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ABSTRACT

Equations for moderately large amplitude coupled flap-lag motion of a
torsicnally rigid hingeless elastic helicopter blade in forward flight are
derived, Quasi-steady aerodynamic loads are considered and the effects of
reversed flow are included. By using Galerkin's method the spatial dependence of
the problem is eliminated and the equations are linearized about a time dependent
equilibrium position determined from the trimmed equilibrium position of the
rotor In forward flight. Two separate trim procedures are used to determine the
time varying equilibrium position, In the first trim procedure the rotor is
maintained at a fixed value of thrust coefficient with forward flight and hori-
zontal and vertical force equilibrium is satisfied in addition to maintaining
zero pitch and roll moments. This procedure simulates actual forward £light
conditions. The second trim procedure maintains only zero pitch and roll moments
simulating conditions under which a rotor would be tested in the wind tunnel,

The resulting linear system of equations with periodic coefficients is
solved by using multivariable Floquet-~Liapunov theory. The effects of both types
of trim procedures on rotor blade stability boundaries are determined. Further-
more the effects of various Important blade parameters on the aeroelastic sta-
bility boundaries in forward flight are determined,

L. Introduction

During recent years the helicopter industry has witnessed a growing
acceptance of hingeless rotor systems used in conventional hellcopters flying at
relatively high speeds, Although a number of quite successful hingeless rotored
helicopters have been bullt and are in service, the correct mathematical model-~
ing of this complex aercelastic problem, for the case of forward flight, is still
an area of aercelasticity in which a significant amount of additional fundamental
research is needed.

Studies dealing with the effect of forward flight have been primarily
devoted to the treatment of flapping instability [l-4}. These studies were aimed
at understanding the effect of the parametric excitation, or periodic coeffi-
cients, in the equations of motion and at developing suitable numerical schemes
for dealing with periodic systems. A couplete treatment of the aerocelastic sta-
bility problem in forward flight was not attempted in these studies,

A number of studies dealing with the effect of forward flight on the
coupled flap-lap stability problem have been also conducted [5~10}. Young's
work [6], which represented a ploneering effort was somewhat controversial,
while Hall's work [5], in which the coupled flap-lag problem was considered was
inconclusive, although it served a very useful purpose in introducing mulitivari-
able Floquet theory to rotor dynamics., The coupled-flap-lag problem was also
considered by Friedmann and Tong [7,8], their treatment was limited to low
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advance ratios and was aimed primarily at understanding the importance of the
nonlinear terms, due to moderately large deflections, in the equations of
motion,

A more realigtic attempt at dealing with the coupled flap-lag problem at
arbitrary advance ratios was made in References 9 and 10, In these studies an
effecient numerical scheme for dealing with periodic systems was presented, and
the effect of forward flight on the fully coupled flap-lag motions was explored.

The main defficiency of References 9 and 10 as well as the various other
gtudies dealing with coupled flap-lag dynamics [5-8], or flapping dynamics [1,4]
ig due to the fact that the time dependent trim state of the complete rotor is
decoupled from the aercelastic stability problem.

The purpeose of the present study 1s to remedy this situation by properly
including the trim effects and the time varying equilibrium position in the
formulation and the solutions of the coupled flap-lag aercelastic stability
problem in forward flight., While the formulation of the equations is quite
general, two separate trim procedures are used to determine the equilibrium
position of the rotor, The first trim procedure maintains the rotor trimmed at
a fixed value of the thrust cocefficient Cr, in this procedure both horizontal
and vertical force equilibrium are satisfied and the pitching and rolling moments
are kept at zero, simulating actual conditions in forward flight. The second
trim procedure maintains only zerc pitch and roll moment conditions on the rotor
and represents therefore typical conditions under which a rotor would be tested
in a wind tunnel,

The effects of both types of trim procedures on rotor blade stability are
determined by comparing these results with those obtained in previous studies
(9,10]. Furthermore, the effects of various important parameters such as flap-
wise and Iinplane stiffness, structural damping, Lock number and preconing on
stability boundaries in forward flight are considered.

Finally it is important to emphasize that while the present treatment does
not consider the complete coupled rotor fuselage aeroelastic problem, it goes
significantly beyond single blade analyses which are available in the literature,

2. The Equtions of Motion

2,1 General

The present study is based upon a conslstently derived set of nonlinear
equations describing the coupled flap-lag motion of a contilevered rotor blade,
The equations of motion will be first derived in partial differential, nonlinear
form. Subsequently these equations are linearized about a time dependent
equilibrium position determined from trim conditions of the rotor. Due to the
complexity of the equations only a relatively brief presentation of their
derivation will be given.

2.2 Basic Assumptions for the Aercelastic Analysis

The goemetry of the problem is shown in Figs, 1 and 2, The following
basic assumptions were used in deriving the equations of motion used for the
treatment of the aercelastic stability problem: (a) The blade is cantilevered
at the hub, its feathering axis can be preconed by an angle Bp, the angle fp is
gmall, (b) The blade can bend in two directions normal to the elastic axis and
is torsionally rigid. {(c) The deflections of the blade are moderately small so
that terms of 0(£}) can be neglected compared to one. (d) Two~dimensional quasi-
steady aerodynamic strip theory is used, i.e, C(k) = 1, and apparent mass effect
are neglected, {(e) Reversed flow is included by using an approximate model for
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reversed flow as described in References 9 and 10. (£f) Uniform inflow over the
disk of the rotor is assumed, and the time varying components of the inflow are
neglected. (g) Stall and compressibility effects are neglected. (h) The rotor
is trimmed according to varlous trim procedures described in the following
sectionsg., (i) Single blade aeroelastic analysis of an isolated rotor blade
attached to an aircraft of infinite mass is used. (j) The blade is assumed to
have no pretwist. (k) Blade cross sectional center of gravity, elastic axis and
aerodynamic center are coincident, (R) Structural damping forces are assumed to
be of a viscous type,

2.3 The Ordering Scheme

The present study is aimed at deriving first a set of nonlinear equations
which will be subsequently linearized. In this process one encounters a con-
siderable number of terms which are small and therefore negligible. In order to
neglect the appropriate terms a rational ordering scheme is used which enables
one to neglect terms in a systematic manner. In thig scheme all the important
parameters of the problems are assigned orders of magnitude in terms of a typical
displacement quantity, &, thus:

T =0 5§ =0y, E =W
5 = 0Dy e =0 i 8, = 0(&)
A= 0E) %‘-;-=g—§-—= 0(&y) 3

o %o _
8, = 08 ; Cyla=06lh 5 b=y
o= 0.

This crdering scheme together with assumption (c¢) of the previous section
implies that terms of Oﬁﬁ%) are neglected compared to terms of 0(l) in the equa~
tions of motion, Obviously the ordering scheme should be used with a certain
degree of flexibility and physical insight so as to enable one to retain certain
higher order terms of importance even though they may appear negligible when
considered strictly in the light of the ordering scheme.

2.4 Brief Derivation of the Blade Equations of Motion

Using the assumptions and the ordering scheme given above a system of
nonlinear partial differential equations for the coupled flap~lag motion of the
blade is derived, with respect to a x,y and z coordinate system rotating with
the blade, The derivation of the inertla and aerodymamic operators of this
aeroelastic problem follows essentlally along the lines of References 7,10,11
which the derivation of the structural operator is essentially similar to the one
presented in Houbolt and Brocks [12].

Thus the differential equation for the dynamic equilibrium of the blade
can be written as [11,12},

2 2

2 97w v
3 e e 3 ow
=3 [ED,+EqT — + B —7 (1~ 5% [T 5% ] Py
on on axo fe) )
El [(EI), - E_,] -a—iY-‘?- +E e A | .
e z " el T2 02 2 sx |° x Py
X o o ° (1)
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where the quantities

_ 2
ECl = [(EI)Z - (EI)y} sin (80 + et) -

E., = [(ED - (EI)y] sin(6_ + Gt)cos(eo + 8,)

represent elastic coupling terms due to the collective pltch setting 8, and the
cyelic pitch

Gt = elc cosy + 615 siny (3)

A list of symbols is given in Appendix D.
The distributed loading terms in Equations (1) representing the combined

general aerodynamic, inertial and structural damping loads for this aerocelastic
problem can be written as [10,11]

. . o1 '= 2 %
Px = 5;: w2 {(xo + el) + 2¥] (&)
2 kk * * . ‘
Py LYz - mR [V - (el + V) + 2u] - gSLQve (5)
i} 2 x
Po= Ly, - " W~ go . (6)

The aerodynamlic loads Ly, and Lyy in the z and y directions respectively,
are given by [10,11]

- 2 5 1

Lyp = PEBR [um(a;« 6, = U,,U,,=(3/2)U,,bRA et] )
- oavr|(8 + 89U, U, - U+ -0 0, 1.50 bRA 6 (8)

Lyp = =PabRICOF 90 Up0007 Uzo™ o Typm H+2UPR O

Where the velocity components Uy, and Upo, are given by

- o= = OF 9V

U&Z U& Qv + Q(x°+ el) + ﬂRp[%inw + cosy on} (9
* ow W

—UZZ = UP Q[w + RA+ v “a;—; + Ru cosy BXO] . (1o

The last Ingredient required to formulate this aercelastic problem is the
displacement fleld for a point on the elastic axis of the blade given by

X 2 2

X, 9 1 o Bwe Bve
u=Bpvo -3 Bp -2 f =) T\x, | 19 (11)
o 1 1
v o=V (12)
e
W=, BP X (13

The boundary conditions for this set of partial differemtial equations
are:
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ave Bwe
atxo=0 _Ve=we=-§;—‘=§;—=0

while at X, = L the shears and moments are zero.

. The system of general, coupled, partial differential equations of motion
presented in Equations (1) through (13) above is transformed into a system of
ordinary nonlinear differential equations by using Galerkin's method to elimi-
nate the spatial variable, 1In this process the elastic degrees of freedom in
the problem are represented by the uncoupled free vibration modes of a rotating
blade. The present study 1s restricted to the case of a single elastic mode
representing each elastic degree of freedom, The modal representation of the
elastic degrees of freedom is given by

woo= 2 n.(x )g, (¥
e i _i 1 (14)
ve = _Q‘Yl(xo)hl(w) - '
The ordinary nonlinear differential equations are given by
BB+ 2w I +s;i-+ E
F181 ¥ 2Wp1 Mp1Nsp181 T MpWe 8y t Bp g -
- ¢cos2f (EC g * E *h ) + 8in29 (glES - hlEl )
-
- 288° By - 2m)h; By = Ay (13)
MO+ 20 R 26 (g.51% - &
Mpghy * 20 My Ngry By ¥ Mppepghy - cos28 (gET - E hy)
= =lc oy aa * e *
- b E - sin26 (E7 g+ Ehy) + 2M; 8.8, + 2B,B g,= A, (16)

where the various quantities ﬁFl’ ﬁLl,...ﬁlll,...E,...etc. are defined in
Appendix A and Ay} and Aj] are the generalized aerodynamic loads for flap and
lag respectively given by

- /ql
L ny dxolﬂ Ib 17}

LYZYl dx /Q I . (18)

3. The Trim Procedures

3.1 General

In this study the nonlinear equations of motions developed in the previous
sections, will be linearized about a time dependent equilibrium position which
is determined from the trimmed equilibrium position of the helicopter in forward
flight., 1In the first trim procedure the rotor is maintained at a fixed value
of thrust coefficlent with forward flight and horlzontal and vertical force
equilibrium is satisfied in addition to maintaining zero pitch and roll moments.
This procedure simulates actual forward flight conditions.
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In the second trim procedure only zero pitching and rolling moments on
the rotor are maintained simulating conditions under which a rotor would be
tested In the wind tunnel,

3.2 Assunmptions for the Trim Procedure

In order to construct trim procedures for the aeroelastic stability
problem care should be exercised so as to have a realistic representation which
would provide physically meaningful results., On the other hand some simplifying
assumptions have to be made otherwise the trim problem by itself can become
quite complicated [13]. These simplifying assumptions are presented below: (a)
The helicopter 1s in straight and level steady flight (yp = 0, see Fig. 3). (b)
Pitching and rolling moments on the rotor are equal to zero. (c¢) Flapping
response of the trimmed rotor is assumed to consist completely of the first or
fundamental mode in flapping, i.e, effect of the lead-~lag degree of freedom on
the trim state of the rotor is neglected. Furthermore only first harmonics are
considered, higher harmonics are neglected. {(d) The rotor hub and helicopter
center of gravity coincide, i.e, the whole aircraft is represented by a point
mass colnciding with the hub, (e) Tail, fuselage moments and side force com~
ponents are neglected., (f) Effect of precone and reversed flow on the trim
state 1s neglected. (g) Effect of Coriolis terms is neglected. (i) The total
geometric pitch angle is assumed to be given by

SG = 80 + elssinw + Blccosw . (19)

(i) Various forces used are considered to be average forces over one revolution
and the first mode flapping respeonse is given by

8y =‘Ei + gissinw + giccosw . {20)
3.3 Brief Derivation of the Equations for the Trim Procedures

Using the geometry shown in Fig. 3 together with the assumptions given
above, the requirement of force equilibrium tangential and normal to the flight
path (for yp = 0 this is identical to horizontal and vertical force equilibrium)
as well as pltching and rolling moment equilibrium results in the following
equations

o, ¥=0=-T sinaR + H coso, + DP (21)
T cost, = m.g (22)
(Mpa) =0 (23)
R
(Mra)R =0 . (24)

It is more convenient to rewrite Equation (21) in nondimensional form
2
i O
Cp sinog + Gy cosop + 5 Cpp 5 o . (25)
cos oy
Using Equations (22) through (25) the trim state of the rotor can be

obtained [7,13] provided that appropriate expressions for the thrust coefficient
Cr, horizontal force coefficient Cy and blade root moment Mz are first obtained,

In order to calculate the pitching and rolling moment, an expression for
the root flapping moment, shown in Filg. 4, is required. Neglecting Coriolis
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forces the moment at the blade root due to aerodynamic, centrifugal and inertia
forces 1s given by (for & = R, e1 = 0, and Bp = 0)

g 2
(0,y) = _/- U, e - w0 | x ax (26)
M"R 4 A Z2 3‘#2 e{“0o e °

The uncoupled equatilon of bending equilibrium in the flap direction
yields

2
2 3w 2
3 e 3 duw 3w
—m (EI) - (T ) + =L . (27}
axi y axi axo on Btz 22

Using the first elastic mode shape equation (14) and cowmbining Equations
(26) and (27) vields

0, ) ks (ET) Ml ( |
0, ) = Qul. S (e - T
MR o dxi y dxi dxo dxo

2
) - mf} Ny glxcdxo . (28

From the free vibration problem of a rotating beam

2
2 d™mn dn 2
d 1 d 1 - 2
— | (E1) - (T ) = mi_. 2 . (29)
dxi v dxi dxo dxo Fl 1

Combining the last two equations with Equatiom {(20) the required root
moment expression is obtalned

1
32,2 0. ~ ~ - -
MR(O,¢) = 470 (wFl_ 1)(§1+ glccosw + glssinw) JE mxonldxO (30)

Pitching and rolling moments for a single blade are obtailned by a simple
vector decomposition of MR(O,w) shown in Fig. &

Mp = MR(O,w)cosw (31
M= MR(O,w)sinw . (32)

For trim purposes, the average values of these quantities, per revolutiom,
are required, Combining Equations (30) through (32)
2T
(0,U) cosydy I SERPIPE N
Mp(0,¥) cos 7 (Wpy Elc

mxonldxo (33)

=
i
[

pra 2% 5

mxonldxD . {34)

]

oy Oy

am
L. 0.0 singdy = 2@ - 123028
ra” W ) Mp(Q,¥) sinddd = Flwg = 1 81g

For an ny bladed rotor the average pitching and rolling moment for the
complete rotor will be given by

(Mpa)R = Mpanb and (Mra) = Mranb .
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From Equations (23), (24), (33) and (34), it is clear that for pitching
and rolling moment equilibrium

B, =8, =0 . (35)
The thrust coefficient of a hingeless blade can be obtained by using the

assumptions presented in Section 3,2, Neglecting nonlinear terms and using
uniform inflow over the rotor disk given by

C
T
A= U tang, + —————— . (36)
R o2 + 22
The expressions for UP and UT can be written as
‘ *
- 1
Up (A + Wnp 8y cosy + 4 nlgl/R)QR (37N
Up = SR(using + X) . (38)
The average value of the thrust coefficient defined as
a 2r B
T _ b -
CT = 5 7 = > 3 - Lzzﬁdxdw (39)
pA(ﬂR ) (GR) ZﬂpA(ﬂR Y (GR) o A
is given by
gcafd 18 1 221, _ 17 17
CT=-2—(-§)[BO(F +ZWEF) - A+ F els] . (40)

The horizontal force component per unit span is given by the following
relation [7,13]

dy gw
i - Ly, siny - L,, 5= cosy (41)
o o
where
b o= UP/UT .

Using Equations (37}, (38), (7), (8) and (4l1l) the average horizontal
force is given by

we i [ [ ooy, + sty - o Jetana gy

o
- a(GGU% - U?UT)glnl coswdﬁodw (42)
from which
2 17
C, = 0.5 C, LOF'/ (2/R) +(0+a/b) (R/R) (8 \uF 4 g ]
- (03/4)(2/R)E;(F1981c- ugino) : (43)
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The last ingredient required for the calculation of the trim state of the
rotor are the so called flapping coefficlents, Neglecting Coriolis forces,
structural damping and nonlirear terms the flapping coefficients are obtained
from the steady state solution of the f{lapping egquation

2 2
o a1 L i, -
Mp181 * Mpy Upp 8y T 7 \R 1 Lgghydx, = Apy - (44)

Using uniform inflow A and neglecting higher harmonic terms in the cal-
culation of the flapping coefficlents, one has

2
A = % (%)

- 1 Fog cosy - (/R (F° + Pusin) g ] 4)

3
[(F' - F2\ + F o L L(26F% - AF)siny

Substituting Equatiens (19}, (20), and (33) into (44) and (45), and
collecting the constant terms, the terms multiplied by cosy and the terms multi-
plied by siny one obtains the three flapping equations given below.

2 2
2o oy 1 1,132 _ 2 2, .
i - L (E) 2t 2 D - Fae e 1= 0 (46)
1
1 32 ~0 6
(F~ + F”u /4)61c ~ Mg F =0 (47
(Fh + 3rP a6, + 200 F - r = 0 (48)

Solving these equations one obtains

8., = Gr” - 2u8 Fy/(rt + 3732 /4) (49)
gi = b6+ byA (50)
6., = VETF/(E + Pt/ (51)

Where the various quantities Fi, ﬁpl...bl,bz...etc. are defined in Appendix A,

3.4 The Trim Procedures

Using the equations presented in the previous section two separate trim
procedures are developed.

(a) Propulsive Trim. In this trim procedure, which simulates actual for-
ward flight conditions, the rotor is maintained at a flxed value of the thrust
coefficient Cp with forward flight and the horizontal and vertical force
equilibrium is maintained as required by Equatioms (21) and (22). Furthermore
zero pitching and rolling moments on the rotor are also maintained.

The trim state is evaluated in the following manner: (1) The flight con-
dition as determined by u and Cp is given. (2) The value of the inflow is
evaluated from Equation (36) for an arbitrary value of up. (3) The value of col-
lective pitch 85 is evaluated from Equations (40) and (49) for an arbitrary value
of ag. (4) Eg and 071, are evaluated from Equations (50) and (51) for an arbitary
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value of ap. (5) Combining Equations (25) and (43) op is iterated upon until
Equation (25) is satisfied and ap for the trim state Is obtained. (6) Using

this value of op the quantities A, 6,, 635, 81, and Eﬁ are obtained from the

appropriate equatious.

(b) Wind Tunnel Trim or Moment Trim in this trim procedure, which
simulates conditions under which a rotor would be tested in the wind tunnel,
pitching and relling moments on the rotor are maintained at zerc. Horizontal
and vertical force equilibrium is not required for this case because the rotor
is mounted on a supporting structure,

For this case the trim state is obtained in the following manner: (1)
The test condition is specified by given values of u, 895 and og. (2) The inflow
A is evaluated from Equation (36) for an arbitrary value of Cp. (3) 615 is
calculated from Equation (49) for an arbitrary value of Cp. (4) The thrust
coefficient 19 iterated upon until Equation (40) is satisfied, thus the thrust
coefficient for the trim stage is determined. (5) Using this value of Cp the
quantities A, 615, 81c and gl are determined from the appropriate equations.

4, Linearized Modal Equations of Motion

4.1 The Time Dependent Equilibrium Position of the Blade

The time dependent equilibrium position about which the equations of
motion are linearized is a result of the cyclic pitch varlation required to trim
the rotor in forward flight, These c¢yclic pitch components are obtained from the
trim procedures which have been described in the previous section.

The time dependent equilibrium position of blade can be determined from
various consideratioms. In order to keep this process reasonably simple two
assunptions will be made, these are:

(a) In the calculation of the time dependent equilibrium position only first
harmonic terms, i.e. siny and cosy terms will be considered., Thus the
time dependent equilibrium position of the blade is written as

gl(w) + 8y cosy + IR siny (52)

hl(w) = hl + h, cosy + h, siny (53)

1lc 1ls

(b) An approximate linear time dependent equilibrium posxtion is defined by
neglecting combinations of the type: gl 1s’ gl 1¢? glglc glgls hlhls’

hghlc, hgglc’ higls, hy.81cs h1c81gses+ete. which are nonlinear combin-

ations of the terms defining the equilibrium position. A more complete
treatment which includes these terms will be presented elsewhere,.

Using these assumptions and substituting Equations (19), (52) and (53)
into Equations (15) and (16) the quantities gl, 81lcs Bls» by, hl and hpg are
obtained by requiring that the constant terms, cosy-terms and sinw—terms be equal
to zero. After a considerable amount of algebraic manipulation this simple
harmonic balancing results in a system of six linear algebraic equations for the
unknowns, which can be written as

[s1 {a,} = {c) (54)
where {qo}T = Lgi Blc Bls hi hie hlsJ and the elements S;s; and C; of the appro—

priate matrices are given in Appendix B. The time dependent equilibrium position
is obtained from
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{q )} = 1817 (c) (55)

It is worth mentioning that Equations (553) are sclved for both the normal
and the reversed flow regions.

4.2 The Linearized Equations

The process of linearization of the equations of motion consists of
expressing the elastic part of the displacement field as
w o=w_ _ +Aw = n.(g, + Ag)
e o e 1 -l 1 (56)
V. = Vo + Ave = Yl(hl + Ahl) .

Equations (56) are substituted into Equations (15) and (16}, in this pro-
cess nonlinear terms are transformed into coupling terms, while terms of type
Agyhhy, (Agp)?, (Ahp)? are neglected.

Furthermore for mathematical convenlence the equations of metion are
transformed into first order state variable form by using the following notation

* ]
Bg) =y, 3 bhy =y, bgy =y, bhy=y, . (57)

For the determination of the aercelastic stability boundaries only the
homogeneous part of the equations of motion is required; thus the equations of
motion In thelr final form are written as

*
{y} = [a(] {y!} (58)
where [A] is a 4x4 matrix defined in Appendix C.
The equations of motion (58) will have different forms, respectively, for
the normal flow region and for the reversed flow region. The representation of

the reversed flow together with its effect on the form of Equations (58) is
described in Reference 10.

5. Metheod of Solution

The stability investigation of the blade motions iz based upon the Floquet—
Liapunov theorem [14] which states that the knowledge of the state transition
matrix over one perilod is sufficient in order to determine the stability of a
periodic system having a common period, T. Based upon the Floquet-Liapunov
theorem, the transition matrix for the periodic system can be written as [14]

[R] C¥-¥,)
(800,001 = [B7H(W) ]e "yl (59

where the [P(Y)] matrix is also pericdic and [R] is a constant matrix, The sta-
bility of the system is governed by the matrix {R], where [R] is given by

(61,001 = M7 = () (60)

The stability for the system is related to the characteristic exponents or
the eigenvalues of [R] dencted by

A =gy F L (60)
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The sclutions of Equations (58) approach zero as @ =+ o« if

G < 05 k=1,2,,..n (62)

The key to the efficient numerical treatment of periodic systems is the
numerical computation of the transition matrix at the end on one period [$(T,0)].
In the present study the transition matrix at the end of the period was cobtained
using a generalization of the rectangular ripple method described in Reference 9,
The eigenvalues of [$(T,0] were evaluated using a Jacobi type elgenvalue routine.

6. Results and Discussion

6,1 Numerical Quantities Used in the Calculations

In the computation of the numerical results it was assumed that the mass
and stiffness distributions are constant along the span of the blade. Rotating
mode shapes for the flap and lag degrees of freedom were obtained by using
Galerkin's method based upon five nonrotating cantilever mede shapes for each
flap or lag degree of freedom, A convenlent plot relating rotating and nonrota-
ting frequenciles can be found In Reference 10, The various spanwise integratioms
were performed using seven polnt Gaussian integration,

For cases dealing with linearization about the static equilibrium position
in hover [10] the inflow was evaluated from

A = (ao/16) [(1 + 248/a0)+/%- 17 . (63)

This relation was also used for calculating the inflow at § = 0 in the wind
tunnel trim or moment trim procedure.

Finally, in all cases the following values were used:
Cdo = 0,01; a= 2mw; o = 0,053 CD? = 0,01; e, = 03
A=0; B=1.0 ;b=0.0313.

Various other pertinent quantities are specified on the plots. Reversed flow was
included in the calculation using the method described in Reference 10.

6.2 Results

The results presented in this study include the effects of reversed flow
which is treated using a very convenilent reversed flow model described in
Reference 10,

As stated in the introduction, this study 1s primarily aimed at determi-
ning the effects of various trim procedures on the coupled flap-lag aeroelastic
stability boundaries of a single blade, The physical meaning of the two trim
procedures used in this study are best i1llustrated by trim curves showing the
values of the various parameters associated with each trim procedure. The trim
curves shown in Fig., 5 were obtained using the propulsive trim procedure for
Cr = 0.005. These curves are shown for values of advance ratios up to | = Q.40
because above this value the propulsive trim equations cannot be satisfied any-
more with Cpp = 0,01, The range of w for this type of trim procedure can be
stretched by increasing Cr or by employing two correction factors, denoted by
CDPFAC and CDZFAC respectively, to multiply Cpp and Cjo. Where it is understood
that these correction factors can vary between 0 ¢ 1.0. These correction factors
enable one to simulate approximately the unloading of the rotor at high speeds.
Trim curves obtained using the wind tunnel or moment trim procedure are shown in
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Fig. 6; for og = 0.0 and 6 = 0.15, Comparing Figs, 5 and 6, it is clear that the
moment trim procedure is characterized by significant variations in the thrust
coefficlent Cp. While the curves for 81y and 8], are somewhat similar in both
cases, the curves for 8; and Cp are significantly different. Thus it is clear
that the trim procedure used can significantly affect the aercelastic stability
boundaries,

It is pointed out in Reference 10 that the underlined term in Equation (10)
was not included in the calculations. It seems reasonable therefore to deter-
mine the sensitivity of previous results, which were obtalned by linearizing the
equations of motion about the static equilibrium position in hover [10], to the
missing term. The results for a typical case were recomputed here with and with-
out this term., The results shown in Fig. 7 indicate that the missing term is
destabilizing and reduces the value of u, for this particular case by approxi-
mately ~ 21%. All the results in this study include the effect of this term,

The effects of the propulsive trim procedure on a typical case, con-
gidered in Reference 10, are shown in Fig, 8. Compared to the previous pro-
cedure [10], of linearizing the equations of motion about the linear equilibrium
position in hover, the new results which account for the propulsive trim and
the time dependent equilibrium position indicate that this, more realistic model
of the blade dynamics, produces a more stable system., The results are presented
only in the range 0 < p < 0.5, outside this range the blade cannot be trimmed.
From this Figure it is clear that the amount of damping in the lead-lag degree
of freedom is significantly increased due to the effects associated with propul-
sive trim.

The combined effect of the trim procedures and the lock number on blade
stability is illustrated by Figs. 9 and 10, Figure 9 illustrates the effect of
both propulsive and moment trim at a low value of y(y = 5) for a case for which
the variocus parameters are speclfied on the plot., For this case a relatively
high value of Cp was chosen (Cp = 0,01), so that the range of validity of pro-
pulsive trim could be stretched to u = 0,6, The figure shows that the blade did
not become unstable in this range of u's. The figure indicates that up to u=0.4
the real part of the characteristic exponents for both flap and lag behave in a
simllar manner for both trim procedures. When using the moment trim procedure
the blade becomes unstable at L. = 0.90 and the degree of freedom associated
with the instability is the flap degree of freedom. The instability occurs at a
nondimensional frequency of ¢ (or 1) indicating that parametric excitation due to
the periodic coefficients is the mechanism inducing the instability, Similar
results are shown in Fig. 10 where the real part of the characteristic exponent
associated with the lead~lag degree of freedom is plotted, Three separate cases
are shown., For the first case, which is linearized about the static equilibrium
position in hover [10], the lag degree of freedom becomes unstable at U, = 0.275
with wy = 1.4705, 1In the second case the propulsive trim procedure is used for
this case the system is significantly more stable but the trim procedure cannot
be used above W = 0.55, 1In the last case moment trim is used and the system
becomes unstable at u. = 0.80 and again the lag degree of freedom is the unstable
one, the frequency of this instability is wy = 1,65355 but the other frequencies
associated with the flap degree of freedom in the vicinity of this point indicate
significant coupling with the parametric excitation,

The sensitivity of the results, obtained from the moment trim procedure,
to the rotor shaft angle op is illustrated by Fig. l1. Where a typical case is
evaluated with two different values of op. The results indicate a relative
insensitivity to this parameter. The same case was also evaluated with moment
trim and a different value of the angle of precone. The results shown in Fig. 12
indicate that the results are not significantly affected by an angle of precone
of 2°, Various other cases computed with precone indicated a similar insensi-
tivity to precone except for lead-lag rotating frequencies in the viciniey of 1.
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Results indicating the effect of forward flight on a soft inplane roter
are presented in Fig, 13. The results with moment trim indicate that the collec~
tive pitch setting can significantly influence blade stability. By increasing
the collective pitch setting from 6 = ,15 to 6 = ,30 the value of the critical
advance ratio at which the blade becomes unstable is reduced from Me = 0.86 to
He = 0.19.

Figure 14 illustrates the effect of the moment trim procedure on blade
stability. When linearizing the equations about the linear eguilibrium position
in hover [10] the blade becomes unstable at Uo = 0.27. Linearization of the
equations about the equilibrium position determined from moment trim increases
the value of u, to e = 0,48,

Similar cases were computed for aFl = 1.1006 and wr; = 0.7941 with y = 10,
and 6 = 0,15 + 0.30. The results indicate similar trends and therefore are not
presented here.

AlLl the results obtained in this study indicate that when the blade equa-
tions are linearized about the static equilibrium position in hover [10} the
blade becomes unstable at a lower value of . than when the equations are
linearized about the time dependent equilibrium position determined from the
propulsive trim or the moment trim procedure, This indicates that the results
for the stability boundaries obtained in References 9 and 10 can be considered
to be conservative,

7. Conclusions

The major conclusions obtalned from the present study are summarized below.
They should be considered indicative of trends and their application to the
design of a helicopter rotoer should be limited by the various assumptions which
have been used,

(L The two trim procedures developed and used in this study have a
very significant effect on the coupled flap-~lag aerocelastic sta-
bility boundaries in forward flight. In general, the amount of
damping in the lead-lag mode is increased when the trim state is
coupled with the aeroelastic system. The effect of the trim state
influences blade stability through changes in collective pitch,
inflow and the time dependent elastic coupling effect associated
with the cyelic pitch compeonents 81, and 8ig.

(2) The relatively limited number of cases considered in this study
seem to indicate that forward flight tends to destabilize the
soft inplane hingeless blade to a greater degree than it affects
the stiff inplane blade,

(3) For the cases considered the aeroelastic instability of the blade
with the moment trim procedure was stronger than with the propul-
sive trim procedure. :

(4) Coupled flap-~lag behavior in forward flight seems to be relatively
ingensitive to precone, indicating a similarity to the effect
of precone on coupled flap~lag behavior in hover.
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Appendix A: Definitions of the Generalilzed Masses, Structural and Aercdynamic
Integrals and Other Quantities

The quantities ﬁFl! ﬁLl’ ?111, I, can be found in Reference 10, varilous
other similar quantities are given below: 1
2 3 -
= f j; tmrlﬂldxo/Ib
1 1

-1 3 - 2
= 2 z . B o 23 *
B f; m(xo + el)nldxo/lb, B j;leldxo/Ib

[+=11}

f ol

3 2 - e
Ngr1 = % gsuj; Y1 9%,/ (RT 20 M)
The structural integrals associated with elastic coupling are given by

o ) s _ ~
= [(EI)Z - (EI)y]/Z, E [(EI)z (EI)y] sinZGO/Z

¢ = [(EI)Z - (EI)Y] c03280/2

1 1
E = f E°(n'i)2 d§°/(9,921b) i E = f £° o) dx /%1 ¥y
[o] Q
1 1
ECa f EC(n'l')z dio/(msz) i % f B (v} dx J(QPT o0
[} Q
1 !
-3 — = -
= f Es(n'l')z dxo/(M}zIb) . Ba f ES(Y'l‘)zdxo/(Q?'Ibl)
Q Q
1 1
0 [ gy a3 L GRPT) T e N
Ny ; Y1y 9%, b
o] o
) 1 1
- 'C= . Zle, f Coitpait 7 2
E J[ ESn lYI dx /(29 1 ) ; E . E Yini de/(Q IbZ)

The generallzed aerodynamic integrals F:L and Li, assoclated with the flap
and lag generalized aerodynamic loads respectively are given below. These
integrals are evaluated between the lower limit A and the upper limit B, where
A and B are nondimensionalized tip loss factors, also
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Various other quantities needed from the trim procedure are defined below:
2
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Appendix B: Elements of the [S] and {C} Matrices

The elements of the [S] and {C} matrices required for calculating

{qo}T = ng, Bles Els» hi, hy., hlsj are given below

St1

513

S
5

16

21

So3

So4

Sa5
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32
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35
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42

43

5

3

2 ¢ s
L - - _ L. =S Y _&) 9 6
MpWpy + B - E 5 S12% B E -3 (R H(E® - F7)
8 _ls 3 10, W2 RV, _4
- - Y _) _14._(5) ., RS
B16B 3 Sy, = B 7 (R [%PF T ) B - g FO
lc 4 2 2 2
-0, F _x(&) 10 R gl -u 2 o L u(®) o (BY g
01cE RS |F Ot MR O, h g FO T UG AR s/ F o8
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o= _I(g) R, 11 .10 __gu_(‘_f_{_) 4
Bt 2 \R/ "7 BpF FUO - AT PO
=Sy AV 6
= 26) E +3 (E) WES 5 Sy = My (wgy- 1) + B~ E
2
4 2
- % - i(&) 8 EM(R) 1
Mogp¥pr T2 R/ |F Y3 \E/ F

p
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P 2 \R L 2\2 1s 2 2 1ls
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_E..(B.) 4 -
s\w) F 9| 5 55 = 20 F
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Appendix C: Elements of the [Al-Matrix

The elements of the [A]-matrix, which define the equations of motion
when written as a set of first order differential equations in state variable
form, are given below:

Bop = ly Apy Sy = Ay =00 A= Ay T AL A0

*
Ay = =2 GFlnSFl—(l/MFl)(Y/Z)(Q/R)a[%g -u(R/n)Flzﬁlcosw - §i3 B, + u(R/z)nginw]

%
=51

-2 ag =C =8 4f 16 -
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#
+ u(R/R)F6cosw -u(R/R)Fl4 ﬁlcosw —u(R/R)F14 Elsinw + (u2/2)(R/£)2F7 sin2y
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m
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-1s ~lc 4 5
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Appendix D: List of Symbols

a = two dimensional lift curve slope
K,E = tip loss ccefficients
[A] = periodic matrix, with elements Aij’ defined in Appendix C

generalized aercvdynamic force for the first flap and lag
mode, respectively

f
i

b = semi~chord, non-dimensionalized with respect to R

Ei,§1 = generalized masses defined in Appendix A

bl’bZ = coefficlents defined in Appendix A

CT = T/QA(ﬂRZQZRZ) = thrust coefficient

{c} = constant column matrix, defined in Appendix B

Cdo = profile drag coefficient

C{k) = Theodorsen's 1ift deficiency function

[C] = constant matrix used in Floquet-Liapunov theorem

CH = H/(QAHRZQZRZ) horizontal force coefficient

CDP = Drag coefficient due to equivalent flat plate area of the

helicopter (f/ﬁRz)

Dp = paragite drag of the helicopter
w0 -8 _C
E .,E ,,E ,E ,E et¢., = terms assoclated with elastic coupling defined in
[ R
Appendix-A
(EI)y,(EI)z = stiffness for flapwise and inplane bending, respectively
Fi = aerodynamic integrals for flap equation defined in Appendix A
f = equivalent flat plate area of the helicopter
-3 = generalized coordinate, first normal flapping mode
agl = perturbation in 8y about 8
gi = static value of g in hover
E?,Eis,gic = constant and cyclic first mode flapping coefficients evaluated
from trim procedures
0 _ -—
g, = constant part of g1
gl = linear time dependent equilibrium value of first normal flap-
ping mode
81814 = cyclic parts of 8y
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8spr 85, = viscous structural damping in flap and lag, respectively

hl = generalized coordinate, first normal inplane mode

Ahl = perturbation in h1 about hl

hi = constant part of h

1

hls’hlc = cyclic parts of hl

Hl = linear time dependent equilibrium value of first normal lead
lag mode

H = horizontal force Fig. 3

i = V-1

5,2,5 = unit vectors in x,y and z direction, Fig. 1l

L2:d9,:K ] = unit vectors defining deformed blade geometry, shown in Fig.

1. J..K 2, Jp is parallel teo hub plane, I; and L3 are tangential to

33053 s the deformed blade elastic axis,

Ib = mass moment of inertia in flap, defined Iin Appendix A

& = length of blade cabable of elastic deflection

Li = aerodynamic Integrals associated with lag equation defined in
Appendix A

LYZ’LZZ = aerodynamic loads per unit length in the J, and K; directions
respectively, approximately coincident with 3, and k directions

(Mpa) ,(Mra)R= average pitching and rolling moment for the complete rotor

R

Mpa’Mra = average pitching and rolling moment for a single blade

m = mass of blade per unit length

m, = total mass of the alrcraft

ﬁFl’ﬁLl = generalized masses for the th flap and lag modes, respectively,

defined in Appendix A

defined in Appendix A

i}

1M

Mp’Mr = instantaneous pitching and rolling moment
MR(O,¢) = total bending moment at blade root
oy = number o¢f blades
P.sP.sP = resultant total loadings per unit length in the x,y and 2z
x"Ty'tz
directions, respectively
P111 = defined in Appendix A
{(P(y) ] = periodic matrix
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Xs¥ 42

X =H=-g
Q

{y}

NsF1°"sLl

vector of variables defining time dependent equilibrium
position of the blade

blade radius
constant matrix used in ¥Floquet-Liapunov theorem

matrix used in calculating equilibrium position defined in
Appendix B

centrifugal tension in the blade, also common non-dimensional
period used in the Floquet theory, also thrust in trim

procedure

X,y and z displacements of a point on the elastic axis of
the blade

relative velocity components ¢f blade elastic axis, in the

£2 and Eﬁ directions

elastic part cof the displacement of a point on the elastic
axis of the blade parallel to the hub plane (see Fig. 1),
subscript O denotes equilibrium position

velocity of forward flight of the whole rotor

elastic part of the displacement of a point on the elastic
axis of the blade, in the K, direction, Fig. 2, subscript o
denotes equilibrium position

rotating orthogonal coordinate system

running spanwise coordinate for part of the blade free to
deflect elastically, xj-same, dummy variable

state variable column matrix

angle of attack of the whole rotor

preconing, inclination of feathering axis w.,r.t. the hub plane
measured in a vertical plane

lock number (y = ZDAbRsa/Ib) for normal flow

first inplane bending mode

symbolic quantity having the same order of magnitude as the
displacements v and w

real part of the ktP characteristic exponent

firat flapwise bending mode

viscous structural damping coefficients defined in Appendix A,
in percent of critical damping, for first flap and lag meode,

regpectively

collective pitch angle
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Special Symbols

1

*

-
]

o'

=

total geometric pltch angle
time dependent part of geometric pitch angle
cycelic pitch components

critical value of collective pitch at which linearized
coupled flap-lag system becomes unstable in hover

inflow ratio, Induced velocity over disk, positive dowm,
non-dimensiocnalized w.r.t. fR

elgenvalues of {R], characteristlc exponents
advance ratioc

critical value of advance ratio at which flap-lag system
becomes unstable

density of air
blade solidity ratio

state transition matrix at ¥, for initial conditions given
at ¥
(o]

azimuth angle of blade (Y = (it) measured from straight aft
position

imaginary part of kth characteristic exponent

natural frequency of first flap or lead-lag mode,
rotating

speed of rotation

differentiation with respect to ¢

non-dimensionalized quantity, length for elastilc properties
non-dimensionalized w.r.t. 1; all other w.r.t. R, frequencies
w.X.t. i} mass properties w.r.t. Iy

differentiation w.r.t. Eo

the symbol ~ beneath a quantity denotes a vector
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