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Abstract 

A coupled multi-bladed Euler/Kirchhoff 
method has been developed at ONERA to pre­
dict the High Speed Impulsive (HSI) noise 
from helicopter rotors in hover flight with tran­
sonic flow. This method has been validated 
with UH-1 H rotor experimental tests. CFD out­
put, provided by the Euler solver W A YES, are 
transfered to the acoustic Kirchhoff code, 
KARMA, through an interface programme 
which computes the pressure and its normal 
gradients on the Kirchhoff surface, needed to 
predict the acoustic pressure signature. Aero­
dynamic computations are in very good agree­
ment with experimental results for the pertur­
bation pressure on the sonic circle. A paramet­
ric study of the location of the Kirchhoff sur­
face is performed, from the sonic circle up to 
the external boundary of the aerodynamic 
mesh. HSI noise predictions are very stable 
and accurate for control surfaces located from 
1.35 rotor radius up to the last section of the 
aerodynamic mesh. These satisfactoty results 
are mainly due to the fact that no articifial vis­
cosity is needed in the numerical scheme of 
W A YES code, and it is concluded that the cou­
pling method W A YES+ KARMA is efficient 
with respect to HSI noise predictions in hover. 

Notations 

c0 : speed of sound 
M : wind tunnel flow Mach number 
R : rotor radius 
Sk : Kirchhoff surface 
Rk : Kirchhoff surface radius 
p : perturbation pressure 
p' : acoustic pressure 
Xi : observer coordinates in the fixed frame 
Yi : source coordinates in the fixed frame 
ni : coordinates of the unit vector n normal to 
sk 

d : distance between the source and the ob­
server 
1: : emission time 
~2 = 1-M

2 
: Lorentz factor 

1 - Introduction 

In the last twenty five years, a lot of effort has 
been devoted to helicopter rotor noise analysis 
in order to reduce the acoustic nuisance. Im­
pulsive noise, that can occur either at high 
speed forward flight (HSI noise) or in descent 
flight (BYI noise), is the most annoying part of 
noise. This paper focuses on HSI noise analy­
sis, concerning a rotor in hover with transonic 
flow. 

Several ways to describe the HSI noise radia­
tion have been proposed. All involve CFD cal­
culations. The choice of the method is related 
to the capability of the solver in terms of ac­
curacy, grid extension, and CPU time cost. 
Three main approaches have been considered. 
The oldest one is based on the Lighthill Acous­
tic Analogy (LAA) [I], consisting in a volume 
integration of the Lighthill's stress tensor. The 
sound sources are modelled with quadrupoles, 
requiring second derivatives of local velocities 
in the non linear domain [2][3][4]. High ac­
curacy requirement for CFD output data and 
time computation cost for the acoustic volume 
integration still constitute a major problem not 
yet solved. 

Recent progress in CFD algorithms and com­
puter performances have made a second ap­
proach possible. It consists in a full-field CFD 
calculation, including far-field acoustic waves 
[ 5]. This method has been used successfully in 
hover by Baeder [6][7], but the generation of 
accurate schemes and local grid refinement 
strategies, in order to capture the front waves 
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up to the far-field, remain very complex. For 
forward flight applications, a direct calculation 
seems to be even unrealistic, because of CPU 
cost. 

This is the reason why many scientists in the 
Aeroacoustic community have chosen the 
Kirchhoff theory [8]. Kirchhoff formulations, 
reviewed in [9] have been adapted to rotor 
noise applications in hover [I 0] and more re­
cently in forward flight [11][12][13], and used 
by many authors [14][15][16]. This method is 
very attractive, because it does not require any 
sound source modelling like in the LAA-based 
methods. The non linear mid-field CFD solu­
tion is propagated up to the control surface en­
closing the non linear domain including the 
acoustic sources. Input data needful to a Kirch­
hoff code are the perturbation pressure and its 
time and space derivatives. 

This paper presents a coupled multi-bladed 
Euler/Kirchhoff method, for which each code 
has been fully developed at ONERA. Though 
the Kirchhoff method has already been ex­
tended to forward flight applications [ 16), the 
paper focuses on hover validations. The CFD 
Euler code (WAVES) [17][18][19][20), and 
the Kirchhoff code (KARMA) are described, 
more particularly the scheme and the grid gen­
eration used. The output data interface needful 
to KARMA is presented in detail. The validity 
of the method is then tested on UH -1 H rotor 
hover tests [2]. Comparisons with experimental 
data are made. Influence of CFD grid refine­
ment and control surface location are also dis­
cussed. 

This work is performed in the framework of a 
french-german ONERA-DLR cooperation on 
helicopter rotors aerodynamics and aeroacous­
tics. 

2 - Numerical solution procedures 

2.1 - Euler code 

Governing equations 

Previous works [6](7] tend to show that the 
numerical study of the HSI noise can be cor­
rectly modelled by the Euler equations. The 
shocks are well represented and these equa­
tions properly model the non-linear propaga­
tion of the acoustic waves as well as the con­
vection of entropy and vorticity. Furthermore, 

Navier-Stokes computations require a fine grid 
to resolve the boundary layer and are far more 
expensive. Thus, the W A YES code described 
in this paper solves the 3D compressible Euler 
equations and these equations are transformed 
in a blade attached rotating frame [20). In this 
reference frame, the equations are formulated 
in terms of absolute velocities. 

Numerical method 

A detailed description of the ONERA Euler 
W A YES code for hovering rotors is given in 
[20][21). The Euler equations in integral form 
are discretized on a curvilinear structured grid 
using a cell-centered finite-volume approach. 

The basic Euler solver is divided in an explicit 
stage of second order accuracy which is an 
original multidimensional version of the Lax­
Wendroff scheme [ 17) and an implicit stage of 
order of the truncation error of the global 
scheme [19). The implicit stage is split into 
each space direction using the ADI factoriza­
tion method, and simplified by replacing the 
block matrices by their spectral radii (Scalar 
Approximation Factorization) [18]. 

In this method, the intrisic dissipation is due to 
the second order term of the explicit stage and 
increases with the CFL number. This method 
works without artificial viscosity in the tran­
sonic regime. 

Concerning the boundary conditions, the slip 
condition is prescribed on the blade surface 
and the pressure is obtained from the discrete 
form of the momentum equations in order to 
get a conservative approximation of the normal 
momentum equation. For the far-field and the 
hub boundaries, the boundary conditions are 
given by using the concept of characteristic 
variables. 

Grid generation 

As suggested by Baecler [6], the grid is clus­
tered not only on the blade surface but also 
near the curve predicted by the linear charac­
teristic theory. By this mean, pressure pertur­
bations propagating from the blade towards the 
far- field are expected to be correctly captured. 
A view of the rotor plane shows the specific 
clustering of the coarse grid used in the calcu­
lations for a tip Mach number of 0.90 (Fig. 1). 
Besides, this figure also shows that a periodic­
ity condition is ensured between the upstream 
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and downstream planes, allowing the computa­
tions of multibladed rotors in hover. No linear 
interpolation between the two planes is re­
quired as each point of the upstream plane cor­
responds to a point in the downstream plane. 
The periodicity condition improves the ac­
curacy of the computations. In this article, all 
the results have been obtained for multibladed 
rotors in hover. 

The 3D grid is built in three stages. In a first 
step, the blade sections and the sections out of 
the bi<tde are defined and their locations along 
the spanwise axis are given. In the next stage, 
two-dimensional C-grids are built for each sec­
tion. Finally, the planes are bent and the peri­
odicity condition is prescribed. Out of the 
blade, each section lies at a constant radial dis­
tance from the rotational axis. Fig. 2 shows a 
general view of the grid. 

2.2 - Kirchhoff code 

KARMA code computes the Kirchhoff integral 
according to the formulation in [13]: 

, 1~1( 2dP dp 2P p (x,t) = 41t d -M Clnl + Cln -~ d2n;(X;-Y)-

s, 

1 n;(x;-Y) Clp)l -( +Mn )- dS 
c0 d I d't 

For hover cases, this equation can be written in 
the conventional form [ 10] : 

I I I u dS n (x - y.) "p)l 
c0d d't 

Ir this formulation, the Kirchhoff surface Skis 
a fixed cylinder surrounding the rotor, the top 
and bottom surfaces being neglected. The input 
data required on this cylinder are the pressure 
and its normal gradient. These data are pro­
vided by an interface procedure between the 

aerodynamic WAVES code and the acoustic 
KARMA code. 

As the Kirchhoff surface is held fixed, a 2D 
bilinear interpolation is used to transfer CFD 
output data for which grid points are not 
equally spaced in azimuth to the fixed grid, for 
which a constant azimuthal spacing is used. 

KARMA code computes the acoustic pressure 
time histories for one or several observers, cor­
responding to microphone locations in the 
wind tannel frame. The source terms in the 
Kirchhoff integral are evaluated at the retarded 
time,1:, for each position of the blade, with re­
spect to the azimuthal spacing of the acoustic 
grid. For each emission time, the observer time 
is deduced from the retarded time equation, so 
that no quadratic equation resolution is needed. 
The azimuthal spacing of the Kirchhoff fixed 
grid is equal to 1024 points per rev. The verti­
cal spacing is chosen to correspond to the aero­
dynamic one at the trailing edge of the blade. 
The integration domain has an extension from 
-50° to 50° in the azimuthal direction and an 
extension of one rotor radius (± lR) in the ver­
tical direction. 

2.3 - Interface procedure 

The aerodynamic data needed by the Kirchhoff 
equation are the pressure and the normal gradi­
ent of the pressure on the Kirchhoff surface. 
The pressure is calculated using the following 
state relation : 

p = (y-l)p(E-l/2q2
) 

where p is the fluid density, q the absolute ve­
locity, E the specific total energy obtained by 
theW AVES calculation. 

An interface programme has been developed to 
compute the perturbation pressure and its nor­
mal gradient on the Kirchhoff surface. The 
pressure gradient is the most contributing term 
to far-field noise radiation, and thus requires a 
careful calculation. For this purpose, an ef­
ficient and accurate method based on the finite 
volume formulation is used to calculate these 
terms: 

dp 
Cln = gradp.n by definition 
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. d I wrth gra p = y J pndS, 

cell boundaries 

Y being the volume of a cell, nelS the outward 
normal surface vector . 

3 · Applications 

ll_:_Experimental conditions 

This coupled Euler/Kirchhoff method is ap­
plied to predict the HSI noise generated by the 
UH-lH model rotor of the US Army. This ro­
tor is untwisted, has two rectangular blades 
equiped with the NACA0012 airfoil; the blade 
aspect ratio is 13.71. The flight configuration is 
a hover nonlifting case for a tip Mach number 
of 0.90. Delocalization phenomenon occurs al­
lowing pressure perturbations to be propagated 
in the far-field. 

The different observer positions correspond to 
microphones located at 2.18 and 3.09 rotor ra­
dius from the rotor hub, in the rotor plane and 
in the advancing direction. The experimental 
acoustic sampling rate is 2048 points per rotor 
revolution, equally time spaced. 

3.2 -Computational parameters 

A two-bladed Euler simulation is performed in 
a computational domain representing half of 
the whole domain, the periodicity condition be­
ing respected in the upstream and downstream 
planes. Three meshes with an increasing num­
ber of points are generated in order to study the 
influence of grid refinement on W A YES calcu­
lations. These meshes are generated from a 
coarse grid of 131 points in the chordwise di­
rection, 42 points in the spanwise direction and 
22 points in the normal direction, i.e. 121 044 
points in total. This grid is refined to obtain a 
medium grid of (22lx70x32), i.e. 495 040 
points, and a fine grid of (285x90x42), i.e. 
1 077 300 points. 

Control surface position is one of the most in­
fluent parameter on Kirchhoff predictions. 
Thus, an analysis of acoustic results with re­
spect to the position of the Kirchhoff surface 
has been performed for the medium grid, for 
several positions from the sonic circle up to the 
external boundary of the mesh, in order to 
study the influence of the non-linear 

contributions. As the chosen test case is non 
lifting, the Kirchhoff surface is limited to half 
a cylinder. 

4 - Experimental and theoretical 
comparisons 

4.1 - Aerodynamic results 

The pressure distributions for the three differ­
ent meshes for six spanwise sections are shown 
in Fig. 3. Unfortunately, experimental data are 
not available. As the mesh is refined, the loca­
tion of the shock wave is moving to the leading 
edge, and the structure of the shock is getting 
steeper. The W A YES code has the advantage 
not to use artificial viscosity, so that numerical 
dissipation is reduced. Convergence is ob­
tained after about 8500 iterations for the coarse 
and medium grid calculations. The fine grid 
requires more iterations. 

Fig. 4 shows the iso-Mach contours in the rotor 
plane, upper surface. The delocalization phe­
nomenon is clearly displayed. It can be noticed 
that the structure of the shock is defined more 
accurately when the grid is refined. This figure 
also shows how the mesh is following the 
propagation of the perturbation in the rotor 
plane, as a result of the generation of an 
adapted mesh. 

Perturbation pressure provided by W A YES 
code on the sonic circle (located at 1.11 rotor 
radius) is compared to experimental data in 
Fig. 5. Two parameters are very important for 
accurate acoustic computations, which are the 
determination of the negative peak, and more 
particularly the recompression slope. The 
coarse grid does not provide very accurate re­
sults, since the minimum pressure peak is un­
derpredicted. The results are becoming more 
accurate when the grid is refined. The correla­
tion with the experimental slope is very satis­
factory for the medium and the fine grids cal­
culations. We can also notice that a small oscil­
lation occurs experimentally just after the re­
compression. Similar oscillation appearing on 
the computed signature can be related to this 
phenomenon. 
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4.2 - Acoustic results 

Analysis of W A YES computation results 

A parametric study on the location of the 
Kirchhoff surface is done for the medium grid. 
In order to study the influence of the non linear 
effects, several positions from 1.15 up to 1.7 
rotor radius, corresponding to the external 
boundary of the aerodynamic mesh, are cho­
sen. Fig. 6 shows the perturbation pressure for 
these different positions, the origin of the 
phase being taken for the first position at 1.15 
rotor radius. Unfortunately, no comparisons 
with experimental data are available. It can be 
noticed that the amplitude of the negative peak 
is rapidly decreasing from 1.15 up to 1.35 ro­
tor radius and the recompression slope is get­
ting steeper. The symmetrical shape of the 
pressure signature at 1.15 rotor radius is due to 
non-linear effects which tend to sharpen the 
compression wave and to flatten the expansion 
wave up to the vicinity of the sonic cylinder 
( 1.11 rotor radius) [7]. Beyond this region, 
non-linear effects are decreasing, making the 
shape of pressure signature getting more asym­
metrical. From 1.35 up to 1.7 rotor radius, the 
shapes of pressure signatures, in terms of 
slope and recompression peak, tend to be stabi­
lized. The negative peak is decreasing roughly 
following an l/r2acoustic near-field attenuation 
which supposes the linear domain is reached. 
This regular evolution up to the boundary of 
the mesh seems to demonstrate that W A YES 
solver is able to propagate shock waves with­
out noticeable dissipation. All these remarks 
will be helpful to analyse the Kirchhoff results. 

Analysis of KARMA computation results 

The Kirchhoff code has been run using the 
CFD input data relative to each control surface 
location. Computed acoustic signatures relative 
to the microphone located at 3.09 rotor radius 
are plotted in Fig. 7, the radius of the Kirch­
hoff surface varying from 1.15 up to 1.5 rotor 
radius. The evolution of far-field acoustic pres­
sure is in accordance with W A YES results ob­
tained above on the different Kirchhoff sur­
faces. From 1.15 up to 1.25 rotor radius, acous­
tic pressure signatures provided by KARMA 
have a smooth relative peak amplitude and 
rather symmetrical shape. For Kirchhoff sur­
face radii greater than 1.25 rotor radius, as 

explained before, the Kirchhoff surface tends 
to enclose the non linear regions, making the 
far-field acoustic signature to become asym­
metrical, and the recompression to get sharper. 
The same signatures are compared to experi­
ment in Fig. 8. The correlation is very satisfac­
tOiy beyond 1.35 rotor radius, despite a very 
small increase of the negative peak amplitudes, 
probably due to numerical errors. Computed 
signatures for 1.35 rotor radius are enlarged 
and compared to experiment in Fig. 9, for both 
microphones. The predicted sound pressure 
levels (indicated in dB in Fig. 9) are very close 
to experimental data, which confirms the ac­
curacy of the method. All these results are 
summarized in Fig. I 0, showing the differ­
ences between computed and experimental 
pressure levels as a function of the Kirchhoff 
surface radius. From 1.35 rotor radius up to the 
mesh boundmy, W AYES+ KARMA provides 
stable and accurate predictions, with pression 
level deviations less than± 0.3dB. 

5 - Conclusions 

A coupled Euler/Kirchhoff method has been 
developed to predict the HSI noise for a heli­
copter rotor in hover flight with transonic flow. 
The first step consists in generating an adapted 
mesh in order to correctly capture the propaga­
tion of the pressure perturbations. The aerody­
namic data are then transmitted through an in­
terface programme which calculates the pres­
sure and its normal gradient on the Kirchhoff 
surface, needed by the Kirchhoff KARMA 
code to predict the acoustic pressure signature. 

This methodology has been applied to predict 
the HSI noise generated by the UH-lH rotor in 
hover, for a tip Mach number of 0.90. Aerody­
namic computations are in very good agree­
ment with experimental results for medium and 
fine grid calculations. In particular, the pertur­
bation pressure on the sonic circle is quite well 
predicted. A parametric study relative to the 
Kirchhoff surface location with respect to the 
domain of validity of the methodology has 
been performed. HSI noise predictions are very 
stable and accurate for control surface located 
from 1.35 rotor radius up to the mesh boundary 
(1.7 rotor radius). This very satisfactory result 
is mainly due to the fact that the numerical 
scheme used in the W A YES code does not re­
quire any artificial viscosity, which is of course 
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determinant for an efficient use of a Kirchhoff 
method. These predictions, comparable to 
Baeder' s results, clearly demonstrate the ro­
bustness of both Euler and Kirchhoff ONERA 
codes, with respect to HSI noise calculations in 
hover. The next step of the prediction of HSI 
noise will be to apply this methodology for for .. 
ward flight configurations. 
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Dow;1stream plane 

Fig. 1: View of the adapted mesh in the rotor plane 

Fig. 2: General view of the mesh 
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Fig. 3: Influence of grid refinement on pressure distributions 
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Calculation on coarse grid I I 

Fig. 4: Influence of grid refinement on iso-Mach contours in the rotor 
plane, upper swface 
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Fig. 5: Experiment/Computation comparisons of perturbation pres­
sure on the sonic circle 
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