overset Mesh Search

EAL Exact Arithmetics Library

GCS Global coordinate system

MVBB Minimum Volume Bounding Box

AABB Axis Aligned Bounding Box

RT Ray Tracing

TCS Transformed coordinate system

xi Coordinates in the ith

ξk Coordinates in the kth

I Second moment of area matrix

mi Mass of the ith grid cell, assuming the density

of 1 kg
m3

~ri Vector from the origin of the GCS to the cen-

troid of the ith grid cell

~Fi, ~Fv Inviscid and viscous fluxes

Ri,j,k Flux residuals at cell (i, j, k)

~S Source term compensating for inertial effects

V (t) Time dependent control volume

~uh Local velocity field in the rotor-fixed frame of

reference

wi,j,k Discretised conserved variables vector

~w Conserved variables vector

ρ Air density

~ω Rotor rotational speed

1 Introduction

For the purposes of this work, the Helicopter Multi-

Block CFD solver (HMB2) [1] is used. The chimera
method of the HMB2 is based on hierarchical hole cut-

ting. Further extensions to the chimera method are

presented, which expand the flexibility of the solver.
The main modifications of chimera method consist

in the utilisation of semi-infinite ray tracing method
for a point-in-solid detection and wall-distance based

boundary layer correction, that allows for the use of

1



embedding solids - intersecting solid surfaces belong-
ing to different grid levels. The modifications were pos-

sible due to the data-structure of HMB2 that is flexible
enough to accommodate extensions to the solver with-

out major re-writing of the core functions [2].

1.1 Introduction to Localisation Methods

The grids used in HMB2 are multi-block, structured

and body-fitted with hexahedral elements, numbered

as presented in Fig. 2a. It is assumed that each cell
face consists of four triangles with a common apex lo-

cated on the face centroid (Fig. 2b). Each of the 24

triangles (4 on each cell face) forms a base of a tetra-
hedron. A hexahedral cell is replaced by a collection of

24 tetrahedra with a common apex at the cell centroid.
This operation is consistent in terms of mesh volume

as the position of each wall centroid is independent

of the side it is calculated from (inside or outside).
This cell-split operation is commonly used within the

current search algorithm, as any point-in-cell check is

based on tetrahedra. Moreover, unlike a hexahedron,
a tetrahedron has a simple linear transformation into a

normalised shape (Eq. 1):

xi = xi
0 +

3∑

k=1

(
xi

k
− xi

0
)
· ξk (1)

dimension of the GCS dimension of the TCS

where: subscripted indices (1, 2 and 3) represent di-
mensions in orthogonal coordinate system and super-

scripted indices (0, 1, 2, 3) represent one of four ver-
tices of a tetrahedron. The transformation into a nor-

malised shape is used when determining the interpo-

lation weights for inter-grid communication. This is ex-
plained in the Overset Mesh Search section.

The chimera localisation methods identify the cells

that require interpolated flow information from the grid
they overlap with, and provide interpolation weights.

Figure 1a, shows the chimera case with two grids,
background grid (black) and the inner grid (foreground

grid, around the aerofoil). The outer boundary of the

inner grid will herein after be referred to as chimera
boundary, and its halo mesh (not shown in the Fig-

ure) will require interpolated flow data (from the back-

ground grid). Figure 1b, shows the flags on the back-
ground grid and the cells shown in light grey (called

interpolation cells) also require interpolated flow data
(from the foreground grid - to provide data exchange

in both directions).

The chimera functions in HMB2 are divided into two
major groups. Localisation Pre-processing (LP) is the

first of them and consists of a simple set of geometric
operations that are always conducted before the sec-

ond step, the Overset Mesh Search (OMS).The main

idea used within LP is the construction of approximate
Minimum Volume Bounding Boxes (MVBBs). MVBBs

are cuboids that completely bound a given shape
and occupy the minimum possible volume. In HMB2,

MVBBs are computed based on the second moment

of area matrix (Eq. 2), whose eigenvectors provide
direction vectors of the principal axes of inertia. The

ranges of the MVBBs are determined by rotating the

geometric entity (e.g. mesh block) so that its principal
axes of inertia match the Global Coordinate System

(GCS) and by finding minimum and maximum values
of X , Y and Z variables. The approximate MVBBs in

the HMB2 do not always occupy the minimum possi-

ble volume, but the approximation is good enough for
LP.

The second moment of area matrix is defined as:

I =
∑

i

mi · ~ri ⊗ ~ri (2)

where ~ri is the vector representing the coordinates of

the ith cell centroid, with respect to the block’s centre
of gravity, and mi represents its volume.

Another type of a bounding box (used within OMS)

is the Axis Aligned Bounding Box (AABB). It poses a

cuboid that bounds completely the geometric entity it
is associated with, and is aligned with the GCS axes.

Effectively, an AABB can be defined by two points in
space: Pmin = (xmin, ymin, zmin) and Pmax = (xmax,

ymax, zmax).

Additionally, two main computational geometry tools

are used during the OMS: a range-tree and an Exact
Arithmetics Library (EAL). A range-tree is a structure

built of a 3D set of points, and efficiently determines,
which of the points are located in a given bounding

box. Within the scope of this work, the AABB is used

for querying the tree. In Fig. 4 a 2D example of a
range tree is shown. The tree is constructed of black

dots, and we want to determine, which of these are po-

tentially located inside the shaded area. The tree be-
comes the shaded area’s axis-aligned bounding box

as an input (rectangle) and returns all the points inside
the rectangle. This search is very efficient, following

k· log(n) computational cost (where k is a number of

points in the tree localised against n volumes/areas).

The second tool (EAL) checks point positions with re-
spect to a plane (3D) or a line (2D). In general, the po-

sition of a point P xP , yP , zP with respect to a plane de-
fined by three points A, B, C can be verified by check-

ing the sign of (Eq. 3):

det

∣∣∣∣∣∣

xA − xP xB − xP xC − xP

yA − yP yB − yP yC − yP
zA − zP zB − zP zC − zP

∣∣∣∣∣∣
(3)

The EAL computes equation 3 with the maximum pos-

sible machine precision. The details on this method

2



and assurance for the correct sign of the determinant
can be found in [3]. The use of EAL is important, be-

cause it guarantees that point localisation with respect
to cells is unambiguous i.e. any point can only be lo-

cated in one cell of a level, it is localised against. What

is more, a volume of a cell, in extreme cases, can be
of the order of 1.0 · 10−18, so high precision computa-

tional geometry tools are required.

1.2 Localisation Pre-Processing (LP)

The load balancing, necessary to obtain high parallel

efficiency is based on the CFD computational cost (the
chimera localisation cost is not taken into account)

and the composite grid is treated as if it was a single-

level, matched grid. As a result, in case of parallel
execution, each processor stores blocks from differ-

ent sub-grids (herein after referred to as levels - due
to the hierarchical approach). Consequently, consid-

erable data exchange is required for the localisation

of cells of different levels. In order that the number
of searches is limited to minimum, a Localisation Pre-

processing (Fig. 5, left top, bounded with a dashed

line) is used. After this operation, each block is given
a list of blocks of a different level, it has to be localised

against. The localisation pre-processing consists of
three steps: i) generation of MVBBs, ii) a block-to-

block search operation, iii) node-in-solid MVBB search

operation. The first step generates MVBBs for all
the blocks (block MVBBs) in a composite grid plus a

MVBB for each boundary, tagged as solid wall (solid

MVBBs). The second operation checks which blocks
potentially overlap, based on the MVBB information.

The third step utilises solid MVBBs and flags all the
nodes, which have been localised inside solid MVBBs

of any other level as node-in-solid-mvbb.

In Fig. 5, (inside the dashed box) the flowchart of

the localisation pre-processing is shown. Minimum
Volume Bounding Boxes (MVBBs) are constructed for

each block. The halo mesh of the chimera boundaries

(see Fig. 6, both first and second layer) needs to be in-
cluded in the MVBB ranges. Halo cells in the Chimera

Interface includes the cells that require interpolated

information, so it has to be determined which blocks
of other levels they overlap with. Halo cells of any

other block face (not associated with chimera bound-
ary) are excluded. Experience with HMB2 proved, that

the best approximation of the MVBB is obtained when

only the first layer of chimera boundary halo cells is
used in determining the principal axes of inertia. The

extrapolation of the second layer of halo mesh could

generate cells of negative volume, especially on grids
with high cell aspect ratios. Neglecting the second

layer of halo mesh at this stage will not lead to ex-
clusion of any cells from the bounding box, as the

second row of halo mesh for chimera boundaries is

taken into account at the stage of range definition.
MVBB generation is a sequential operation (each pro-

cessor generates MVBB for the blocks it stores) and is
followed by an MPI operation, distributing all MVBBs

to all processors. Figure 7 shows an example of a

multi-block topology and the associated MVBB. The
halo mesh of the chimera boundaries (both first and

second layer) is included in the MVBB ranges.

The operations described above refer to the geomet-

rical features of the blocks that are treated like three-

dimensional volumes with a uniform density distribu-
tion.

Additional bounding boxes are also created for all solid
bodies in the grid. Unlike blocks, solid surfaces have

no volume, so the principal axes of inertia have to be

determined based on the surface information only. As
a result, solid bounding boxes do not strictly take the

minimum possible volume, and the MVBB approxima-

tion is worse than for blocks, but sufficient for solid hole
cutting. The generation of solid MVBBs, however, is

not sequential, as parts of one solid surface may be
distributed between different processors. MVBBs of

solid surfaces are used for flagging nodes-in-solid. An

example is shown in Fig. 8, where all the points of the
background grid inside the aerofoil shape are marked

as nodes-in-solid-MVBB.

In the next step, operations are performed that identify
all block-to-block overlaps between blocks of different

levels. This is done by checking if the nodes of each

block of one level are located inside the MVBB of any
blocks belonging to another level (the concept of mesh

level is presented in Fig. 7, where two multi-block,
overlapping topologies are hierarchically ordered). For

efficiency, only the external block nodes are taken into

account. This algorithm is very efficient and data par-
allel, however, it is optimistic in the generated block-

to-block overlap information. Consequently, some of

the block overlaps that are to be tested for cell overlap
will produce no results.

The overlap information needs to be symmetric, i.e.
if block A overlaps with block B, block B should also

overlap with block A. However, if a block is com-

pletely embedded inside another block, the output of
the procedure described above will be non-symmetric

(a bounding box of the embedded block does not con-

tain any external points of the outer block). Therefore,
a cleanup operation is required to obtain a fully sym-

metric overlap information.

Ô = O ∨OT

where O is a bitwise matrix containing the overlap

information (0 if non-overlapping, one if overlapping)
for all the blocks in the grid. The size of the matrix is

therefore equal to total number of blocks in the grid

3



(width and length) and Ônblt x nblt is the full symmetric
bitwise overlap information, and the size subscript nblt

refers to the total number of blocks in the overset grid.
In case of a parallel execution, this operation is done

on a root processor.

Since memory in HMB2 is allocated per block, finding

all the blocks with potential overlap provides a mecha-
nism for allocating the minimum required memory, as

well as restricting the necessary searches for the over-

set mesh functionality at cell-level.

At the end of the LP, all mesh nodes are localised
with respect to all solid MVBBs of other levels. Solid

MVBBs store the information relating to the grid level

they belong to and the solid shape they are associated
with. Each solid MVBB is a rough approximation of the

solid shape, so some nodes, which are outside of the
solid shape, are flagged as in-solid within this search

(see Fig. 8). For those nodes, the flag will change at

the later stage. Any node which has an in-solid flag,
and at the same time, has been located inside any cell

of the mesh, the solid MVBB was associated with, will

lose the in-solid flag (Fig. 9).

1.3 Overset Mesh Search (OMS)

1.3.1 Methodology.

The cell localisation process has two main objectives:
(i) to identify the type of each cell (Fig. 1), and (ii) to

determine the interpolation stencils for the cells that

require interpolated information. Cell flags are as-
signed based on node position with respect to the

other levels of the composite grid (Fig. 12, this will

be explained at the end of this section).

At the end of this step, each cell is marked as
a: ”cell-in-solid”, ”hole-cell-in-fluid”, ”hole-cell-with-

interpolated solution”, ”fringe” or ”normal-cell”. This
extra information can be stored in a file for the HMB2

solver to read, or can be calculated on-the-fly as

the HMB2 solver is executed. It should be noted
that HMB2 merges cell-flag information into three

classes: normal cells, (”fringe” and ”normal-cell”),

holes, (”cell-in-solid”, ”hole-cell-in-fluid” and ”hole-cell-
with-interpolated solution”) and finally interpolation

(”hole-cell-with-interpolated solution”) which are the
only cells that require extra information associated

with them.

Throughout the localisation process, the geometric
entities (nodes, cell centroids) are localised within

cells belonging to the grids of different levels. Conse-
quently, only the information specifying by which cell

the currently localised geometric entity is bounded is

significant, rather than the nearest cell information. It
has to be noted that finding the nearest cell centroid

does not guarantee that the cell bounds currently lo-
calised point. In the case of a grid with high cell aspect

ratios, the centroid of the cell that bounds a point may

not be the nearest one. Figure 10 presents such a
case.

The OMS consists of three major steps:

1. Localisation of nodes and centroids with respect

to all potentially overlapping blocks.

2. Cell flagging, based on the node flags from the
previous step.

3. Computation of the interpolation weights for all
cells requiring interpolated data.

During OMS, both node flags, and cell flags are used.
At the end of the search, however, only the cell flags

are required. Node flags are only required as auxiliary

attributes, for the correct determination of fringe cells.
Node flags are not required for the CFD part, and after

the cell flags are determined, they can be freed from
memory.

The aim of the OMS is to establish the necessary

inter-grid communications. For the HMB2 solver, the
inter-grid communication information consists of the

list of deactivated cells, the list of cells requiring inter-

polated data and the associated interpolation weights.
The chimera search only includes computational ge-

ometry operations, based on the grid points, topology

data, information provided in the input file and the Lo-
calisation Pre-processing output.

In the first step, the OMS algorithm performs hole cut-

ting, i.e. it detects the cells of the mesh where flow

solution will not be computed. Hole cutting is based
on mesh hierarchy. The hierarchy of grids in HMB2 is

defined by the user, via an input file. The hole cutting

is done in two parts: the nodes are localised with re-
spect to other level grids and then the cells are flagged

based on the flags of their vertices. Node flags applied
within this step indicate that a node has been localised

in any cell of a lower level, any cell of a higher level,

or it is a normal node. Flags may be appended, so
any node can be localised in a lower level cell and in

a higher level cell. Additionally, some of the nodes

in the mesh may already be flagged as node-in-solid.
All the information that needs to be associated with

the nodes is limited to one of the four flags mentioned

above. Nodes do not need to store any information
about the index of the cell, they have been found in-

side.

The hole cutting procedure uses a range tree. The

tree is created for all blocks, that potentially overlap

4



with any other blocks on other levels and consists of
the coordinates of block nodes and the coordinates of

cell centroids. The tree also includes the first layer of
halo mesh for nodal coordinates and two rows of halo

mesh for cell centroid coordinates.

The tree search is only conducted for pairs of blocks

identified as potentially overlapping in a block-to-block
search. As the information about block intersections

does not specify their extent, it is required that each

tree is checked against all cells of all blocks, the cur-
rently localised block potentially overlaps with. For

clarity, two terms will be used in the description of tree
search: flagged block - the one whose nodes and cell

centroids are currently localised with respect to an-

other level, and with which the tree is associated and
flagging block - the one whose cells are used for in-

quiring the tree. The flagged block has to be checked

against the AABBs of all cells of flagging block. In
case of a parallel execution, some overlapping blocks

will be assigned to different processors. In this case,
MPI data exchange is required. A tree is never sent

to other processors. If required, the coordinates of the

flagging block mesh are sent to the processor, which
owns a flagged block and its tree.

As the tree search only localises points (nodes and

centroids) inside a cell AABB, they have to be ad-

ditionally, checked against the cell. For an exact
and consistent node-in-cell check, the tetrahedra are

used. For this reason, Schewchuk’s Exact Arithmetics
Library [4] is used. The library helps to determine

whether a point is inside a tetrahedron, by checking

the point’s position with respect to the faces of the
tetrahedron. If the point is located exactly on the face

of a tetrahedron, it is considered to be inside of it. At

the same time, it is flagged as in-cell and is not lo-
calised against any other cell of this level, in order that

it’s position is unambiguous. The library is used be-
cause it allows high precision for node (and centroid)

localisation.

At the end of this operation (repeated for each block in
the overlapping group), each node of the flagged level

has a flag, specifying if it is a node-in-lower-level-cell,

node-in-higher-level-cell, node-in-solid-box, or no flag
(normal node). The tree is constructed both of node

coordinates as well as cell centroid coordinates. Con-
sequently, when the tree is inquired by the cell ranges

of overlapping blocks of other levels, it returns the list

of nodes and centroids located in the range. The cen-
troids’ coordinates are also checked with respect to

cells using the EAL, in the same way as nodes. For

these, however, no flags are applied at this point, but
the indices of the cell, inside which they were located

are stored. If the composite grid consists of more than
two levels, the centroid of a chimera block can be lo-

calised inside more than one cell, since it may be lo-

cated in more than one overlapping levels. In such a
case, the indices of all grid levels, in which the centroid

has been located, are stored. This information will
only be needed for the interpolation cells, and will be

ignored for normal cells and hole cells. The cell flags,

however, are not known at this point of the chimera lo-
calisation, but storing the potential donor cell indices

for all cells saves computational effort, as no additional

tree search will be required at any later stage.

After the node localisation is completed, the cells are
flagged according to the following rules (see Fig. 12):

1. Any in-solid node is unflagged, if it has been lo-

calised as node-in-cell inside of the level, the
flagging solid MVBB was associated with.

2. A cell is marked as a hole if all 8 nodes are inside

a grid of a higher level.

3. A cell is marked as a fringe if at least one and
less than 8 nodes of a cell are inside a grid of a

higher level.

4. A cell is marked as a solid if at least one of its

nodes is flagged as in-solid.

At this point, the node-in-solid information is corrected
(see point (1) above). All the in-solid nodes store

the level number of the solid MVBB used for flagging

them. An in-solid node looses its flag if it has been
localised inside any cell of the level, the solid MVBB

was associated with.

For chimera functionality additional cells have to be
flagged, for which flow variables will be interpolated.

As fringes are the last layer of computational cells,
fluxes through their walls are calculated based on

flow data from adjacent cells (see figure 11). This is

a viscous stencil, in case of Euler model, stencil is
reduced. Interpolation cells are non-active in a com-

putational sense, but the interpolated values in their

centroids are used for the calculation of the fluxes into
the fringe cells. Interpolation holes are flagged re-

cursively - each hole neighbouring with a fringe gets
an interpolation-hole flag, and applies the same flag

to all its neighbours. Regardless of the CFD model

used (Euler or viscous), interpolation cells are always
flagged based on viscous MUSCLE stencil shape.

This operation finalises cell flagging.

1.4 Point-in-solid Detection

Point-in-solid detection is a difficult task, since the

solid shape does not have a grid inside. The method
for point-in-solid detection is based on the idea of Min-

imum Volume Bounding Box (MVBB), which is a very

5



rough approximation of a solid shape. The idea con-
sists in flagging mesh nodes as in-solid-bounding-box,

that are the candidates to be flagged as in-solid in the
later stage. Any in-solid-bounding-box node will not

be flagged as in-solid only if it is localised inside any

cell of the grid level, the solid MVBB is associated with.
Otherwise (if it is not localised inside any cell of the

grid, the solid MVBB is associated with), it is flagged

as in-solid. The disadvantage of this method is that
it imposes a restriction on an overset grid. The grid

associated with a solid shape has to cover the solid
MVBB of the solid shape. In other words, The MVBB

of the solid shape associated with the grid cannot cut

through the grid boundary. The restriction can be
removed if the solid MVBB method is supplemented

with additional, more precise search, e.g. Ray Tracing

(RT).

RT combined with solid MVBB, can provide a very

efficient way of point-in-solid detection. Therefore,

the method was added to the HMB2. The method is
based on semi-infinite rays, which are simple straight

lines with the origin in the point, localised against a
solid surface. If a ray, traced from the point of inter-

est, does not cross the solid surface, or crosses the

solid surface an even number of times, the point is not
bounded by the surface If it crosses the solid surface

a odd number of times, the point is inside the volume

bounded by the surface (see Fig. 14).

The RT method of HMB2 utilises a range-tree [1].

Rays are not shot from the points (nodes), that have
to be localised against the solid surface. The nodes

on the solid surfaces are used for the generation of

volume, inside which the grid nodes are localised (see
Fig. 15). Boundary cells, constructed of 4 nodes on

the solid surface, are then extruded along the posi-

tive Z direction. The extent of the cell extrusion can
be treated as infinite, compared to the dimensions of

the grid. In next step, the range-tree is used to lo-
calise all in-solid-bounding-box nodes of all levels not

associated with the solid surface, against the semi in-

finite cell generated in the previous step. The points
returned by the range-tree are checked against the ex-

truded cell using the EAL [3]. If the point is localised

as inside the cell, it is offset by a very small distance
along the X and Y axes (less than 10 per cent of

lowest cell dimension) and checked again with use of
EAL. It the point is still inside the cell, the counter for

number of ray intersections with a solid surface is in-

cremented. The operation of double-check with the
point offset is conducted in order that the number of

ray intersections with a solid surface is unambiguous.

If this operation was not conducted, a point which is
located exactly between two cells could be identified

as inside of both of them. Consequently, the number
of ray intersections for this point with the solid surface

would be invalid, and the in-solid search for this point

would provide a false answer.

1.5 Boundary Layer Correction

In a chimera approach, the grids associated with solid

elements are generated separately. The orientation of
the boundary layer refinement on both grids is differ-

ent, and follows the normal direction to the solid sur-
face (see Fig. 16). The boundary layers are equally

important from the point of view of the global resolu-

tion of the flow. The standard hole cutting hierarchy,
therefore, has to give priority to the boundary layer

correction method. As an example, the overset mesh

between an aerofoil and a Gurney flap is considered.

After the grids are merged to one composite overset

grid, the cells in the intersection corner, between the

aerofoil and the Gurney flap do not match (see Fig.17).
Additionally, The Gurney flap can be actuated in a lin-

ear way (sliding Gurney flap) and in a rotational way

(swinging Gurney flap).

The challenges presented above require that the over-
set mesh algorithm deals with (i) solid hole cutting in

the highest level grid by the solid shape of a lower
level, (ii) decision process, on which grid to solve in the

region, where boundary layers are very close to one

another and (iii) treatment of the cells in the boundary
layer, which intersect with the solid shape of a different

level.

In the chimera method, the situation where two differ-
ent solid surfaces in two different levels intersect with

one another is allowed. Consequently, the cells of the

highest level (Gurney flap level in this paper), which
are located inside the solid surface of a lower level,

have to be flagged as non-computational (see Fig.

18a). In addition, not all halo cells of the chimera inter-
face boundary associated with the Gurney flap level,

which are used as interpolation cells, can find a valid
interpolee (they can be located inside the solid shape

of a lower level). As a result, the halo cells of the

chimera interface boundary, whose centroids are lo-
cated inside of a solid shape, have to be removed from

the interpolation cell list. Detection of the cells of the

highest level in the solid surface of the lower level is
not different from the method used in the previous ver-

sion for the lower levels (based on solid MVBB). The
in-solid flags for halo cells on chimera boundaries are

flagged following a different algorithm. It is assumed,

that halo cells on chimera boundaries, which are not
bounded by any cell of any other level, are orphan

points (interpolation points outside of the computa-

tional domain), and they are removed from the interpo-
lation cell list. This may lead to the situation, where the

halo cells on chimera boundaries are orphans, but the
block cells directly on the chimera boundary are com-

putational. If nothing s done at this point, there would

6



be no rule for flux calculation through the chimera
boundary. In order that each computational cell has

a consistent rule for flux computation, two layers of
cells right next to invalid chimera boundary is flagged

as interpolation cells. There is also another type of

orphan cells. They are chimera boundary cells, which
are found inside other level cells, but the cells they

are localised inside are flagged as non-computational.

This will be discussed in the paragraphs below.

Another important issue in the boundary correction

problem is to decide, which cells have to remain com-

putational in the region, where boundary layers of two
different levels may interact. The grid priority (ii) de-

pends on the hierarchy in regions far from the bound-

ary layer. The boundary layer thickness, for each solid
shape separately, is defined by the user. This bound-

ary layer is the region, where no hole cutting is done,
unless the cell is located inside the solid shape. Typ-

ically, it is necessary to specify the boundary layer

around the aerofoil/wing/rotor-blade shape only, since
the gurney flap is always in the highest level. It has to

be noted that in the boundary layer region, there is a

multiple discretisation of the domain. It also leads to
the situation where a computational cell directly neigh-

bours with a non-computational one (computational
cell of the boundary layer next to a solid-hole cell).

In order that a smooth solution can be obtained be-

tween two grids, interpolation is required. Two lay-

ers of computational cells, located directly next to the
solid region are converted to interpolation cells (see

Fig. 18b), in a manner that provides consistent the
flux computation.

Some of the interpolation holes, however, are lo-

cated in the region which is already flagged as non-

computational on the background grid. Consequently,
no valid value for interpolation can be found. Those

interpolation cells without a valid interpolee are at this
stage flagged as solid cells (see Fig. 18c). The face

of a computational cell which directly neighbours with

a solid cell is converted to internal wall. It means, that
no velocity fluxes are calculated for this wall and is it

is treated as a solid wall inside the computational do-

main.

In the HMB2, the boundary layer correction consists in

solving the flow on the grid that resolves the boundary

layer in the best possible layer. All other grids in this
region are non-computational, and they retrieve the

flow data through interpolation. It is, therefore, possi-

ble, that a higher level grid has a hole cut by the lowest
level, if the lowest level resolves the boundary layer of

a solid object in the best way. In such case, the higher
level grid has interpolation holes that receive the data

from the lowest level grid.

1.6 CFD Flow Solver

The Helicopter Multi-Block(HMB2) method [5], devel-

oped at Liverpool can solve the Navier-Stokes equa-
tions in integral form using the arbitrary Lagrangian

Eulerian (ALE) formulation for time-dependent do-

mains with moving boundaries:

d

dt

∫

V (t)

~wdV +

∫

∂V (t)

(
~Fi (~w)− ~Fv (~w)

)
~ndS = ~S (4)

where V (t) is the time dependent control volume,

∂V (t) its boundary, ~w is the vector of conserved vari-

ables [ρ, ρu, ρv, ρw, ρE]
T

. ~Fi and ~Fv are the inviscid

and viscous fluxes, including the effects of the time
dependent domain. For hovering rotor simulations, the

grid is fixed and a source term ~S = [0,−ρ~ω × ~uh, 0]
T

is added to compensate for the inertial effects of the

rotation. ~uh is the local velocity field in the rotor-fixed
frame of reference.

The Navier-Stokes equation are discretised using a
cell-centred finite volume approach on a multi-block

grid, leading to the following equations:

∂

∂t
(wi,j,kVi,j,k) = −Ri,j,k (wi,j,k) (5)

where w represents the cell variables and R the resid-

uals, while i, j and k are the cell indices and Vi,j,k is
the cell volume. Osher’s [6] upwind scheme is used to

discretise the convective terms and MUSCL variable
interpolation is used to provide third order accuracy.

Van Albada limiter is used to reduce the oscillations

near steep gradients.

Temporal integration is performed using an implicit

dual-time step method. The linearised system
is solved using the generalised conjugate gradient

method with a block incomplete lower-upper (BILU)
pre-conditioner [7].

Multi-block structured meshes are used for HMB2.
These meshes are generated using ICEM-Hexa™of

Ansys. The multi-block topology allows for an easy

sharing of the computational load for parallel com-
puting. Adding sliding meshes [8], as well as allow-

ing for mesh overlap makes the HMB2 a very flexi-
ble solver for dealing with complex geometries. Given

the existing data structure of the solver, the modifi-

cations required for the mesh overlap were restricted
to a small part of the code. Within HMB2, halo cells

are employed by each block, and are populated from

boundary conditions, bloc-to-block data exchanges,
data from sliding surfaces or data from overlapping

meshes. For as long as a block has correct infor-
mation on the halo cells, its solution can be updated

and then shared with other neighbouring blocks. In

7



the strongly implicit HMB2 method, only the precondi-
tioner employed for the solution of the linear system of

equations is block - de-coupled. For overlap regions
though and to minimise the exchange of data, the Ja-

cobian matrix is also de-coupled for overlapping mesh

regions. Another necessary modification for the solu-
tion on overlapping grids is related to the treatment of

cells marked as holes. These are identified and kept in

the original system of equations even if their solution is
not to be updated. This allows for the structure of the

solver to remain the same and has minimal overhead
in the computation.

2 Results and Discussion

2.1 2D Cases

2.1.1 NACA23012 oscillating aerofoil

The mesh sizes for an oscillating NACA23012 aero-
foil case are shown in table 2. Figure 19 shows the

comparison of the lift, drag and pitching moment coef-
ficients, with matched grid results. Additional compar-

isons are shown for the eddy viscosity in the flowfield

(see Fig. 20). The flow simulation was carried out
with HMB2 at M∞ = 0.088 and Rec = 6.0 · 105 us-

ing the k−ω SST turbulence model, for both matched

and overset, multi-block, structured grids. The aerofoil
was pitching with the reduced harmonic frequency of

a f=0.1 about a mean angle of 10 degrees and with
half-amplitude of 10 degrees. The results suggest that

small differences between the matched and overset

grids exist at a narrow range of pitch angles during the
down-stroke motion of he section. This is attributed to

the better resolution of the wake flow and the shed vor-

tices from the section, provided with the overset grid.
The overset grid benefits from a regular background

mesh in this case and consequently it preserves bet-
ter he flow structures than the skewed mesh employed

away from the blade for the fully-matched case.

2.1.2 NACA0012 aerofoil with Gurney Flap

Th mesh sizes for this case are shown in table 3. The
grid was constructed using two levels, aerofoil with the

mesh around it, and a Gurney flap mesh. The Gur-

ney flap pivot point was located at a chord-wise po-
sition corresponding to 0.95c and the flap length was

3%c. The unsteady case was run with the reduced fre-

quency of f∗ = 0.1 with the non-dimensional time step
t=0.001091, based on characteristic length travel time

(i.e time required to travel the characteristic length with
the velocity of the free stream). The comparison of Cp

contours (Fig. 22 (a) and (b)) show that there is a

little disturbance of pressure in the vicinity of the Gur-
ney flap mounting point, due to the geometry change,

following the boundary layer correction method. The
comparison of integrated loads (Fig. 23), however,

shows that there is very little effect of the geometry

change on the computed lift, drag and pitching mo-
ment of the simulated aerofoil with Gurney flap config-

uration.

2.2 3D Cases

2.2.1 NACA0015 wing

The simplest 3D case for chimera validation was a
NACA0015 wing with a rounded tip. The mesh sizes

for this case are shown in table 4. The flow around the

wing was computed for M∞ = 0.5 at Rec = 1.0 · 106

and incidence of α = 5◦. The grid covered half of

the wing, aspect ratio of 6.6. Symmetry BC was used

at the inner side of the wing. The chimera grid con-
sisted of three levels, one for the background, one for

the wing and a fine, Cartesian mesh downstream the
wing tip, to resolve the tip vortex (see Fig. 24). Pres-

sure coefficient distributions for selected wing sections

are presented in Fig. 25. The distribution of Cp on
the wing surface shows no difference between the

matched grid case and chimera case (Fig. 25a). Cp
distributions around three wing cross-sections were
also plotted (Fig. 25b, c and d) and show no differ-

ence between the matched and chimera results.

2.2.2 NACA0015 wing with a fixed Gurney flap

The NACA0015 wing, from the previous chapter was

equipped in a part-span Gurney flap. The grid was

made with 3 levels, very coarse background grid, wing
grid and Gurney flap grid. The Gurney flap was fixed

at the position corresponding to −45 degrees with re-

spect to the full actuation. The Localisation of the grids
is visualised and shown in Fig. 26. The pressure coef-

ficient distribution is shown in Fig. 27, showing the ef-
fect of the part-span Gurney flap. As predicted, more

suction is generated on the suction side of the wing in

the span-wise region, where the Flap is mounted on
the pressure side. At the same time, the Gurney flap

increases the pressure on the lower side of the wing.

2.2.3 ONERA 7AD rotor in hover

The next case, was a rotor in hover. Mesh sizes for
this case are shown in table 5. The ONERA 7AD rotor

blade grid was built of one layer of blocks around it.
The background grid was radial, to allow for periodic

hover boundary conditions. The blade was computed

8



at a collective of 7 degrees and at tip Mach number
of 0.6. The flow was assumed to be periodic in space

and time and so only a single blade of this 4-bladed
rotor was used. The mesh topology and density follow

previous experience with HMB2 [5]. The overset mesh

flagging (shown in Fig. 28) and localisation was per-
formed in a very efficient fashion. The solution cap-

tured well the blade loading that is compared in Fig-

ure 28(a) with a result obtained using a matched grid.
For a good comparison, three blade slices were ex-

tracted and the values of pressure coefficient Cp are
compared with a matched grid solution.

For further comparison, the pressure coefficient was

plotted of 3 different sections of the blade (r/R = 0.7,

r/R = 0.825, r/R = 0.915). The matched grid and
chimera results show very good agreement with ex-

perimental data.

2.2.4 UH60A, rotor in forward flight

The mesh sizes for UH60A rotor in forward flight case

are shown in table 6. This case has been computed

with κ − ω turbulence model at high advance ratio
(µ = 0.368, collective θ0 = 11.6◦). Additionally, pre-

scribed aeroelastic blade twist was applied, with 5 har-
monics as in [8]. Three levels were used for the com-

putation: background, disc and rotor. The disc was

used as an intermediate level, between the relatively
coarse background grid and fine grids of rotor blades

(see Fig. 30).

During the chimera computations all blocks associ-
ated with rotor were treated as rigid. Principally, when

the chimera method is used for rotorcraft CFD, each

blade is covered with a thin layer of blocks (∼ 50% −

100% of a cord length). As a blade pitches, the grid

associated with it is rigidly rotated / translated. This al-
lows for maintaining the grid quality at the trailing edge

throughout the rotor revolution.

The comparison of lift around the azimuth between the

matched and overset grid results(see Fig. 31) shows
very good agreement of the results, especially in the

advancing side. The prediction of shock-wave effect
on the advancing side is in almost perfect agreement

between two methods. Very small differences can be

seen at the inboard section of the retreating side. Ad-
ditionally, the distribution of lift around the azimuth at

constant radius was compared between the matched

and overset grid and the experimental results (see Fig.
32). Numerical results for two different methods follow

each other almost perfectly, whereas some solution
inaccuracy can be seen compared to experimental re-

sults.

At the end, the wake visualisation behind the rotor was
shown (Fig. 33). The wake is preserved very well due

to the fact that it is propagated inside the background

grid, which in this case is artesian, and provides low
dissipational properties.

2.2.5 ROBIN case

The ROtor Body INteraction case (ROBIN) was simu-
lated using the Euler method of HMB2. Mesh sizes for

this case are shown in table 7. The advance ratio was

set to µ = 0.15, collective θ0 = 6.5◦, as in [5], the grid
consists of four levels: regular, Cartesian background

grid, body fitted fuselage grid, disc grid and rotor grid

(see Fig. 34). This configuration allows for the regular
cell shapes in the background grid, for good resolution

of vortical structures in the wake. A disc grid is needed
as an intermediate level, between fine blade grids and

relatively coarse background grid in the rotor region.

For the comparison of the results with the fuselage
and the rotor, The plots for thrust coefficient, torque

coefficient and moment coefficient were created (see
Fig. 35). The differences between the torque, thrust

and moments are minor. The interaction between the

rotor and fuselage was visualised by the extraction
of unsteady pressure on the fuselage, at different az-

imuth angles. Figure 36 shows the differences in the

distribution of unsteady pressure for the azimuth an-
gles of 220◦, 240◦, 260◦ and 360◦, between the chimera

case and sliding plane case. Although unsteady pres-
sure calculation is hard to capture, and in both sliding

plane method and overset mesh method dissipation

exists at the interface between the grids, the unsteady
pressure plots exhibit good agreement for various az-

imuth angles.

Figure 37 shows the wake visualisation behind the

ROBIN with use of Q criterion iso-surfaces. The wake

is preserved very well, both in the proximity of the ro-
tor and downstream from it. The sudden brake-down

of vortical structures is caused by the coarse mesh,

where the structure of the vortices cannot be resolved.

3 Conclusions

In this paper an overset mesh method was presented
and demonstrated. A hierarchical approach was used

that is compatible with the HMB2 CFD solver and re-
sulted in fast turn-around times for the localisation

of overset grids on relatively complex cases. The

method has enough flexibility to allow for arbitrary
mesh overlaps and is designed with parallel execution

in mind. The key ingredients of the method are the

use of a tree-structure to represent the mesh and fa-
cilitate the localisation and an efficient local search for

cell overlap and an efficient, combined method for a
cell-in-solid localisation, that relies on the MVBB pre-

search and ray tracing search. Although the chimera

9



method presented in this paper is based on a non-
conservative interpolation algorithm, the effects of non

conservativeness have been mitigated. The compari-
son of chimera method with sliding mesh and matched

grids shows that the agreement between the results is

satisfactory. Additionally, extensions to the chimera
method of HMB2 were described. The implementa-

tion of ray tracing made the detection of cells in solid

surface possible for very complex shapes, even if the
grid associated with them consists of one thin layer of

blocks. The Boundary Layer Correction method is a
step forward towards the computations of closely cou-

pled geometries, like Gurney flaps. It has been shown

that, despite the fact the solution localisation in case of
embedded solids leads to slight changes of geometry,

the solution is not substantially influenced.

Acknowledgements

This work was carried out as part of Rotor Technology
Validation Programme (RTVP) of the UK Technology

Strategy Board and AgustaWestland Ltd.

References

[1] M. Jarkowski, M. Woodgate, J. Rokicki, and G.N.

Barakos. Towards hybrid consistent overset mesh

method for rotorcraft cfd.

[2] M. Woodgate and G.N. Barakos. Impicit CFD

Methods for Fast Analysis of Rotor Flows. 36th Eu-

ropean Rotorcraft Forum, Paris, France, Septem-
ber 2010. .

[3] J.R. Shewchuk. Robust Adaptive Floating-Point
Geomeric Predicates. pages 141–150. ACM, Pro-

ceedings of the 12th Annual Symposium on Com-

putational Geometry, May 1996. .

[4] J.R. Shewchuk. Adaptive Precision Floating-Point

Arithmetic and Fast Robust Geometric Predicates.
Discrete & Computational Geometry, 18(3):305–

363, 1997.

[5] R. Steijl, G. N. Barakos, and K. Badcock. A frame-

work for CFD analysis of helicopter rotors in hover

and forward flight. International Journal for Numer-
ical Methods in Fluids, 51(8):819–847, 2006.

[6] S. Osher and S. Chakravarthy. Upwind Schemes
and Boundary Conditions with Applications to Eu-

ler Equations in General Geometries. Journal

of Computational Physics, 50(3):447–481, June
1983.

[7] O. Axelsson. Iterative Solution Methods. Cam-
bridge University Press: Cambridge, MA, 1994.

[8] R. Steijl and G. N. Barakos. Sliding Mesh Al-

gorithm for CFD Analysis of Helicopter Rotor-
Fuselage Aerodynamics. Int. J. Numer. Meth. Flu-

ids, 58:527–549, 2008.

Table 1: Sample CPU times on 4 cores of Intel Xeon CPUs for the Overset Mesh functionality in HMB.

Test Total mesh size Localisation
Case (blocks per level) time [s]

Aerofoil NACA0012 18,104 (12,8) below 1

Wing NACA0015 3,999,744 (60,20) 12

7AD rotor in hover 2,942,892 (112,48) 12
UH60 Forward Flight 11,423,440 (210, 240, 160) 51

ROBIN Forward Flight 9,302,432 (252, 128, 48, 80) 44

Table 2: Grid size per level and number of blocks per level for NACA23012 case.

NACA23012

No. of Levels 2

Mesh Size Total / No.Blocks Total 111,742 / 41

Mesh Size Level 0 / No.Blocks in Level 0 69,630 / 25

Mesh Size Level 1 / No.Blocks in Level 1 42,112 / 16

10



Table 3: Grid sizes per level and number of blocks per level for NACA0012 aerofoil case

NACA0012

No. Levels 2

Mesh Size Total / No.Blocks Total 78024 / 31

Mesh Size Level 0 / No.Blocks Level 0 56840 / 24

Mesh Size Level 1 / No.Blocks Level 1 21184 / 7

Table 4: Grid size per level and number of blocks per level for a triple-overlap wing, NACA0015 case.

NACA0015

No. of Levels 3

Mesh Size Total / No.Blocks Total 4,136,924 / 100

Mesh Size Level 0 / No.Blocks in Level 0 2,488,320 / 60

Mesh Size Level 1 / No.Blocks in Level 1 1,511,424 / 20

Mesh Size Level 2 / No.Blocks in Level 2 137,180 / 20

Table 5: Grid size per level and number of blocks per level for hovering rotor, 7AD case.

7AD blade

No. of Levels 2

Mesh Size Total / No.Blocks Total 2,942,892/ 150

Mesh Size Level 0 / No.Blocks in Level 0 2,592,000 / 112

Mesh Size Level 1 / No.Blocks in Level 1 350,892 / 48

Table 6: Grid size per level and number of blocks per level for forward-flying rotor, UH60 case.

UH60

No. of Levels 3

Mesh Size Total / No.Blocks Total 12,756,822 / 610

Mesh Size Level 0 / No.Blocks in Level 0 1,957,926 / 210

Mesh Size Level 1 / No.Blocks in Level 1 4,644,528 / 240

Mesh Size Level 2 / No.Blocks in Level 2 6,154,368 / 160

Table 7: Grid size per level and number of blocks per level for ROBIN case.

ROBIN

No. of Levels 4

Mesh Size Total / No.Blocks Total 10,391,606 / 508

Mesh Size Level 0 / No.Blocks in Level 0 4,736,732 / 252

Mesh Size Level 1 / No.Blocks in Level 1 2,084,000 / 128

Mesh Size Level 2 / No.Blocks in Level 2 886,320 / 48

Mesh Size Level 3 / No.Blocks in Level 3 3,082,544 / 80

11



(a) (b)

Figure 1: Overset grids covering the domain around an aerofoil.

Node i, j, k Node i+1, j, k

Node i, j+1, k Node i+1, j+1, k

Node i+1, j+1, k+1

Node i+1, j, k+1

Node i, j+1, k+1

Node i, j, k+1

Cell i, j, k

Figure 2: (a) Cell and associated nodes. All cells are unambiguously referred to by giving the lowest i, j and

k indices of the nodes. (b) Hexahedron split into 24 tetrahedra. Each cell face is split into four triangles with a

common apex. Each tetrahedron is thus split in 24 tetrahedra, with a common apex located at the cell centroid.

12



y

x

Figure 3: Minimum Volume Bounding Box (MVBB) around a 2D shape. The thick lines represent the block, the

dashed line its Minimum Volume Bounding Box.

Figure 4: Range-tree schematic. Points represent all nodes in a level. To find the nodes located inside the

trapezoidal cell (belonging to another level) at the top right side, the tree has to be queried for the points within
the cell’s bounding box. Next, the positions of the nodes returned by the tree are checked with respect to the

cell.

13



Figure 5: Schematic of the chimera Method in HMB. Rounded boxes represent set of operations, dashed

are data sets. Arrows refer to the order of operations, dashed arrows represent data on the output, thin
arrows represent data input. Dashed box (top left) refers to LP. The chimera method procedure uses mesh

and topology data, which is stored in the CFD part of the solver. After a set of operation, called Localisation
Pre-processing, the storage for chimera is allocated.

14



Chimera Boundary

Block Boundary

First layer of halo

Second layer of halo

Block MVBB

Figure 6: MVBB shown for one of four blocks in a chimera grid. Two layers of halo cells are added on a chimera
boundary, and are included in the MVBB. Halo mesh of all other types of boundaries is ignored in the MVBB

generation.

Host: 0, Neighbours: 6;

Host: 1, Neighbours: 6, 7;

Host: 2, Neighbours: 7;
Host: 3, Neighbours: 7;

Host: 4, Neighbours: 6, 7;
Host: 5, Neighbours: 6;

Host: 6, Neighbours: 0, 1, 4, 5;

Host: 7, Neighbours: 1, 2, 3, 4

Figure 7: (a) Multi-block topology with two different levels in 2D. In this case level 0 has 6 blocks (0 to 5) and

level 1 has 2 blocks (6 and 7). (b) The groups are created for load balancing:
The number of hosts is the same as number of blocks and some of the blocks appear as neighbours more than

once (ex. block 7 is a neighbour of groups 1, 2, 3 and 4).

15



(a) (b)

(c)

Figure 8: (a) Aerofoil shape within a background grid. All the nodes inside the aerofoil have to be identified and
flagged as nodes-in-solid. In the first step, a minimum volume bounding box of the solid shape is created. (b)

All the nodes within solid MVBB have been identified. If at least one vertex of a cell is localised inside the solid

MVBB, the cell is presented in dark. It has to be noted, however, that at this point the flags refer to vertices
rather than cells. It has to be noted that the solid pattern is different here than in Fig. 1b. The reason for

this is that the flags shown here refer to nodes in solid MVBB rather than cells bounded by solid surface. The

operations that lead to the final set of flags are explained below.

Figure 9: Node unflagging procedure. Dashed line represents the MVBB of a solid shape (aerofoil). All the

nodes inside the solid MVBB get flagged as nodes in solid. At the later stage, the nodes which are inside the
solid MVBB, but outside of the solid shape, will become unflagged.

16



Cell 1 Cell 2

Figure 10: The centroid of the vertically aligned cell (dashed line) is located within the grid constructed of cells

shown with solid line. The nearest centroid for the red point is located in cell 1, but cell 2 is the one, by which

the centroid is bounded.

Figure 11: Viscous stencil for MUSCLE in HMB.

17



Insert neighbour node 

coordinates

into a range tree

For each host

cell 

i_cell=0

i_cell++

i_cell<no_cells

create host cell’s

axis aligned

bounding box

Ask the tree

for nodes inside

the bounding box

Any nodes

inside?

for all nodes in

the bounding box

i_node=0

i_node++

i_node<no_nodes

NO

Flag the node

as INSIDE

NO

node in

the cell?

NO

For each 

neighbour

cell 

i_cell=0

i_cell++

How many nodes

flgged inside?

Normal

cell

NONE

>0

<8

Fringe

Hole

all

Figure 12: Schematic of the node flagging procedure.

18



0, 0

−0.5, −0.5 0.5, −0.5

0.5, 0.5−0.5, 0.5

[a, b]

Figure 13: For second order interpolation with flow variable distribution reconstruction, the cell containing the
interpolation cell centroid has to be normalised and represented in a Cartesian Coordinate System (see Fig.

2b) Here, the operation is presented in 2D. The normalised cell has a unitary edge length and its centroid is
located in [0, 0]. Any point inside the normalised cell can be represented by a distance vector [a, b], where a

and b are within the range [−0.5, 0.5].

Solid surface

Localised pt. Ray

Solid surface

Localised pt.

Ray

(a) (b)

Figure 14: Schematic of a ray-tracing algorithm. (a) An even number of ray-solid surface intersections indicates
that the point is outside of the solid, (b) an odd number of ray-solid surface intersections indicates that the point

is inside of the solid.

Edges of solid surface

Boundary cell edges

Edges of the extruded cell

Boundary nodes on a solid surface

Figure 15: Semi-infinite extrusion of a boundary cell, for the Ray tracing. Boundary cell, constructed of 4 nodes

is extruded along positive direction of the Z axis.

19



(a) (b)

Figure 16: (a) Refinement direction on solid geometry features (b) Grid in the proximity of the aerofoil and

Gurney flap. The solid features are presented in unnatural scale, so that the grid can be clearly visible.

(a) (b)

Figure 17: (a) Overset mesh of the NACA0012 aerofoil and the Gurney flap (b) The close-up to the intersection

corner between the aerofoil mesh and Gurney flap mesh. It can be seen, that the cells directly on the solid

boundaries intersect each other in an unmatching manner.

20



(a) (b) (c)

Figure 18: The step-by-step procedure of cell flagging in the boundary layer intersection case. The Gurney
flap grid can be seen and the set of flags associated with it. The Gurney flap is mounted below the aerofoil

grid, whose edges are presented in violet. (a) Flags after point-in-solid search, (b) a set of interpolation cells

is appended between computational cells and solid cells (c) interpolation cells without a valid interpolee are
flagged as solid cells and computational cell - solid cell pattern is obtained.

(a) (b) (c)

Figure 19: NACA23012 pitching aerofoil. Comparisons between chimera and matched grid solution for (a) lift
coefficients against angle, (b) drag coefficient and (c) pitching moment coefficient. The cases were computed

at the following conditions M = 0.088 and Re = 6.0 · 105, mesh size ∼ 110, 000 for both cases.

21



(a) (b)

Figure 20: NACA23012 pitching aerofoil. The con ours (matched grid) and iso-lines (chimera grid) of eddy
viscosity, for two different time instances of the pitching aerofoil.

Figure 21: Grid used for the Gurney flap simulation on NACA0012 aerofoil

22



(a) (b)

(c)

Figure 22: Comparison between the contours of pressure coefficient (a) and (b) and eddy viscosity (c) for

chimera (solid line) and matched (colours) grid solution.

(a) (b) (c)

Figure 23: Comparison between pressure, drag and pitching moment coefficients against iteration number for
a NACA0012 aerofoil with a Gurney flap.

23



(a) (b)

(c) (d)

Figure 24: NACA0015 wing with double and triple overlap. Tip vortex was successfully transferred through the
chimera interface into the fine Cartesian grid. Flow field is resolved on the overset mesh and significant flow

features , e.g. the tip vortex were successfully captured.

24



(a) (b)

(c) (d)

Figure 25: NACA0015 wing, (a) shows the Cp distribution on the wing’s surface. Contours represent the
chimera results, whereas the black iso-lines - matched case. (b), (c) and (d) show the Cp distributions at three

sections: 0.5, 0.75

(a) (b) (c)

Figure 26: Localisation slices of (a) background, (b) wing and (c) Gurney flap grids in the XY cross-section

25



(a) (b)

Figure 27: Slice of (a) pressure and (b) eddy viscosity in the cross section cutting through the gurney flap,

located at -45 deg.

(a) (b)

Figure 28: ONERA 7AD rotor in hover. (a) Overset mesh localisation and sample results for the case of a

hovering ONERA 7AD blade. The inviscid model was used for this computation and the near-blade grid was

restricted to a single layer of blocks around the blade. (b) Surface cp comparison. Solid lines correspond to the
chimera solution and shaded contours to the solution on a perfectly matching mesh.

26



(a)

(b)

(c)

Figure 29: ONERA 7AD rotor in hover: cp comparisons between the experimental data, matched and chimera
CFD case for three sections: (a) r/R = 0.7 (b) r/R = 0.825, (c) r/R = 0.915.

27



(a) (b) (c) (d)

Figure 30: UH60 Rotor in Forward Flight. Topology and grid used for UH60 forward flight calculations

Figure 31: UH60 Rotor in Forward Flight. M2Cn comparison with matched grid. Contours represent the
matched grid results, whereas black iso-lines are the chimera solution

(a) (b)

Figure 32: M2Cn comparisons between chimera results, matched grid results and experimental data at two
different radial sections (a) r/R=0.675 and (b) r/R=0.865. From both experiment and CFD, the average values

have been subtracted.

28



Figure 33: UH60, Forward Flight: Wake visualisation. Iso-surfaces of Q criterion are shown (Q − 0.001), and

coloured with Mach number

29



(a) (b) (c) (d)

(e) (f)

Figure 34: ROBIN, rotor fuselage case. Close-up of the quadruple overlap ROBIN topology at different time

steps. (a) fuselage grid, (b) background grid, (c) fuselage geometry with disk grid and blades inside, (d) full
overset grid topology, after hole cutting in three different time-steps. (e) and (f) show cell flags in the background

grid.

30



(a) (b)

c

Figure 35: ROBIN, rotor fuselage case. (a) Distribution of lift coefficient on the rotor disc, (b) torque coefficient,

(c) blade pitching moment coefficient. The solid lines correspond to chimera and the contours to sliding plane
solution.

31



(a) (b)

(c) (d)

Figure 36: ROBIN, rotor fuselage case. (a) Unsteady pressure at the fourth rotor revolution, at the rotor position
corresponding to Ψ = 220 degrees,(b) Ψ = 240 degrees,(c) Ψ = 260 degrees,(d) Ψ = 360degrees. The solid

lines correspond to chimera and the contours to sliding plane solution.

32



Figure 37: Wake visualisation: (a) Q criterion iso surfaces at Q = 0.1 with Mach number contours for ROBIN,

(b) Q criterion iso surfaces at Q = 0.1 with Mach number contours for UH60 forward-flying rotor. In both cases,
the solution was obtained using overset mesh method.

33


	Introduction
	Introduction to Localisation Methods
	Localisation Pre-Processing (LP)
	Overset Mesh Search (OMS)
	Methodology. 

	Point-in-solid Detection
	Boundary Layer Correction
	CFD Flow Solver

	Results and Discussion
	2D Cases
	NACA23012 oscillating aerofoil
	NACA0012 aerofoil with Gurney Flap

	3D Cases
	NACA0015 wing
	NACA0015 wing with a fixed Gurney flap
	ONERA 7AD rotor in hover
	UH60A, rotor in forward flight
	ROBIN case


	Conclusions

