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ABSTRACT 

Equations for moderately large amplitude coupled flap-lag motion of a 
torsionally rigid hingeless elastic helicopter blade in forward flight are 
derived, Quasi-steady aerodynamic loads are considered and the effects of 
reversed flow are included. By using Galerkin's method the spatial dependence of 
the problem is eliminated and the equations are linearized about a time dependent 
equilibrium position determined from the trimmed equilibrium position of the 
rotor in forward flight. Two separate trim procedures are used to determine the 
time varying equilibrium position. In the first trim procedure the rotor is 
maintained at a fixed value of thrust coefficient with forward flight and hori­
zontal and vertical force equilibrium is satisfied in addition to maintaining 
zero pitch and roll moments. This procedure simulates actual forward flight 
conditions. The second trim procedure maintains only zero pitch and roll moments 
simulating conditions under which a rotor would be tested in tl>.e wind tunnel. 

The re.sulting linear system of equations with periodic coefficients is 
solved by using multivariable Floquet-Liapunov theory. The effects of both types 
of trim procedures on rotor blade stability boundaries are determined. Further­
more the effects of various important blade parameters on the aeroelastic sta­
bility boundaries in forward flight are determined. 

1. Introduction 

During recent years the helicopter industry has witnessed a growing 
acceptance of hingeless rotor systems used in conventional helicopters flying at 
relatively high speeds, Although a number ·Of quite successful hingeless rotored 
helicopters have been built and are in service, the correct mathematical model­
ing of this complex aeroelastic problem, for the case of forward flight, is still 
an area of aeroelasticity in which a significant amount of additional fundamental 
research is needed. 

Studies dealing with the effect of forward flight have been primarily 
devoted to the treatment of flapping instability [1-4). These studies were aimed 
at understanding the effect of the parametric excitation, or periodic coeffi­
cients, in the equations of motion and at developing suitable numerical schemes 
for dealing with periodic systems. A complete treatment of the aeroelastic sta­
bility problem in forward flight was not attempted in these studies. 

A number of studies dealing with the effect of forward flight on the 
coupled flap-lap stability problem have been also conducted [5-10). Young's 
work [6), which represented a pioneering effort was somewhat controversial, 
while Hall's work [S), in which the coupled flap-lag problem was considered was 
inconclusive, although it served a very useful purpose in introducing multivari­
able Floquet theory to rotor dynamics. The coupled-flap-lag problem was also 
considered by Friedmann and Tong [7,8), their treatment was limited to low 
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advance ratios and was aimed primarily at understanding the importance of the 
nonlinear terms, due to moderately large deflections, in the equations of 
motion. 

A more realistic attempt at dealing with the coupled flap-lag problem at 
arbitrary advance ratios was made in References 9 and 10. In these studies an 
effecient numerical scheme for dealing with periodic systems was presented, and 
the effect of forward flight on the fully coupled flap-lag motions was explored. 

The main defficiency of References 9 and 10 as well as the various other 
studies dealing with coupled flap-lag dynamics [5-8], or flapping dynamics [1,4] 
is due to the fact that the time dependent trim state of the complete rotor is 
decoupled from the aeroelastic stability problem. 

The purpose of the present study is to remedy this situation by properly 
including the trim effects and the time varying equilibrium position in the 
formulation and the solutions of the coupled flap-lag aeroelastic stability 
problem in forward flight. While the formulation of the equations is quite 
general, two separate trim procedures are used to determine the equilibrium 
position of the rotor. The first trim procedure maintains the rotor trimmed at 
a fixed value of the thrust coefficient CT, in this procedure both horizontal 
and vertical force equilibrium are satisfied and the pitching and rolling moments 
are kept at zero, simulating actual conditions in forward flight. The second 
trim procedure maintains only zero pitch and roll moment conditions on the rotor 
and represents therefore typical conditions under which a rotor would be tested 
in a wind tunnel. 

The effects of both types of trim procedures on rotor blade stability are 
determined by comparing these results with those obtained in previous studies 
[9,10]. Furthermore, the effects of various important parameters such as flap­
wise and inplane stiffness, structural damping, Lock number and preconing on 
stability boundaries in forward flight are considered. 

Finally it is important to emphasize that while the present treatment does 
not consider the complete coupled rotor fuselage aeroelastic problem, it goes 
significantly beyond single blade analyses which are available in the literature. 

2. The Egutions of Motion 

2.1 General 

The present study is based upon a consistently derived set of nonlinear 
equations describing the coupled flap-lag motion of a cantilevered rotor blade. 
The equations of motion will be first derived in partial differential, nonlinear 
form. Subsequently these equations are linearized about a time dependent 
equilibrium position determined from trim conditions of the rotor. Due to the 
complexity of the equations only a relatively brief presentation of their 
derivation will be given. 

2.2 Basic Assumptions for the Aeroelastic Analysis 

The goemetry of the problem is shown in Figs. 1 and 2. The following 
basic assumptions were used in deriving the equations of motion used for the 
treatment of the aeroelastic stability problem: (a) The blade is cantilevered 
at the hub, its feathering axis can be preconed by an angle Sp, the angle Sp is 
small. (b) The blade can bend in two directions normal to the elastic axis and 
is torsionally ri~d. (c) The deflections of the blade are moderately small so 
that terms of 0(8D) can be neglected compared to one. (d) Two-dimensional quasi­
steady aerodynamic strip theory is used, i.e. C(k) = 1, and apparent mass effect 
are neglected. (e) Reversed flow is included by using an approximate model for 
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reversed flow as described in References 9 and 10. (f) Uniform inflow over the 
disk of the rotor is assumed, and the time varying components of the inflow are 
neglected. (g) Stall and compressibility effects are neglected. (h) The rotor 
is trimmed according to various trim procedures described in the following 
sections. (i) Single blade aeroelastic analysis of an isolated rotor blade 
attached to an aircraft of infinite mass is used, (j) The blade is assumed to 
have no pretwist. (k) Blade cross sectional center of gravity, elastic axis and 
aerodynamic center are coincident, (t) Structural damping forces are assumed to 
be of a viscous type. 

2.3 The Ordering Scheme 

The present study is aimed at deriving first a set of nonlinear equations 
which will be subsequently linearized. In this process one encounters a con­
siderable number of terms which are small and therefore negligible. In order to 
neglect the appropriate terms a rational ordering scheme is used which enables 
one to neglect terms in a systematic manner. In this scheme all the important 
parameters of the problems are assigned orders of magnitude in terms of a typical 
displacement quantity, 8 0 , thus: 

v 
O(G'D) 

w 
= O(G'D) ~ 0(1) t t R 

e = 0 (8~12 ) ; els= 0(8D) e = O(G'D) 
0 lc 

;, O(G'D) 
aw av 0(8

0
) = -=--= 

ax ax 
0 0 

Sp = O(G'D) i:._/2 
Cd/a = 0( D ) b = O(G'D) 

\l = 0 (1) • 

This ordering schem~ together with assumption (c) of the previous section 
implies that terms of 0(8~) are neglected compared to terms of 0(1) in the equa­
tions of motion. Obviously the ordering scheme should be used with a certain 
degree of flexibility and physical insight so as to enable one to retain certain 
higher order terms of importance even though they may appear negligible when 
considered strictly in the light of the ordering scheme. 

2.4 Brief Derivation of the Blade Equations of Motion 

Using the assumptions and the ordering scheme given above a system of 
nonlinear partial differential equations for the coupled flap-lag motion of the 
blade is derived, with respect to a x,y and z coordinate system rotating with 
the blade. The derivati.on of the inertia and aerodynamic operators of this 
aeroelastic problem follows essentially along the lines of References 7,10,11 
which the derivation of the structural operator is essentially similar to the one 
presented in Houbolt and Brooks [12]. 

Thus the differential equation for the dynamic equilibrium of the blade 
can be written as [11,12], 

[ (El) + E 
1

] 
y c 

2 2 1 a w a v " e e o 
-;-2 + Ec2 :-2 - ax 
oX oX .Q 

2o o 

a v aZw } " e e o 

ax2 + Ec2 ax2 - axo 
0 0 

[ (El) - E 
1

] z c ~r~J=p . ax y 
0 (1) 
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where the quantities 

2 
= [ (EI) - (EI) J sin ( e + e ) 

z y 0 t 

E = c2 [ (El) - (El) ] sin ( 6 + 6 ) cos ( 6 + 6t) z y 0 t 0 

(2) 

represent elastic coupling terms due to the collective pitch setting 60 and the 
cyclic pitch 

et = elc cos~+ els sin~ (3) 

A list of symbols is given in Appendix D. 

The distributed loading terms in Equations (1) representing the combined 
general aerodynamic, inertial and structural damping loads for this aeroelastic 
problem can be written as [10,11] 

aT 2 
el) 2t] (4) p -ax =roll [(x

0 
+ + 

X 
0 

- mll2 [1/*- (e1 + v) * * (5) p = Lyz + 2u] - gSL>lve y 

2** * (6) p = LZ2 - m>l w - gSF>lwe z 

The aerodynamic loads Lz2 and Ly2 in the z andy directions respectively, 
are given by [10,11] 

Lzz p,{'bR [~2(6o+ 6t) - UZ2UY2-(3/2)UY2bR>l ~t] (7) 

Lyz = -p:bRl(6o+ 6t)UZ2UY2- U~2+ C:o ~2- 1.5UZ2bR>l et]. (8) 

Where the velocity components Uy2 and u22 are given by 

-uy2 "" UT = ()~ + >J(x
0 
+ e1} + >JR]{sin~ + cos~ ~:0 J (9} 

-u22 "" Up = >l[~ + R;\ + v ~0 + R]l cos~ ~:0 J (10) 

The last ingredient required to formulate this aeroelastic problem is the 
displacement field for a point on the elastic axis of the blade given by 

u = -13 w - xo 132 _l /xoj(aweV + (ave)2] dx (11) 
p e 2 p 2 0 l\axl) axl 1 

v = v (12) 
e 

The boundary conditions for this set of partial differential equations 
are: 
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av aw 
0 = = e e 

0 at X = v w --= ax= 0 e e dX 
0 0 

while at xo = ~ the shears and moments are zero. 

The system of general, coupled, partial differential equations of motion 
presented in Equations (1) through (13) above is transformed into a system of 
ordinary nonlinear differential equations by using Galerkin's method to elimi­
nate the spatial variable. In this process the elastic degrees of freedom in 
the problem are represented by the uncoupled free vibration modes of a rotating 
blade. The present study is restricted to the case of a single elastic mode 
representing each elastic degree of freedom. The modal representation of the 
elastic degrees of freedom is given by 

we = ~ 11 1 (xo) gl (lj!) 

ve -~yl(xo)hl(lj!) 

The ordinary nonlinear differential equations are given by 

- ** - * - _2 1 -
MFlgl + 2wFl ~111 SFlgl + ~l~lgl + SpB + glE 

- cos26t(EC g1 + i 1sh
1

) + sin26t(g
1

Es - h
1
E1c) 

(14) 

2Sp]i2 ~1- 2 gl~l plll = ~1 (lS) 

- ** - * - _2 = ls =c 
~lhl + 2wL1~111 SLl hl + ~l~lhl- cosZOt(glE - E hl) 

=1c =s - * =2* 
- h1ii- sin26t(E g1+ E h1) + 2~llglgl + 2SpB g1= '\l (16) 

where the various quantities MFl• MLl•" .Plll• ... F:, ... etc. are defined in 
Appendix A and AFl and ALl are the generalized aerodynamic loads for flap and 
lag respectively given by 

~1 = ~2 
ii 

!_ 
A 

B 

'\1 = -~ 2 J Lyz Y 1 dio;:;hb 
X 

3. The Trim Procedures 

3.1 General 

(17) 

(18) 

In this study the nonlinear equations of motions developed in the previous 
sections, will be linearized about a time dependent equilibrium position which 
is determined from the trimmed equilibrium position of the helicopter in forward 
flight. In the first trim procedure the rotor is maintained at a fixed value 
of thrust coefficient with forward flight and horizontal and vertical force 
equilibrium is satisfied in addition to maintaining zero pitch and roll moments. 
This procedure simulates actual forward flight conditions. 
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In the second trim procedure only zero pitching and rolling moments on 
the rotor are maintained simulating conditions under which a rotor would be 
tested in the wind tunnel, 

3,2 Assumptions for the Trim Procedure 

In order to construct trim procedures for the aeroelastic stability 
problem care should be exercised so as to have a realistic representation which 
would provide physically meaningful results, On the other hand some simplifying 
assumptions have to be made otherwise the trim problem by itself can become 
quite complicated [13]. These simplifying assumptions are presented below: (a) 
The helicopter is in straight and level steady flight (YF = 0, see Fig, 3), (b) 
Pitching and rolling moments on the rotor are equal to zero, (c) Flapping 
response of the trimmed rotor is assumed to consist completely of the first or 
fundamental mode in flapping, i.e. effect of the lead-lag degree of freedom on 
the trim state of the rotor is neglected. Furthermore only first harmonics are 
considered, higher harmonics are neglected, (d) The rotor hub and helicopter 
center of gravity coincide, i.e. the whole aircraft is represented by a point 
mass coinciding with the hub. (e) Tail, fuselage moments and side force com­
ponents are neglected. (f) Effect of precone and reversed flow on the trim 
state is neglected. (g) Effect of Coriolis terms is neglected. (i) The total 
geometric pitch angle is assumed to be given by 

(19) 

(j) Various forces used are considered to be average forces over one revolution 
and the first mode flapping response is given by 

(20) 

3.3 Brief Derivation of the Equations for the Trim Procedures 

Using the geometry shown in Fig. 3 together with the assumptions given 
above, the requirement of force equilibrium tangential and normal to the flight 
path (for YF = 0 this is identical to horizontal and vertical force equilibrium) 
as well as pitching and rolling moment equilibrium results in the following 
equations 

~ V = 0 = -T sin~ + H cos~ + Dp 

T cos~= ~g 

= 0 (Mpa) 
R 

(M ) = 0 
ra R 

It is more convenient to rewrite Equation (21) in nondimensional form 

1 2 
-CT sin~ + ~ cos~ + 2 CDP -te2,..­

cos~ 

0 

(21) 

(22) 

(23) 

(24) 

(25) 

Using Equations (22) through (25) the trim state of the rotor can be 
obtained [7,13] provided that appropriate expressions for the thrust coefficient 
CT, horizontal force coefficient CH and blade root moment MR are first obtained, 

In order to calculate the pitching and rolling moment, an expression for 
the root flapping moment, shown in Fig, 4, is required, Neglecting Coriolis 
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forces the moment at the blade root due to aerodynamic, centrifugal and inertia 
forces is given by (for 9, = R, el = O, and i3p = 0) 

2 Cl2we 2 l 
-ron ---ronw xdx 

0~2 e o o 
(26) 

The uncoupled equation of bending equilibrium in the flap direction 
yields 

[ 
2 l (12 d w d dw (12 

- (EI) __ e - - (T -) + m ......!:! = L 
, 2 y , 2 Clx Clx , 2 Z2 
oX oX 0 0 ot 

0 0 

(2 7) 

(26) 
Using the first elastic mode shape equation (14) and combining Equations 

and (2 7) yields 

. !9, d2 [ d
2
111] d ( d111) 2 

~(0, ) = 9, -d 2 (EI)y -d 2 - dx T dx -ron 111 glxodxo 
0 X X 0 0 

0 0 

From the free vibration problem of a rotating beam 

[ 
2 l d2 d 111 d d111 _2 

- (EI) -- - - (T -) = mw 
d 2 y d 2 dx dx Fl 

X X 0 0 
0 0 

Combining the last two equations with Equation (20) the required root 
moment expression is obtained 

(28) 

(29) 

(30) 

Pitching and rolling moments for a single blade are obtained by a simple 
vector decomposition of ~(0,~) shown in Fig. 4 

MP = ~(O,~)cos~ 

Mr = ~(O,~)sin~ 

(31) 

(32) 

For trim purposes, the average values of these quantities, per revolution, 
are required. Combining Equations (30) through (32) 

2rr 
2 

Mpa = ~rr Jl ~(O,~)cos~d~ = t<wF1- l)t
3n

2g1c 
0 

M 1 
ra = 2rr 

(33) 

(34) 

For an nb bladed rotor the average pitching and rolling moment for the 
complete rotor will be given by 

and 
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From Equations (23), (24), (33) and (34), it is clear that for pitching 
and rolling moment equilibrium 

The thrust coefficient of a hingeless blade can be obtained by using the 
assumptions presented in Section 3.2. Neglecting nonlinear terms and using 
uniform inflow over the rotor disk given by 

CT 
\ = JJ tanaR + );::;;::::::::::;:;:-­

z/JJ2 + \2 

The expressions for Up and UT can be written as 

The average value of the thrust coefficient defined as 

= 

is given by 

21T ii 

J J. L 22.Q.dxdi/J 
o A 

(36) 

(37) 

(38) 

(39) 

(40) 

The horizontal force component per unit span is given by the following 
relation [7 ,13] 

where 

dH 
dx 

0 

aw = - ty2 sini/J - L 22 ~ cosi/J 
0 

Using Equations (37), (38), (7), (8) and (41) the average horizontal 
force is given by 

from which 

'1l_ = 0.5 Cd
0

JJoF17 
(.Q.(FJ_ +(o·a/4l(t/FJ [6

0
\JJFZl + e1s\F

17J 

- (oa/4)(.Q./R)g~(F19 e 1 c- JJ~F20) 
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The last ingredient required for the calculation of the trim state of the 
rotor are the so called flapping coefficients, Neglecting Coriolis forces, 
structural damping and nonlinear terms the flapping coefficients are obtained 
from the steady state solution of the flapping equation 

(44) 

Using uniform inflow A and neglecting higher harmonic terms in the cal­
culation of the flapping coefficients, one has 

(45) 

Substituting Equations (19), (20), and (35) into (44) and (45), and 
collecting the constant terms, the terms multiplied by cosw and the terms multi­
plied by sinW one obtains the three flapping equations given below. 

_2 ,._() y ( ~ )
2 1 1 1 3 2 w g - -'- - - [8 (F +- F 11 ) -

Fl 1 2 R ~l o 2 

(Fl + F
3

11
2
/4)8lc- 11~ F

6 
0 

(Fl + 3F311
2
/4)8ls + 2118

0
F

2
- 11AF

3 = 0 

Solving these equations one obtains 

b1e
0 

+ b2A 

11~F6 /(Fl + F311
2

/4) 

(46) 

(4 7) 

(48) 

(49) 

(50) 

(51) 

Where the various quantities Fi, MFl•••bl,b 2,,,etc, are defined in Appendix A. 

3.4 The Trim Procedures 

Using the equations presented in the previous section two separate trim 
procedures are developed, 

(a) Propulsive Trim. In this trim procedure, which simulates actual for­
ward flight conditions, the rotor is maintained at a fixed value of the thrust 
coefficient CT with forward flight and the horizontal and vertical force 
equilibrium is maintained as required by Equations (21) and (22), Furthermore 
zero pitching and rolling moments on the rotor are also maintained, 

The trim state is evaluated in the following manner: (1) The flight con­
dition as determined by 11 and CT is given, (2) The value of the inflow is 
evaluated from Equation (36) for an arbitrary value of aR. (3) The value of col­
lective pitch 80 is evaluated from Equations (40) and (49) for an arbitrary value 

,._() 
of aR• (4) g1 and elc are evaluated from Equations (50) and (51) for an arbitary 
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value of aR• (5) Combining Equations (25) and (43) aR is iterated upon until 
Equation (25) is satisfied and aR for the trim state is obtained. (6) Using 
this value of aR the quantities A, e0 , els• elc and~ are obtained from the 
appropriate equations. 

(b) Wind Tunnel Trim or t1oment Trim in this trim procedure, which 
simulates conditions under which a rotor would be tested in the wind tunnel, 
pitching and rolling moments on the rotor are maintained at zero. Horizontal 
and vertical force equilibrium is not required for this case because the rotor 
is mounted on a supporting structure. 

For this case the trim state is obtained in the following manner: (1) 
The test condition is specified by given values of ~. e0 and aR• (2) The inflow 
A is evaluated from Equation (36) for an arbitrary value of CT. (3) els is 
calculated from Equation (49) for an arbitrary value of CT. (4) The thrust 
coefficient is iterated upon until Equation (40) is satisfied, thus the thrust 
coefficient for the trim state is determined, (5) Using this value of CT the 
quantities A, els• e1c and gl are determined from the appropriate equations. 

4. Linearized Modal Equations of Motion 

4.1 The Time Dependent Equilibrium Position of the Blade 

The time dependent equilibrium position about which the equations of 
motion are linearized is a result of the cyclic pitch variation required to trim 
the rotor in forward flight. These cyclic pitch components are obtained from the 
trim procedures which have been described in the previous section. 

The time dependent equilibrium position of blade can be determined from 
various considerations. In order to keep this process reasonably simple two 
assumptions will be made, these are: 

(a) 

(b) 

In the calculation of the time dependent equilibrium position only first 
harmonic terms, i.e. sinw and cosw terms will be considered, Thus the 
time dependent equilibrium position of the blade is written as 

gl Cwl 
0 + cosw + sinw (52) = gl glc gls 

fi1 C w) = ho + hlc cosw + hls sinw (53) 1 

An approximate linear time dependent equilibrium position is defined by 
neglecting combinations of the type: glhls' g~hlc' glglc' glgls' h~hls• 

0 0 0 
hlhlc• hlglc• hlgls• hlcglc• hlcgls••••etc. which are nonlinear combin-

ations of the terms defining the equilibrium position. A more complete 
treatment which includes these terms will be presented elsewhere. 

Using these assumptions and substituting Equations (19), (52) and (53) 
. 0 0 
~nto Equations (15) and (16) the quantities g1 , glc• &ls• h1 , hlc and hls are 
obtained by requiring that the constant terms, cos\ji-terms and sin\ji-terms be equal 
to zero. After a considerable amount of algebraic manipulation this simple 
harmonic balancing results in a system of six linear algebraic equations for the 
unknowns, which can be written as 

[S] {q
0

} = {C} (54) 

where {q0 }T = lgl glc gls hl hie h1sJ and the elements Sij and Ci of the appro­
priate matrices are given in Appendix B. The time dependent equilibrium position 
is obtained from 
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{q } = [S]-l {C) 
0 

(55) 

It is worth mentioning that Equations (55) are solved for both the normal 
and the reversed flow regions. 

4.2 The Linearized Equations 

The process of linearization of the equations of motion consists of 
expressing the elastic part of the displacement field as 

(56) 

Equations (56) are substituted into Equations (15) and (16), in this pro­
cess nonlinear terms are transformed into coupling terms, while terms of type 
6g16h1, (6gl) 2

, (6h1) 2 are neglected. 

Furthermore for mathematical convenience the equations of motion .are 
transformed into first order state variable form by using the following notation 

(57) 

For the determination of the aeroelastic stability boundaries only the 
homogeneous part of the equations of motion is required; thus the equations of 
motion in their final form are written as 

* {y} = [A(Iji)] {y} (58) 

where [A] is a 4x4 matrix defined in Appendix C. 

The equations of motion (58) will have different forms, respectively, for 
the normal flow region and for the reversed flow region. The representation of 
the reversed flow together with its effect on the form of Equations (58) is 
described in Reference 10. 

5. Method of Solution 

The stability investigation of the blade motions is based upon the Floquet­
Liapunov theorem [14] which states that the knowledge of the state transition 
matrix over one period is sufficient in order to determine the stability of a 
periodic system having a common period, T. Based upon the Floquet-Liapunov 
theorem, the transition matrix for the periodic system can be written as [14] 

(59) 

where the [P(Iji)] matrix is also periodic and [R] is a constant matrix. The sta­
bility of the system is governed by the matrix [R], where [R] is given by 

[~(T,O)] = e[R]T = [C] (60) 

The stability for the system is related to the characteristic exponents or 
the eigenvalues of [R] denoted by 

(60) 
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The solutions of Equations (58) approach zero as W + oo if 

k = 1,2, ••• n (62) 

The key to the efficient numerical treatment of periodic systems is the 
numerical computation of the transition matrix at the end on one period [~(T,O)]. 
In the present study the transition matrix at the end of the period was obtained 
using a generalization of the rectangular ripple method described in Reference 9. 
The eigenvalues of [~(T,O] were evaluated using a Jacobi type eigenvalue routine. 

6. Results and Discussion 

6.1 Numerical Quantities Used in the Calculations 

In the computation of the numerical results it was assumed that the mass 
and stiffness distributions are constant along the span of the blade. Rotating 
mode shapes for the flap and lag degrees of freedom were obtained by using 
Galerkin 1 s method based upon five nonrotating cantilever mode shapes for each 
flap or lag degree of freedom. A convenient plot relating rotating and nonrota­
ting frequencies can be found in Reference 10. The various spanwise integrations 
were performed using seven point Gaussian integration. 

For cases dealing with linearization about the static equilibrium position 
in ~ [10] the inflow was evaluated from 

A= (acr/16) [(1 + 246/acr) 112- 1] (63) 

This relation was also used for calculating the inflow at ~ = 0 in the wind 
tunnel trim or moment trim procedure. 

Finally, in all cases the following values were used: 

Cd
0 

= 0.01; a= 21T; cr = 0.05; CDP = 0.01; e 1 0; 

X~o; B"al.O b 0.0313 • 

Various other pertinent quantities are specified on the plots. Reversed flow was 
included in the calculation using the method described in Reference 10. 

6. 2 Results 

The results presented in this study include the effects of reversed flow 
which is treated using a very convenient reversed flow model described in 
Reference 10. 

As stated in the introduction, this study is primarily aimed at determi­
ning the effects of various trim procedures on the coupled flap-lag aeroelastic 
stability boundaries of a single blade. The physical meaning of the two trim 
procedures used in this study are best illustrated by trim curves showing the 
values of the various parameters associated with each trim procedure. The trim 
curves shown in Fig. 5 were obtained using the propulsive trim procedure for 
CT = 0.005. These curves are shown for values of advance ratios up to ~ = 0.40 
because above this value the propulsive trim equations cannot be satisfied any­
more with Cnp = 0.01. The range of ~ for this type of trim procedure can be 
stretched by increasing~ or by employing two correction factors, denoted by 
CDPFAC and CDZFAC respectively, to multiply Gnp and Cdo• Where it is understood 
that these correction factors can vary between 0 + 1.0. These correction factors 
enable one to simulate approximately the unloading of the rotor at high speeds. 
Trim curves obtained using the wind tunnel or moment trim procedure are shown in 
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Fig. 6; for aR = 0.0 and 6 = 0.15. Comparing Figs, 5 and 6, it is clear that the 
moment trim procedure is characterized by significant variations in the thrust 
coefficient Cr. While the curves for 61s and 61c are somewhat similar in both 
cases, the curves for 60 and Cr are significantly different. Thus it is clear 
that the trim procedure used can significantly affect the aeroelastic stability 
boundaries, 

It is pointed out in Reference 10 that the underlined term in Equation (10) 
was not included in the calculations. It seems reasonable therefore to deter­
mine the sensitivity of previous results, which were obtained by linearizing the 
equations of motion about the static equilibrium position in hover [10], to the 
missing term. The results for a typical case were recomputed here with and with­
out this term, The results shown in Fig. 7 indicate that the missing term is 
destabilizing and reduces the value of ~c for this particular case by approxi­
mately ~ 21%. All the results in this study include the effect of this term. 

The effects of the propulsive trim procedure on a typical case, con­
sidered in Reference 10, are shown in Fig, 8. Compared to the previous pro­
cedure [10], of linearizing the equations of motion about the linear equilibrium 
position in hover, the new results which account for the propulsive trim and 
the time dependent equilibrium position indicate that this, more realistic model 
of the blade dynamics, produces a more stable system. The results are presented 
only in the range 0 < ~ < 0.5, outside this range the blade cannot be trimmed, 
From this Figure it is clear that the amount of damping in the lead-lag degree 
of freedom is significantly increased due to the effects associated with propul­
sive trim. 

The combined effect of the trim procedures and the lock number on blade 
stability is illustrated by Figs. 9 and 10. Figure 9 illustrates the effect of 
both propulsive and moment trim at a low value of y(y = 5) for a case for which 
the various parameters are specified on the plot. For this case a relatively 
high value of Cr was chosen (Cr = 0.01), so that the range of validity of pro­
pulsive trim could be stretched to ~ = 0,6, The figure shows that the blade did 
not become unstable in this range of ~'s. The figure indicates that up to ~=0.4 
the real part of the characteristic exponents for both flap and lag behave in a 
similar manner for both trim procedures. When using the moment trim procedure 
the blade becomes unstable at ~c = 0.90 and the degree of freedom associated 
with the instability is the flap degree of ~reedom, The instability occurs at a 
nondimensional frequency of 0 (or 1) indicating that parametric excitation due to 
the periodic coefficients is the mechanism inducing the instability. Similar 
results are shown in Fig. 10 where the real part of the characteristic exponent 
associated with the lead-lag degree of freedom is plotted. Three separate cases 
are shown. For the first case, which is linearized about the static equilibrium 
position in hover [10], the lag degree of freedom becomes. unstable at ~c = 0.275 
with Wk = 1.4705. In the second case the propulsive trim procedure is used for 
this case the system is significantly more stable but the trim procedure cannot 
be used above ~ = 0.55. In the last case moment trim is used and the system 
becomes unstable at ~c = 0.80 and again the lag degree of freedom is the unstable 
one, the frequency of this instability is ~ = 1,6555 but the other frequencies 
associated with the flap degree of freedom in the vicinity of this point indicate 
significant coupling with the parametric excitation. 

The sensitivity of the results, obtained from the moment trim procedure, 
to the rotor shaft angle aR is illustrated by Fig. 11. Where a typical case is 
evaluated with two different values of aR• The results indicate a relative 
insensitivity to this parameter. The same case was also evaluated with moment 
trim and a different value of the angle of precone. The results shown in Fig. 12 
indicate that the results are not significantly affected by an angle of precone 
of 2°. Various other cases computed with precone indicated a similar insensi­
tivity to precone except for lead-lag rotating frequencies in the vicinity of 1. 
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Results indicating the effect of forward flight on a soft inplane rotor 
are presented in Fig. 13. The results with moment trim indicate that the collec­
tive pitch setting can significantly influence blade stability. By increasing 
the collective pitch setting from e = .15 to e = .30 the value of the critical 
advance ratio at which the blade becomes unstable is reduced from lJc = 0.86 to 
lJc = 0.19. 

Figure 14 illustrates the effect of the moment trim procedure on blade 
stability. When linearizing the equations about the linear equilibrium position 
in hover (10] the blade becomes unstable at lJc = 0.27. Linearization of the 
equations about the equilibrium position determined from moment trim increases 
the value of lJc to lJc = 0.48. 

Similar cases were computed for wFl = 1.1006 and WLl = 0.7941 withy= 10, 
and 8 = 0.15 7 0.30. The results indicate similar trends and therefore are not 
presented here. 

All the results obtained in this study indicate that when the blade equa­
tions are linearized about the static equilibrium position in hover (10] the 
blade becomes unstable at a lower value of ~c than when the equations are 
linearized about the time dependent equilibrium position determined from the 
propulsive trim or the moment trim procedure. This indicates that the results 
for the stability boundaries obtained in References 9 and 10 can be considered 
to be conservative. 

7. Conclusions 

The major conclusions obtained from the present study are summarized below. 
They should be considered indicative of trends and their application to the 
design of a helicopter rotor should be limited by the various assumptions which 
have been used. 

(1) The two trim procedures developed and used in this study have a 
very significant effect on the coupled flap-lag aeroelastic sta­
bility boundaries in forward flight. In general, the amount of 
damping in the lead-lag mode is increased when the trim state is 
coupled with the aeroelastic system. The effect of the trim state 
influences blade stability through changes in collective pitch, 
inflow and the time dependent elastic coupling effect associated 
with the cyclic pitch components elc and els· 

(2) The relatively limited number of cases considered in this study 
seem to indicate that forward flight tends to destabilize the 
soft inplane hingeless blade to a greater degree than it affects 
the stiff inplane blade. 

(3) For the cases considered the aeroelastic instability of the blade 
with the moment trim procedure was stronger than with the propul­
sive trim procedure. 

(4) Coupled flap-lag behavior in forward flight seems to be relatively 
insensitive to precone, indicating a similarity to the effect 
of precone on coupled flap-lag behavior in hover. 
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Appendix A: Definitions of the Generalized Masses, Structural and Aerodynamic 
Integrals and Other Quantities 

The quantities MFl• MLl• Plll• Ib, can be found in Reference 10, various 
other similar quantities are given below: 

1 
_l o3 
B = " ~ 

•,,- ,, ~,,;,{{..,,,,, }v\, ''"'· ,, 
~11= Q,

31 myl [{<n~/dxl] dx/rb: t\n= Q,
3 

1 

11 sF1 = Q,
3
gsFl J ni dxo/(mb2wFl~l) 

0 

1 

J nry lnl dxo/rb 
0 

1 

J lllll1 Y 1 dxo/1b 
0 

The structural integrals associated with elastic coupling are given by 

Eo = [ (EI) - (El) ]/2; Es = [ (EI) - (El) ] sin28 /2 z y z y 0 

Ec = [ (EI) - (EI) ] cos28 /2 z y 0 

1 1 

ii = i Eo <n]? 2 - 2 dx
0
/(W Ib) 

= i Eo(y1)2dxo/(~2IbQ,) E = 

1 1 
-c ~ Ec(n")2 - 2 =c f Ec(y1)2dxo/(~2IbQ,) E = dx/(W Ib) E = 

1 
0 

1 1 
_s 

~ Es(n")2 - 2 =s j Es(y1)2dxo/(~2IbQ,) E = dx0/(Q,~ Ib) E = 
1 

0 

1 1 
_ls J Esn"y" - 2 =ls J Esy"n" - 2 E - dx

0
/(W Ib) E - dx0 /(~ IbQ,) 1 1 1 1 

0 0 

1 1 
_lc j Ecn"y" 

- . 2 £1C=- ~ Ecy"n" - 2 E = dx0/(Q,~ Ib) dx0/(~ IbQ,) 1 1 1 1 
0 

i i The generalized aerodynamic integrals F and L , associated with the flap 
and lag generalized aerodynamic loads respectively are given below. These 
integrals are evaluated between the lower limit A and the upper limit B, where 
A and B are nondimensionalized tip loss factors, also 
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F1 =! _2 
dx n1 x 

F4 =! f dx 11 1Y1 0 

F
7 =J n n' dx 1 1 0 

1
4 = f y n' dx 1 1 0 

1
7 

= f Y y' dx 1 1 0 

11o = J Y1n1xdxo 

113 = J Y1nidxo 

1
16 

= /Y
2
n'xdx 1 1 0 

0 
2 f -F = n

1 
x dx 

0 

F5 =fn1y~x dx 
0 

8 f 2- dx F = n
1 

x 
0 

11 f dx F = n1 Y1 0 

8 f 2--1 = y
1 

xdx
0 

F3 =! n1 dx 
0 

F6 =f n1ni x dx 
0 

F9 =f 2 
dx n1 0 

F12 =f 2 f dx 111Y1 0 

F15 = j n n'y' dx 
1 1 1 0 

18 f _2 -
F = x dx 

0 

13 =! y1 dx 
0 

16 =! ,- -
y 1y 1 xdxo 

19 =! 2 -
y1dxo 

112 =! y 1n1nidx
0 

115 =f ( f) 2 -
Y1 n1 dxo 

118 =f 2 f -
Y1 n1 dxo 

121 = f y n'y'dx 1 1 1 0 

Various other quantities needed from the trim procedure are defined below: 

9-t [ 2 2 2 
2 

] b =X.(- 1 ~ + F3 J:!._ _ 2)! (F ) 
1 2 R 2 2 F1 + 3F3)12 /4 

wFl~l 
2 

[ w '] b =:t.(!) 1 \! F 
2 2 R 2 F1 + 3F3i/4-

wF1~1 
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Appendix B: Elements of the [S] and {C) Matrices 

The elements of the [S] and {C) matrices required for calculating 
= Lg~, glc• gls• h~, hlc• h1sJ are given below 

_ _2 _ _c _ _s y ( t )3 9 6 
MFlWFl + E - E 512 - 8lcE - 4 R ~(F - F ) 

4 
5 23 = 2MF1115FlwFl + I ( ~ J 

_ _2 _ _c 
5 33 = MF1(wFl- l) + E- E 

- _2 
522 = MF1(wFl- l) 

[Fs+~(t)
2 

F7] 

lc (t)4 [ R 11 z(R)2 
534 = -28 E - y - ~ - s F - ~ -ls 2 R t P 4 t 
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2 
s44 =- w1l MLl + (E- Ec) - (y/2)(~/R)4 SP6o18 

s45 = E
8

6lc + (y/2)(~/R) 4 ~(Cdo/a)(R/~)19 

-lc 3 5 4 2 4 
s5l = 2 E 6lc + (y/2)(~/R) (~601 - 2~(R/~)A1 + (~ /4)(R/~)1 6ls) 

s52 = E
18 

+ (y/2)(~/R) 3 (-~ 2 (R/~)(l.5)$P14 + 0.75 15 6 1c~- 0.25 111 61cJ 

s53 = 0.5y(~/R) 4 (11060 - 2(R/~)\1ll + 0.25(R/~)(15+ 111)~6 18+ 

+ 0.25(R/~)~2 6014 ]- 28p 82 

- - 4 8 9 s56 = -2Mtl w11n511 - (y/2)(~/R) ( 2Cdo 1 /a+ (R/~)\601] 

s61 = 2 Elc6ls + (y/8)(~/R)2146lc~2 

s 62 = (y/2)(~/R) 4 [-11060+ 2(R/~)\111+ 0.25(R/~)15 6 18- 0.75~ (R/~)1116 18 
+ 0.25~2 (R/~) 2 6 014 ] + 2 Bps

2 

s63 = £
18 

+ (y/2)(~/R) 3 [-~ 2 (R/~)8P14+ 0.25(15+ L11)~6lc + 0.5~2 (R/~)14 Spl 

s 64 = 2618E
8 

; s 65 = 2~1w11n511+ (y/2)(~/R) 4 (2 Cdo 18/a + (R/~)\6019 ] 

_ _2 - -C 4 8 
s 66 = Mt1 Cl-w11) + (E- E)- (y/2)(~/R) SP601 

c1 = (y/2)(~/R) 4 (F160 + 0.5 (R/~) 2~ 2F3 60 - (R/~)\F2 + ~(R/~)F2 6 18 
2 3 _l 

- 0.75~b(R/~) 6lcF l- BpB 
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c4 = -(y/2)(~/R) 4 l\(R/~)12 e0 - (R/~) 2 \ 21 3 - o.5 w 2 CR/~) 2 s; 13 

+ (Cdo/a) [11+ 0.5 w2 (R/~)Z1 3 ] + 0.5 W(R/£)Sp12 01c+ 0.5(R/~) 2wA1 3 618 

Appendix C: Elements of the [A)-Matrix 

The elements of the [A)-matrix, which define the equations of motion 
when written as a set of first order differential equations in state variable 
form, are given below: 

A21 = l, A22 = A23 = A24 = O, A43 = l, A41 = A42 = A44 = O 

- 4 r a 12- 13 ~ 9 ] A11 = -2 wF1n 8 F1-Cl/~1)Cy/2)(~/R) LF -w(R/~)F h1cosw- F h1 + wCR/~)F sinw 

_2 l ~ - - _c _s 4 [ 16 -A12 = -wF1-(l/~1) -2 hlPlll + E- E cos20t + E sin20t+ (y/2)(~/R) -F hl 

+ ~(R/~)F6 cosw -~(R/~)F14 ~1cosw -w(R/~)F14 h1sinw + cw2 /2)(R/~) 2F 7 sin2w 

- (~2 /2) (R/~) 2F
15 h1 (1 + cos2W) J I 

l _2 - - 4 [ 10 A13 = -(1/~1 ) -2 SpB - 2 P11181 + (y/2)(~/R) 2F (00+ 0t) 

11 11 
+ 2w(R/~)F (80+ et)sinw- ~(R/~)SPF cosw 

\ 
Al4 = -(1/HFl) l- ii

18
cos2et- ii

1
csin20t + (y/2)(i/R)

4 [2w(R/~)F5 (80+ et)cosw 

+ ~2 (R/~) 2F4 Ce + e )sinzw- 6 F10 - F
16 g1 0 t p 

2 4 12 ~ 
- w(R/~) \F cosw- ~(R/~)F gl cosw 

11 14 -
~(R/~)6PF sinw- wCR/~)F g1 sinw 

- (w2 /2)(R/~) 2 6PF4 (1 + cos2w) - (~2 /2)(R/~) 2F15g1 (1 + cos2w)J I 
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(y /2) (t/R) 4 [1 lO (8 + 8 ) 
0 t 

+ w(R/~)111 (8
0
+ 8t)sin~- 2(R/~)A 111 - 2w(R/~)Sp111cos~ 

12 - ~ 13 20 ~ J l - 2w(R/~)1 g1 cos~ - 2 g1 1 - 8
0
1 h1 

l _ ! =ls =1c 
A32 -(1/~1 ) 2M111g1 - E cos28t- E sin28t 

- (y/2)(~/R) 4 [w(R/~)15 (80+ 8t)cos~ + (w2 /2)(R/~) 214 (80+ 8t)sin2~ 
2 4 12 ~ - 2W(R/t) A1 cos~- 2~(R/t)1 g1cos~ 

2 2 4 2 2 15 -
~ (R/9.) SpL (1 + cosZ~) - W (R/t) L g1 (1 + cosZ~) 

- w(R/9.)8
0
1

18 g1 cos~- 8
0
1

16 h1 ] \ 

A33 = -2 ~1n811 - (l/~1 )(y/2)(t/R) 4 
[2ccd

0
/a)1

8 

+ 2(Cd0 /a)W(R/9.)19 sin~ + ~(R/t)Sp8019 cos~ 

18 - 20 ! 9] + W(R/t)6
0
1 g1 cos~+ 8

0
1 g1 + (R/i)A8

0 
L 

_2 - l =c =s = 4 8 A34 =- w11 - (1/~1) E cos26t- E sin28t- E + (y/2)(t/R) [Sp8
0
L + 
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Appendix D: List of Symbols 

a two dimensional lift curve slope 

A,B tip loss coefficients 

[A] 

b 

_i =i 
B ,B 

(C} 

cdo 

C(k) 

[ c l 

D 
p 

(EI) , (EI) 
y z 

Fi 

f 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

periodic matrix, with elements Aij' defined in Appendix C 

generalized aerodynamic force for the first flap and lag 
mode, respectively 

semi-chord, non-dimensionalized with respect to R 

generalized masses defined in Appendix A 

coefficients defined in Appendix A 

constant column matrix, defined in Appendix B 

profile drag coefficient 

Theodorsen's lift deficiency function 

constant matrix used in Floquet-Liapunov theorem 

H/(pArrR2~2 R2 ) horizontal force coefficient 

Drag coefficient due to equivalent flat plate area of the 
helicopter (f/rrR2) 

parasite drag of the helicopter 

etc. = terms associated with elastic coupling defined in 
Appendix·A 

stiffness for flapwise and inplane bending, respectively 

aerodynamic integrals for flap equation defined in Appendix A 

equivalent flat plate area of the helicopter 

generalized coordinate, first normal flapping mode 

perturbation in g
1 

about s
1 

static value of gl in hover 

constant and cyclic first mode flapping coefficients evaluated 
from trim procedures 

constant part of s1 

linear time dependent equilibrium value of first normal flap­
ping mode 

cyclic parts of g1 

16a.22 



gSF'gSL 

hl 

Llhl 

ho 
1 

hls'hlc 

hl 

H 

i 

i ,j. k - ~ ~ 

l2•l2&2 
13 ,,.[3 &3 

Ib 

£ 

Li 

~2• 1z2 

( 
I 

= 

= 

= 

viscous structural damping in flap and lag, respectively 

generalized coordinate, first normal inplane mode 

perturbation in h
1 

about h
1 

constant part of h
1 

cyclic parts of h
1 

linear time dependent equilibrium value of first normal lead 
lag mode 

horizontal force Fig. 3 

= unit vectors in x,y and z direction, Fig. 1 

= unit vectors defining deformed blade geometry, shown in Fig. 
2. l2 is parallel bo hub plane, lz and 13 are tangential to 
the deformed blade elastic axis. 

= mass moment of inertia in flap, defined in Appendix A 

length of blade capable of elastic deflection 

= aerodynamic integrals associated with lag equation defined in 
Appendix A 

aerodynamic loads per unit length in the ~2 and ~2 directions 
respectively, approximately coincident with l• and 1 directions 

(Mpa) R' (Mra) R = average pitching and rolling moment for the complete rotor 

M l1 
pa' ra 

m 

rnA 

~1'~1 

i\n•l\n 
M ,M 

P r 

~(O,IjJ) 

nb 

px,py,pz 

i\n 

[P (1/J) ] 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

average pitching and rolling moment for a single blade 

mass of blade per unit length 

total mass of the aircraft 

generalized masses for the ith flap and lag modes, respectively, 
defined in Appendix A 

defined in Appendix A 

instantaneous pitching and rolling moment 

total bending moment at blade root 

number of blades 

resultant total loadings per unit length in the x,y and z 
directions, respectively 

defined in Appendix A 

periodic matrix 
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R 

[R] 

[S] 

T 

u,v,w 

Up,-Uz2 

UT'-UY2 

ve,veo 

v 

x,y,z 

x =x-e 
0 1 

{y} 

y 

e 
0 

I 
\ 

= 

= 

= 

vector of variables defining time dependent equilibrium 
position of the blade 

blade radius 

constant matrix used in Floquet-Liapunov theorem 

matrix used in calculating equilibrium position defined in 
Appendix B 

centrifugal tension in the blade, also common non-dimensional 
period used in the Floquet theory, also thrust in trim 
procedure 

= x,y and z displacements of a point on the elastic axis of 
the blade 

relative velocity components of blade elastic axis, in the 
lz and rz directions 

= elastic part of the displacement of a point on the elastic 
axis of the blade parallel to the hub plane (see Fig. 1) , 
subscript 0 denotes equilibrium position 

= 

= 

= 

= 

= 

= 

= 

velocity of forward flight of the whole rotor 

elastic part of the displacement of a point on the elastic 
axis of the blade, in the ~z direction, Fig. 2, subscript o 
denotes equilibrium position 

rotating orthogonal coordinate system 

running spanwise coordinate for part of the blade free to 
deflect elastically, x1-same, dummy variable 

state variable column matrix 

angle of attack of the whole rotor 

preconing, inclination of feathering axis w.r.t. the hub plane 
measured in a vertical plane 

5 lock number (y = 2pAbR a/Ib) for normal flow 

first inplane bending mode 

symbolic quantity having the same order of magnitude as the 
displacements v and w 

real part of the kth characteristic exponent 

first flapwise bending mode 

viscous structural damping coefficients defined in Appendix A, 
in percent of critical damping, for first flap and lag mode, 
respectively 

collective pitch angle 
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6 = 
c 

= 

= 

0 = 

= 

= 

Special Symbols 

c*l = 

()' = 

= 

total geometric pitch angle 

time dependent part of geometric pitch angle 

cyclic pitch components 

critical value of collective pitch at which linearized 
coupled flap-lag system becomes unstable in hover 

inflow ratio, induced velocity over disk, positive down, 
non-dimensionalized w.r.t. nR 

eigenvalues of [R], characteristic exponents 

advance ratio 

critical value of advance ratio at which flap-lag system 
becomes unstable 

density of air 

blade solidity ratio 

state transition matrix at ~. for initial conditions given 
at ~ 

0 

azimuth angle of blade (~ nt) measured from straight aft 
position 

imaginary part of kth characteristic exponent 

natural frequency of first flap or lead-lag mode, 
rotating 

speed of rotation 

differentiation with respect to ~ 

non-dimensionalized quantity, length for elastic properties 
non-dimensionalized w.r.t, 1; all other w.r.t, R, frequencies 
w.r.t. n; mass properties w.r.t, Ib 

differentiation w.r.t. x
0 

the symbol ~ beneath a quantity denotes a vector 

16a.25 



n 

Figure 1 

x,i 

REAR VIEW 

Deformed Elastic Axis for a Cantilevered, 
Preconed Rotor Blade. 

VERTICAL 

T t 

Figure 3. Geometry for Trim Calculation. 
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Lock Number on Blade Stability. 
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Figure 10. Combined Effect of Trim Procedures and 
Lock Number on Blade Stability. 
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Figure 12. Effect of Precone on Blade Stability. 
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lnplane Blade. 

-0.12 

·0.10 

~ 
~ 

~ ·0.08 
~ ... z 
w 

~ ·0.06 

w 

" ~ ·0.04 
1i. 
w 

~ 
~ ·0,02 
J: 

" 
0.00 

•0.02 

- MOMENT TRIM 8 = .22 
-·-- LINEARIZATION ABOUT 

EQUILIBRIUM IN HOVER 
8= .22 

---- PROPULSIVE TRIM 
cr = 0.01 

CDPFAC , CDZFAC = 0.2 

w-F1 = 1.1006 ; wL 1 "' 0.90225 

I 
I 
I 
I 

I I 
1--. I. 

I ·x:f 
I 
I 
I 
I 

T1gfl "' 'lSL1 "' ~P = 0 

0.6 

" 
o.a 1.0 

Figure 14. Effect of Propulsive ;~nd Moment Trim 
on a Soft In-Plane Blade. 

16a. 29 


