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Abstract: The purpose of this paper is to design a reconfigurable neural flight control system 
to improve its stability, manoeuvrability and agility of helicopter. The reconfigurable neural 
flight control system uses feedback error learning control (FENC) methodology to achieve the 
desired flying quality requirements. FENC methodology uses neural controller in the outer 
loop to enhance the performance of the inner conventional controller. Firstly, the linear 
mathematical model is derived from the non-linear six degree-of-freedom dynamic equations. 
Then, linear quadratic regulator theory is applied to the linearized model to design a control 
system which satisfies the Aeronautical Design Standard (ADS-33) specifications. The outer 
neural controller parameters are adapted to compensate for the intrinsic nonlinearities of the 
helicopter and the parameter uncertainty in the model development. The neural controller is 
reconfigured on-line to provide necessary performance under centre-of-gravity variations. The 
robustness of the proposed control scheme is evaluated using flying quality attitude quickness 
criterion for different forward speed conditions. The attitude quickness parameters for pitch, 
roll and yaw responses for the flight conditions hover, 100 Kmph, 200 Kmph and 290 Kmph 
are studied and are shown to meet the Level 1 requirement of ADS-33 for all these conditions. 
The paper also presents an obstacle clearance maneuver to illustrate the effectiveness of the 
proposed control scheme.  
 
Nomenclature 
A    system matrix 
ACAH    attitude command and attitude hold 
ADS-33   aeronautical design standards 
B    control matrix 
HQR    handling quality requirement 
L, M, N  moment components at C.G 
RCAH   rate command and attitude hold 
X, Y , Z  total forces acting at C.G 
u, v, w   vehicle velocities,   
x   state vector x = ],,,,,,,,[ ψθφrqpwvu  

cs 11 ,ββ   longitudinal and lateral cyclic inputs, rad 

t00 ,ββ    main and tail rotors collective inputs, rad 

ψθφ ,,   Euler angles (roll, pitch and yaw), rad  
--------------------------- 
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1. INTRODUCTION 
 
Control laws and design methods for flight control systems have evolved over the past few 
decades. Early control systems used very simple fixed form feedback structures with gains 
being first tuned by the control engineers in flight and then a subsequent scheduling of the 
gains with respect to a critical aircraft parameter. More recently, complex multivariable feed-
back laws have been designed using modern multivariable tools that optimally trade off 
among command responses, disturbance responses and robustness characteristics of the final 
closed-loop combination.  Typically, helicopter control requires flight control schemes which 
explicitly account for the intrinsic nonlinearities of the system. In addition, tactical military 
flight requirements for agile helicopters and stringent day-visual civil flight regulations de-
mand more accurate track control through out the flight envelope [1-4]. The complex gain 
scheduling, which requires time-consuming flight tests and stringent requirements, can be 
circumvented using nonlinear adaptive control system design. 
  
Because of their powerful ability to approximate linear or nonlinear functions, neural network 
aided controllers are able to adapt to changes in system dynamics quickly and still provide 
good performance. This has generated a great deal of interest in using neural network models 
for identification and control of dynamical systems with unknown nonlinearities. Consider-
able effort has gone into the mathematical investigation of neural network based adaptive 
techniques for controlling highly uncertain, nonlinear and complex systems [5]. The model 
reference adaptive control, dynamic inversion, feedback linearization, adaptive critic and 
feedback error learning neural control scheme are the various neural network techniques 
widely used in the literature [6]–[12]. 
 
In this paper, we explore the use of feedback error learning control (FENC) methodology [13] 
to develop a reconfigurable controller for helicopters performing nonlinear maneuvers. The 
FENC scheme uses a conventional controller in the inner loop to stabilize the system dynam-
ics, and the neuro-controller enhances the performance of the inner controller through on-line 
learning. In the early formulation [12], PID controller was used as the inner loop controller 
and in this study an LQR controller is used. The error for updating the neural network is based 
on the conventional controller's output signals as it truly reflects the error between the com-
mands and actual outputs. The neural controller is trained to minimize the deviation between 
the reference signal (pilot command signal) and actual output of the helicopter. The necessary 
bounded signal requirement for neural network learning is satisfied using the inner conven-
tional controller. Assuming that the inner conventional controller provides necessary bounded 
signals in fault and non-nominal conditions, the neural network is further adapted to provide 
the required tracking performance. In this paper, full state feedback is used to develop the 
baseline controller to satisfy the ADS-33 requirements under nominal flight conditions.  
 
For our simulation study, we consider a typical four-bladed helicopter similar to BO105. The 
linear model is derived at the nominal flight condition (IAS = 290 KMPH) and a baseline 
LQR controller is designed to provide the necessary stability requirements. The commonly 
used attitude command attitude hold (ACAH) system is considered for pitch axis and the rate 
command attitude hold (RCAH) system is considered for the roll and yaw axes. In case of the 
pitch axis, the outer neural controller is designed to track the pitch attitude command, whereas 
in roll and yaw axes, the neural controllers are trained to follow the roll/yaw rate command. 
The performances of the controllers are evaluated at different flight conditions and also under 
aerodynamic parameter uncertainties. An attitude quickness parameter is used to evaluate the 
controller performance. The online learning ability is demonstrated using the parameter un-
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certainty. Finally, we also present an obstacle clearance maneuver case as an example to illus-
trate the efficacy of the designed controller. 
 
 
2. HELICOPTER MODEL 
 
The helicopter considered in this study has four bladed main and tail rotors with twin engine 
model. The mathematical model used in this paper is derived from a simplified generic non-
linear helicopter model [14]. A center-spring approximation is used to model the main rotor 
and a coning disk model is used for tail rotor. Combination of look-up tables and polynomial 
functions of incidence and sideslip angles (approximation of wind tunnel data) are used to 
calculate the forces and moment components contributed by the fuselage subsystem. A two-
dimensional flow is assumed to represent the airfoils using a constant aero-dynamic lift coef-
ficient. The main and tail rotor airfoils have a simple drag model comprising zero-lift and lift 
dependent coefficients. The detailed assumptions and simplifications in force and moment 
calculations are discussed in [14]. The three main and a tail rotor actuators are modeled as a 
simple first order system.  The actuators drive the input signals to the control surfaces. In gen-
eral, the helicopter flight mechanic model can be described using the six degree-of-freedom 
(6-DOF) model as  
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where u,v and w are the translational velocities in three orthogonal directions of the fuselage 
fixed axis system, p, q and r are the angular velocities and θφ,  and ψ  are the Euler angles 
defining the orientation of the body axes relative to the earth. The force and moment compo-
nents contributed by each subsystem of the helicopter are calculated and transformed to heli-
copter center of gravity reference system. The non-linear 6-DOF helicopter model is trimmed, 
and the linearized mathematical model is derived at the nominal flight condition (at 290 
Kmph for example) using the analytical methods given in Ref. [14]. The helicopter response 
can be expressed in terms of linear equations as 
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where the state vector x comprise of x = Trqpwvu ],,,,,,,,[ ψθφ and control inputs u comprise 

of T
Tcs ],,[ 011,0 ββββ  and yp is the output vector. The linear system is augmented with the 

actuator dynamics. In general, the pitch, roll and yaw axes are controlled and the collective 
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channel is left open. This is partly due to the safety reasons and also the channel is stable [14]. 
The controlled outputs are θ,q  and φ and the measured outputs are p, q, r, ϕ and θ.  The open 
loop unstable poles at different flight conditions are given in Table. 1. From the table, we can 
see that the open-loop helicopter model have some undesirable characteristics.  The presence 
of unstable poles and zeros clearly indicate the need to design a controller to stabilize the heli-
copter model. Also, the presence of parameter uncertainty and inherent nonlinearity, leads to 
the requirement of adaptive controller design. In this paper, we present a neural adaptive con-
troller to stabilize the helicopter model and follow the command accurately. For this purpose, 
we consider ACAH system for pitch and RCAH system for the roll and yaw axes. In the fol-
lowing section, we present the details of reference model generation.  
  

Table 1. Longitudinal and lateral modes. 
  
Flight Con-
dition 

Phugoid Pitch sub-
sidence 

Heave sub-
sidence 
 

Dutch-roll Roll subsi-
dence 

Hover 0.0635 ± j0.544 -2.4 -0.419 
 

0.0000738  ± 
j0.544 

-8.0 

100 Kmph 0.0347 ± j0.344 -2.66 -0.868 
 

0.594 ± j1.74 -7.58 

200 Kmph 0.362 ± j0.256 -4.24 -0.302 
 

0.784 ±  
j2.34 

-7.37 

290 Kmph 1.50 & 0.146 -5.82 -0.213 
 

1.01 ± j3.23 -7.04 

  
2.1. Reference Model 
 
For helicopter control, the most commonly used command control systems are rate command 
attitude hold (RCAH) and attitude command attitude hold (ACAH). In this paper, we design 
ACAH in pitch axis and RCAH in roll axis. Also, we design the command filter for RCAH 
and ACAH such that the command filter response satisfies the ADS-33 handling quality 
specifications. The command filter serves as a model for desired response when helicopter is 
subjected to the pilot input signal. 
 
Attitude Command and Attitude Hold System: For ACAH system in the longitudinal axis, the 
ADS-33 handling quality specifications require the following characteristics for the helicop-
ter. 

• Pitch attitude shall return to within 10% of peak or one degree, whichever is greater, 
following a pulse input, in less than 10sec [1].  

• A step input to longitudinal cyclic )( 1sδ  shall produce a proportional pitch attitude 
change within 6 sec.  

• The pitch attitude shall remain constant between 6 and 12 seconds following the pilot 
input 

 
The command filter is designed such that it satisfies the attitude quickness criterion (ratio of 
peak pitch rate to change in pitch attitude pkpkq θ∆  for Level 1 flying quality requirement). 

The damping ratio (τ ) of the filter is between 0.6 and 0.8 and the natural frequency is 5 ra-
dian/sec. The neural controller is designed to track the response of the filter accurately based 
on   
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Fig. 1. Block diagram of feedback error learning neural control (FENC) Scheme 

 
Rate Command and Attitude Hold System: For RCAH response system in roll and yaw axes, 
the ADS-33 handling quality requires: 

• Rate response to step input should have first order response characteristic.  
• The rise time should be less than 2.5s. 

The reference command input (r) is passed through a washout filter to smoothen the transi-
tion response. The rate response filter is designed to satisfy the above requirements.  

527

5.2
2 ++

=
ss

s
TF                                                                                                    (4) 

The command filters are designed to provide Level 1 handling qualities and the neural con-
trollers are designed such that it follows the reference command signal accurately. 
 
3. RECONFIGURABLE ADAPTIVE NEURAL FLIGHT CONTROLLER DESIGN  
 
The configurable neural flight controller design uses the most widely used feedback error 
learning control scheme. The block diagram of FENC scheme is shown in Fig. 1. The refer-
ence model used is explained in the previous section. The linear quadratic regulator (LQR)          
block provides the conventional full state feed back controller and Nc is the neural controller. 
In FENC scheme, the conventional full state feedback controller in the inner loop is used to 
stabilize the helicopter and the neural controller in the outer loop approximates the unknown 
nonlinearity and provides the necessary tracking performance. The neural controller is trained 
to minimize the deviation between the reference signal (pilot command signal) and the actual 
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output of the helicopter. The control effort applied to the helicopter is the sum of the conven-
tional and neural controller signals,  
 

)()()()( krkukuku connn ++=                                                                                               (5) 

  
where unn is neural network output and ucon is the conventional control input from the linear 
quadratic regulator. The output of the reference model yp

* (qref in case of pitch axis) is to be 
compared with the state output yp (q in case of pitch axis) and the error ec is used for the con-
trol. 
  
The conventional LQR is designed based on the linearized model at the nominal flight condi-
tion. The LQR controller is able to stabilize the helicopter at various level flight conditions. In 
this study, Non-linear Auto Regressive eXogenous input (NARX) Model neural network is 
used to approximate the unknown nonlinearity. The stability and convergence of above the 
approach is discussed in Ref. [13].  
  
In this section,  the Non-linear Auto Regressive eXogenous input (NARX) Model network 
models with corresponding learning algorithms chosen are briefly discussed. Figure 2 shows 
this network, which is similar to that of the model proposed in [15]. The structure is that of a 
feed forward Artificial Neural Network (ANN) with linear filters. In this case the output of 
the plant can be described by, 
 

( ) ( ) ( ) ( ) ( )( ))(,..,),(,..., 11111 +−−+−−=+ ntytytyntututufty                                            (6)                                                                            
 
 A series parellel model is used and the network output is then given by  
 

( ) ( ) ( ) ( ) ( )( ))(,..,),(..,,ˆ 11111 +−−+−−=+ ntytytyntututuNty                                         (7)    
                                                                   
where, N(.) is the network approximation function. Bipolar sigmoidal function is used as the 
squashing function at hidden as well as output layer. The network model is trained using Back 
Propagation Through Time (BPTT) algorithm as described in [15]. For details of the NARX 
network model and learning algorithm, one can refer to [15,16]. 
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Fig.2 Nonlinear Auto Regressive eXogeneous Input Network Architecture. 
 
4. SIMULATION STUDIES AND RESULTS 
 
In our simulation studies, the helicopter model is trimmed at different flight conditions. A 
helicopter having a soft in plane four-bladed hingeless main rotor and a four bladed tail rotor 
with conventional mechanical controls is used for the simulation studies. Using the analytical 
methods presented in Ref. [14], the linear system is derived at different flight conditions.  
Based on the linear model, we derive the neural flight controllers using an adaptive control 
scheme to follow the pilot command signals. First, we present the simulation results for the 
FENC scheme under the nominal flight condition. Finally, we also present the simulation re-
sults for an obstacle avoidance maneuver.   
 
4.1. Baseline Neural Controllers 
 
The proposed adaptive neural control scheme is applied to a helicopter model. Simulation 
studies are carried-out using a linear model trimmed at different level flight conditions. Based 
on the linear model, we derive the feedback gains using LQR approach. The baseline control-
ler is designed to decouple the modes of the helicopter. Three different neural controllers 
NNlat , NNlon  and  NNdir  in roll, pitch  and yaw axes respectively are designed based on the 
multilayer perceptron network with a linear filter. The ACAH and RCAH system are devel-
oped at the nominal flight condition. The designed controllers are tested at other flight condi-
tions. Now, we first present the simulation results for ACAH system in pitch axis.  
 
Pitch Attitude Neural Controller: The inputs to the neural controller are the qwu ,,  and θ  

responses and output of the controller (Nlon) is the longitudinal cyclic input )( 1sβ . The per-

formance capabilities of the neural controller are tested with a reference pulse input of 0.05 
radian. The response of the helicopter and the reference input and outputs are shown in Fig. 3. 
From Fig. 3, it can be seen that the pitch attitude of helicopter exactly follows the reference 
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command signal. Also, the control effort required to follow the command signal is less than 
the maximum limit. From the figure, we can say that the FENC controller stabilizes the heli-
copter and also provides necessary tracking performance. The controller is also tested with the 
same command signal at other flight conditions. The controller is adapted on-line to compen-
sate for the variation in plant dynamics. The results show that the controller is able to stabilize 
and track the command accurately.  
 

Roll Rate Neural Controller: The inputs to the neural controller are the φ,,rp  and ψ  re-

sponses and output of the controller (Nlat) is the lateral cyclic input )( 1cβ . The performance of 
the neural controller is tested with a reference pulse input of 0.05 radian. The response of the 
helicopter and the reference input and outputs are shown in Fig. 4. From Fig. 4, it can be seen 
that the roll rate of helicopter exactly follows the reference command signal. Also, the control 
effort required to follow the command signal is less than the maximum limit. From the figure, 
we can say that the FENC controller is able to stabilize the helicopter and also provides nec-
essary tracking performance.  
 

Yaw Rate Neural Controller: The inputs to the neural controller are the φ,,rp and ψ  re-

sponses and output of the controller (Ndir) is the tail rotor collective input )( 0Tβ  to the heli-

copter model. The performance capabilities of the neural controller are tested with a reference 
pulse input of 0.05 radian. The response of the helicopter and the reference input and outputs 
are shown in Fig. 5.  

 
 

Fig. 3. Helicopter response and control surface deflection for pitch attitude command signal. 
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Fig. 4. Helicopter response and control surface deflection for roll rate command signal. 
 

From Fig. 5, it can be seen that the yaw rate of helicopter exactly follows the reference com-
mand signal. Also, the control effort required to follow the command signal is less than the 
maximum limit. From the figure, we can say that the controller is able to stabilize the helicop-
ter and also provides necessary tracking performance.  
 

 

Fig.5. Helicopter response and control surface deflection for yaw rate command signal 
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The qualitative performance of the FENC controller is studied at different flight conditions 
such as hover, 100 Kmph, 200 Kmph and 290 Kmph and is found to be satisfactory.  It is ob-
served that the FENC controller stabilizes and track the command accurately under normal 
flight conditions.  
 
4.2 Performance under Parameter Uncertainty Condition 
 
Now, we study the robustness of the controllers by testing the performance of the controller in 
a flight condition with variation in centre of gravity (C.G). Using the analytical methods pre-
sented in Ref. [14], the linear system is derived at a forward speed of 290 Kmph in aft C.G., 
and forward C.G. The stability characteristics of the longitudinal dynamics vary with variati-
ons in the longitudinal C.G.. The helicopter is unstable at aft C.G compared to the forward 
C.G conditions. The performance of the pitch controller is evaluated with respect to variation 
of the C.G. at 290 Kmph aft and forward C.G. Fig. 6 gives the response of the helicopter to a 
longitudinal cyclic input. The controller was trained at a trim condition of 290 Kmph with a 
forward C.G. and tested with 290 Kmph with an aft C.G. without on-line training and with 
on-line training.  From the figure, we can see that the on-line training improves the perfor-
mance of the controller and that the controller is capable of reconfiguring during on-line trai-
ning.  From the above results, we can clearly see that the controller adapts for parameter un-
certainty and nonlinearity and reduces the tracking error of the baseline controller. 
 
 

 
 

Fig.6 Pitch response under C.G. variation. 
 
4.3 Performance Under Obstacle Clearance Maneuver 
 
In this section, the performance of the neural controller developed in the previous section is 
tested for executing an obstacle clearance maneuver.  The importance of designing an adap-
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tive nonlinear controller to control the above maneuver lies in the fact that this maneuver 
range in a short time and it brings out all the nonlinearities of the helicopter.  
 
The obstacle clearance maneuver starts with steady straight and level flight at nominal flight 
condition (forward speed of 290 Kmph). A pitch-up command to the helicopter is applied   to 
increase the pitch attitude )(θ  from its trim value to 10 deg in a duration of 3 seconds. The 
pitch attitude is kept constant for 5 seconds duration and it is decreased to the initial trim 
value at 8 seconds. Now, the helicopter maintains straight and level flight condition at nomi-
nal flight condition. The performance capabilities of the designed controller for executing the 
obstacle clearance maneuver is presented based on the results from this simulation package.     
Fig. 7 presents the response of the nonlinear helicopter model performing obstacle clearance 
maneuver with strong wind disturbance. From the figure, we can clearly observe that the air-
craft follows the command accurately and rejects the disturbance very well. It is clear from 
these figures that the proposed control scheme provides satisfactory performance for nonlin-
ear maneuver.  
 
4.4 ADS-33 Performance Evaluation 
 
One of the important parameters that measure the ability of the helicopter to achieve rapid and 
precise change in attitude when performing a sharp maneuver is the attitude quickness. The 
attitude quickness parameter in ADS-33 is defined in the pitch axis as the ratio between the 
maximum angular rate )( pkq and the peak attitude angle change )( pkθ [1]. The attitude quick-

ness parameter is measured at the nominal flight condition for a series of pulse inputs with 
varying pulse duration. 

 

Fig. 7. Helicopter Response for Obstacle Clearance Maneuver. 
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Figure. 8 illustrates the attitude quickness parameter with respect to the minimum pitch atti-
tude change )( minθ∆ for different pulse durations in a straight  and level flight condition and a 
forward speed of 290 Kmph. The Level 1 boundary requirement is also plotted to show that 
the FENC scheme satisfies the ADS-33 requirements. Figure 9 shows the attitude quickness 
parameter with respect to the minimum roll attitude change )( minθ∆ for different pulse dura-
tions in a straight  and level flight condition and a forward speed of 290 Kmph. The Level 1 
criteria requirement is also plotted to show that the FENC scheme satisfies the ADS-33 re-
quirements. The attitude quickness parameters for pitch, roll and yaw responses for the flight 
conditions hover, 100 Kmph, 200 Kmph and 290 Kmph are provided in Tables 2, 3 and 4 
respectively. It can be seen that FENC scheme satisfies Level 1 criteria for all these condi-
tions. 
 
Table 2. Attitude quickness parameters for longitudinal cyclic input ( 2s pulse duration) 
  
 
Flight condition 

minθ∆  (deg) pkpkq θ∆  (1/sec) Meets Level 1/Level 2/Level 3 

Hover 12 0.6 Level 1 
100 Kmph 7 1.1 Level 1 
200 Kmph 7 0.7 Level 1 
290 Kmph 8 0.7 Level 1 

 
 
  

Table 3. Attitude quickness parameters for lateral cyclic input ( 2s pulse duration) 
 

Flight condition 
minφ∆  (deg) pkpkp φ∆  (1/sec) Meets Level 1/Level 2/Level 3 

Hover 25 2.4 Level 1 
100 Kmph 14 2.0 Level 1 
200 Kmph 12 2.0 Level 1 
290 Kmph 15 2.0 Level 1 

 
 

Table 4. Attitude quickness parameters for yaw, pedal input ( 2s pulse duration) 
  

Flight condition 
minψ∆  (deg) pkpkr ψ∆  (1/sec) Meets Level 1/Level 2/Level 3 

Hover 7 2.6 Level 1 
100 Kmph 9 1.9 Level 1 
200 Kmph 10 1.7 Level 1 
290 Kmph 7 2.4 Level 1 
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Fig. 8. Pitch attitude quickness criterion at nominal flight condition. 
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Fig. 9. Roll attitude quickness criterion at nominal flight condition. 
 
5. CONCLUSION 
 
In this paper, we have presented the feasibility of using an adaptive neural controller for an 
unstable helicopter model. A NARX algorithm is used to design a feedback error learning 
neural controller. An attitude command and attitude hold for the pitch axis and rate command 
and attitude hold systems for the roll and the yaw axes are designed. The baseline controller is 
designed using a full state feedback scheme at nominal flight condition. The   controller com-
pensates for unknown nonlinearities and parameter uncertainties.  From the simulation results, 
it can be inferred that the control strategy using controller algorithm exhibits good tracking 
performance. The attitude quickness criterion clearly indicate that the FENC scheme satisfy 
the ADS-33 flying quality requirement and also robust under parameter uncertainty. The atti-
tude quickness parameters for pitch, roll and yaw responses for the flight conditions hover, 
100 Kmph, 200 Kmph and 290 Kmph are studied and are shown to meet the Level 1 require-
ment of ADS-33 for all these conditions. 
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