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Abstract: The purpose of this paper is to design a recordigje neural flight control system
to improve its stability, manoeuvrability and atyilof helicopter. The reconfigurable neural
flight control system uses feedback error learmiogtrol (FENC) methodology to achieve the
desired flying quality requirements. FENC methodglaises neural controller in the outer
loop to enhance the performance of the inner caiwead controller. Firstly, the linear
mathematical model is derived from the non-lineardegree-of-freedom dynamic equations.
Then, linear quadratic regulator theory is apptiedhe linearized model to design a control
system which satisfies the Aeronautical Design &ath (ADS-33) specifications. The outer
neural controller parameters are adapted to comapetigr the intrinsic nonlinearities of the
helicopter and the parameter uncertainty in the ehddvelopment. The neural controller is
reconfigured on-line to provide necessary perforreamder centre-of-gravity variations. The
robustness of the proposed control scheme is eealusing flying quality attitude quickness
criterion for different forward speed conditiondi€Tattitude quickness parameters for pitch,
roll and yaw responses for the flight conditionwdr 100 Kmph, 200 Kmph and 290 Kmph
are studied and are shown to meet the Level 1 memeint of ADS-33 for all these conditions.
The paper also presents an obstacle clearance waaneuillustrate the effectiveness of the
proposed control scheme.

Nomenclature

A system matrix

ACAH attitude command and attitude hold
ADS-33 aeronautical design standards

B control matrix

HOR handling quality requirement

L,M,N moment components at C.G

RCAH rate command and attitude hold
XY,Z total forces acting at C.G

u, v, w vehicle velocities,

X state vectok = [u,v,w, p,q,T,¢,6,¢]
Bis, B longitudinal and lateral cyclic inputsad
By B main and tail rotors collective inputsid
¢,6,y Euler angles (roll, pitch and yawpd
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1. INTRODUCTION

Control laws and design methods for flight consgstems have evolved over the past few
decades. Early control systems used very simpkdfiform feedback structures with gains
being first tuned by the control engineers in ftigind then a subsequent scheduling of the
gains with respect to a critical aircraft parameltore recently, complex multivariable feed-
back laws have been designed using modern mubiviritools that optimally trade off
among command responses, disturbance responsestarginess characteristics of the final
closed-loop combinationTypically, helicopter control requires flight control schemdsch
explicitly account for the intrinsic nonlinearitied the system. In addition, tactical military
flight requirements for agile helicopters and gient day-visual civil flight regulations de-
mand more accurate track control through out tightflenvelope [1-4]. The complex gain
scheduling, which requires time-consuming flighstseand stringent requirements, can be
circumvented using nonlinear adaptive control systiesign.

Because of their powerful ability to approximateelar or nonlinear functions, neural network
aided controllers are able to adapt to changeystes dynamics quickly and still provide
good performance. This has generated a great fi@agkoest in using neural network models
for identification and control of dynamical systemgh unknown nonlinearities. Consider-
able effort has gone into the mathematical invastig of neural network based adaptive
techniques for controlling highly uncertain, noelam and complex systems [5]. The model
reference adaptive control, dynamic inversion, beett linearization, adaptive critic and
feedback error learning neural control scheme heevarious neural network techniques
widely used in the literature [6]-[12].

In this paper, we explore the use of feedback éeaning control (FENC) methodology [13]
to develop a reconfigurable controller for helicagt performing nonlinear maneuvers. The
FENC scheme uses a conventional controller inrtheriloop to stabilize the system dynam-
ics, and the neuro-controller enhances the perfocamaf the inner controller through on-line
learning. In the early formulation [12], PID cortes was used as the inner loop controller
and in this study an LQRontroller is used. The error for updating the aénetwork is based
on the conventional controller's output signalstasuly reflects the error between the com-
mands and actual outputs. The neural controlleraised to minimize the deviation between
the reference signal (pilot command signal) andaautput of the helicopter. The necessary
bounded signal requirement for neural network liegyris satisfied using the inner conven-
tional controller. Assuming that the inner convenél controller provides necessary bounded
signals in fault and non-nominal conditions, thenaé network is further adapted to provide
the required tracking performance. In this papel, dtate feedback is used to develop the
baseline controller to satisfy the ADS-33 requiratsaunder nominal flight conditions.

For our simulation study, we consider a typicalrfbladed helicopter similar to BO105. The
linear model is derived at the nominal flight cdiah (IAS = 290 KMPH) and a baseline
LQR controller is designed to provide the necessaapility requirements. The commonly
used attitude command attitude hold (ACAH) systeroansidered for pitch axis and the rate
command attitude hold (RCAH) system is consideogdte roll and yaw axes. In case of the
pitch axis, the outer neural controller is desigtettack the pitch attitude command, whereas
in roll and yaw axes, the neural controllers aaéntd to follow the roll/yaw rate command.
The performances of the controllers are evaluatetiffarent flight conditions and also under
aerodynamic parameter uncertainties. An attitudekaess parameter is used to evaluate the
controller performance. The online learning abilgydemonstrated using the parameter un-



certainty. Finally, we also present an obstaclaralece maneuver case as an example to illus-
trate the efficacy of the designed controller.

2.HELICOPTER MODEL

The helicopter considered in this study has foadétl main and tail rotors with twin engine
model. The mathematical model used in this papeeis/ed from a simplified generic non-
linear helicopter model [14]. A center-spring appnaation is used to model the main rotor
and a coning disk model is used for tail rotor. ®amation of look-up tables and polynomial
functions of incidence and sideslip angles (appnation of wind tunnel data) are used to
calculate the forces and moment components cotgdbioy the fuselage subsystem. A two-
dimensional flow is assumed to represent the #riging a constant aero-dynamic lift coef-
ficient. The main and tail rotor airfoils have anpie drag model comprising zero-lift and lift
dependent coefficients. The detailed assumptiomk samplifications in force and moment
calculations are discussed in [14]. The three raaih a tail rotor actuators are modeled as a
simple first order system. The actuators driveitipait signals to the control surfaces. In gen-
eral, the helicopter flight mechanic model can bsaidibed using the six degree-of-freedom
(6-DOF) model as

u= —(wq—vr)+ML—gsin6?

a

vV =—(ur —wp) +ML - gcosfsing

a

W= —(vp—uq)+M£—gcosecos¢

e P=(1y —1Z)ar +1,,(F +pa) + L

G =, =1, )rp+1,(2-p*)+M (1)

l.f =(a=1y)pa+l (p=-ar)+N

@= p+gsingtand+ r cosptand

0= qcosp-rsing

Y =qsingsedd+r cospsedd

whereu,v andw are the translational velocities in three orthodainactions of the fuselage

fixed axis systenmyp, g andr are the angular velocities agdé and ¢ are the Euler angles

defining the orientation of the body axes relatv¢he earth. The force and moment compo-
nents contributed by each subsystem of the heke@rt calculated and transformed to heli-
copter center of gravity reference system. Thelim@ar 6-DOF helicopter model is trimmed,
and the linearized mathematical model is derivetti@nominal flight condition (at 290
Kmph for example) using the analytical methods giwveRef. [14]. The helicopter response
can be expressed in terms of linear equations as

X=Ax+Bu

y, =Cx @
where the state vectarcomprise ofk = [u,v,w, p,q,r,,6,]" and control inputsl comprise
of [B, BB, B 1" and y, is the output vector. The linear system is augentith the

actuator dynamics. In general, the pitch, roll gad/ axes are controlled and the collective



channel is left open. This is partly due to theegafeasons and also the channel is stable [14].
The controlled outputs arg, & and ¢ and the measured outputs pre, r,  andd. The open
loop unstable poles at different flight conditicare given in Table. 1. From the table, we can
see that the open-loop helicopter model have sardesirable characteristics. The presence
of unstable poles and zeros clearly indicate tleite design a controller to stabilize the heli-
copter model. Also, the presence of parameter taiogr and inherent nonlinearity, leads to
the requirement of adaptive controller design.his paper, we present a neural adaptive con-
troller to stabilize the helicopter model and fallthe command accurately. For this purpose,
we consider ACAH system for pitch and RCAH systemthe roll and yaw axes. In the fol-
lowing section, we present the details of referanceel generation.

Table 1. Longitudinal and lateral modes.

Flight Con- | Phugoid Pitch sub- | Heave sub- | Dutch-roll Roll subsi-

dition sidence sidence dence

Hover 0.0635 +j0.544 -2.4 -0.419 | 0.0000738 + -8.0
j0.544

100 Kmph 0.0347 £j0.344 -2.66 -0.868 | 0.594 +j1.74 -7.58

200 Kmph 0.362 £j0.256 -4.24 -0.302 0.784 + -7.37
j2.34

290 Kmph 1.50 & 0.146 -5.82 -0.213 | 1.01+£j3.23 -7.04

2.1. Reference M odel

For helicopter control, the most commonly used camdncontrol systems are rate command
attitude hold (RCAH) and attitude command attitinbdd (ACAH). In this paper, we design
ACAH in pitch axis and RCAH in roll axis. Also, waesign the command filter for RCAH
and ACAH such that the command filter responsesfesi the ADS-33 handling quality
specifications. The command filter serves as a infmdalesired response when helicopter is
subjected to the pilot input signal.

Attitude Command and Attitude Hold System: For ACAH system in the longitudinal axis, the
ADS-33 handling quality specifications require fodowing characteristics for the helicop-
ter.
« Pitch attitude shall return to within 10% of peakome degree, whichever is greater,
following a pulse input, in less than 10sec [1].
e A step input to longitudinal cycli¢d,, »hall produce a proportional pitch attitude
change within 6 sec.
¢ The pitch attitude shall remain constant betweamd 12 seconds following the pilot
input

The command filter is designed such that it s&tssthe attitude quickness criterion (ratio of
peak pitch rate to change in pitch attitugle /Ag, for Level 1 flying quality requirement).
The damping ratiox) of the filter is between.6 and 08 and the natural frequency is 5 ra-
dian/sec. The neural controller is designed toktthe response of the filter accurately based
on
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Fig. 1. Block diagram of feedback error learning neural control (FENC) Scheme

Rate Command and Attitude Hold System: For RCAH response system in roll and yaw axes,
the ADS-33 handling quality requires:
¢ Rate response to step input should have first aetgronse characteristic.

¢ The rise time should be less thaB2
The reference command inpu) (s passed through a washout filter to smoothentirinsi-

tion response. The rate response filter is desigmedtisfy the above requirements.
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The command filters are designed to provide Levlhdling qualities and the neural con-
trollers are designed such that it follows the meriee command signal accurately.
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3. RECONFIGURABLE ADAPTIVE NEURAL FLIGHT CONTROLLER DESIGN

The configurable neural flight controller desigresigshe most widely used feedback error
learning control scheme. The block diagram of FES¢@eme is shown in Fig. 1. The refer-
ence model used is explained in the previous seclibe linear quadratic regulator (LQR)
block provides the conventional full state feedkbecontroller and Nis the neural controller.
In FENC scheme, the conventional full state feellmmtroller in the inner loop is used to
stabilize the helicopter and the neural contraltethe outer loop approximates the unknown
nonlinearity and provides the necessary trackinfppmance. The neural controller is trained
to minimize the deviation between the referenceaigpilot command signal) and the actual



output of the helicopter. The control effort apgli® the helicopter is the sum of the conven-
tional and neural controller signals,

u(k) = U, (k) +ug,(k)+r(k) (5)
whereuy, is neural network output ang,, is the conventional control input from the linear
quadratic regulator. The output of the referencelehg, (g« in case of pitch axis) is to be

compared with the state outpt(q in case of pitch axis) and the eregris used for the con-
trol.

The conventional LQR is designed based on thetiimed model at the nominal flight condi-
tion. The LQR controller is able to stabilize thedibopter at various level flight conditions. In
this study, Non-linear Auto Regressive eXogenoymiir(NARX) Model neural network is
used to approximate the unknown nonlinearity. Ttadibty and convergence of above the
approach is discussed in Ref. [13].

In this section, the Non-linear Auto Regressiveogéhous input (NARX) Model network
models with corresponding learning algorithms choaee briefly discussed. Figure 2 shows
this network, which is similar to that of the mogkebposed in [15]. The structure is that of a
feed forward Artificial Neural Network (ANN) withidear filters. In this case the output of
the plant can be described by,

y(t +1) = f(u(t),u(t —1),..u(t —n+1),y(t),y(t —1),..y(t —n+1)) (6)
A series parellel model is used and the netwotkudus then given by
Y(t+1)= N(ut),ult -1)...u(t—n+1),y(t), y{t -1),.y(t -n+1)) (7)

where,N(.) is the network approximation function. Bipolarmigidal function is used as the
squashing function at hidden as well as outputrlaiee network model is trained using Back
Propagation Through Time (BPTT) algorithm as démtiin [15]. For details of the NARX
network model and learning algorithm, one can refgi5,16].
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Fig.2 Nonlinear Auto Regressive eXogeneous Input Network Architecture.

4. SMULATION STUDIESAND RESULTS

In our simulation studies, the helicopter modetrisimed at different flight conditions. A
helicopter having a soft in plane four-bladed hlege main rotor and a four bladed tail rotor
with conventional mechanical controls is used Fa& simulation studies. Using the analytical
methods presented in Ref. [14], the linear systerderived at different flight conditions.
Based on the linear model, we derive the neurghtlcontrollers using an adaptive control
scheme to follow the pilot command signals. Fivet, present the simulation results for the
FENC scheme under the nominal flight condition.afliyy we also present the simulation re-
sults for an obstacle avoidance maneuver.

4.1. Baseline Neural Controllers

The proposed adaptive neural control scheme isieappd a helicopter model. Simulation
studies are carried-out using a linear model trichaedifferent level flight conditions. Based
on the linear model, we derive the feedback gasisguLQR approach. The baseline control-
ler is designed to decouple the modes of the hatlico Three different neural controllers
NNt , NNon and NN in roll, pitch and yaw axes respectively areiglesd based on the
multilayer perceptron network with a linear filterhe ACAH and RCAH system are devel-
oped at the nominal flight condition. The desigeedtrollers are tested at other flight condi-
tions. Now, we first present the simulation restdtsACAH system in pitch axis.

Pitch Attitude Neural Controller: The inputs to the neural controller are thav,q and 8
responses and output of the controlli,{) is the longitudinal cyclic input{g,,). The per-

formance capabilities of the neural controller tasted with a reference pulse input ®®
radian. The response of the helicopter and theeeée input and outputs are shown in Fig. 3.
From Fig. 3, it can be seen that the pitch attitaflbelicopter exactly follows the reference



command signal. Also, the control effort requiredfdllow the command signal is less than
the maximum limit. From the figure, we can say ttiet FENC controller stabilizes the heli-

copter and also provides necessary tracking pedoce The controller is also tested with the
same command signal at other flight conditions. @tetroller is adapted on-line to compen-
sate for the variation in plant dynamics. The risssthow that the controller is able to stabilize
and track the command accurately.

Roll Rate Neural Controller: The inputs to the neural controller are tper,¢ and ¢ re-
sponses and output of the controlli is the lateral cyclic inpu¢3,. .)The performance of
the neural controller is tested with a referencisginput of 0.05 radian. The response of the
helicopter and the reference input and outputskoevn in Fig. 4. From Fig. 4, it can be seen
that the roll rate of helicopter exactly followstheference command signal. Also, the control
effort required to follow the command signal isslélsan the maximum limit. From the figure,
we can say that the FENC controller is able toiszabthe helicopter and also provides nec-
essary tracking performance.

Yaw Rate Neural Controller: The inputs to the neural controller are tper,¢gand ¢ re-
sponses and output of the controllBg() is the tail rotor collective inpufs,,) to the heli-

copter model. The performance capabilities of theral controller are tested with a reference
pulse input of M5 radian. The response of the helicopter andefexence input and outputs
are shown in Fig. 5.
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Fig. 3. Helicopter response and control surface deflection for pitch attitude command signal.
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Fig. 4. Helicopter response and control surface deflection for roll rate command signal.

From Fig. 5, it can be seen that the yaw rate bEdyter exactly follows the reference com-
mand signal. Also, the control effort required edldw the command signal is less than the
maximum limit. From the figure, we can say that tatroller is able to stabilize the helicop-
ter and also provides necessary tracking performanc
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Fig.5. Helicopter response and control surface deflection for yaw rate command signal



The qualitative performance of the FENC controlestudied at different flight conditions

such as hover, 100 Kmph, 200 Kmph and 290 Kmphisfmund to be satisfactory. It is ob-

served that the FENC controller stabilizes andktriiie command accurately under normal
flight conditions.

4.2 Performance under Parameter Uncertainty Condition

Now, we study the robustness of the controllergelsying the performance of the controller in
a flight condition with variation in centre of giigw (C.G). Using the analytical methods pre-
sented in Ref. [14], the linear system is derived #orward speed of 290 Kmph in aft C.G.,
and forward C.G. The stability characteristicstad tongitudinal dynamics vary with variati-
ons in the longitudinal C.G.. The helicopter is tabte at aft C.G compared to the forward
C.G conditions. The performance of the pitch cdigras evaluated with respect to variation
of the C.G. at 290 Kmph aft and forward C.G. Figyi¥es the response of the helicopter to a
longitudinal cyclic input. The controller was trathat a trim condition of 290 Kmph with a
forward C.G. and tested with 290 Kmph with an afGCwithout on-line training and with
on-line training. From the figure, we can see tit on-line training improves the perfor-
mance of the controller and that the controllezapable of reconfiguring during on-line trai-
ning. From the above results, we can clearly baethe controller adapts for parameter un-
certainty and nonlinearity and reduces the trackimgr of the baseline controller.
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Fig.6 Pitch response under C.G. variation.
4.3 Performance Under Obstacle Clear ance Maneuver

In this section, the performance of the neural dler developed in the previous section is
tested for executing an obstacle clearance maneuMee importance of designing an adap-
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tive nonlinear controller to control the above marexr lies in the fact that this maneuver
range in a short time and it brings out all thelmaarities of the helicopter.

The obstacle clearance maneuver starts with stetaaight and level flight at nominal flight
condition (forward speed of 290 Kmph). A pitch-ugnamand to the helicopter is applied to
increase the pitch attitud@) from its trim value to 10 deg in a duration of&ends. The
pitch attitude is kept constant for 5 seconds domaand it is decreased to the initial trim
value at 8 seconds. Now, the helicopter maintatirasght and level flight condition at nomi-
nal flight condition. The performance capabilitefsthe designed controller for executing the
obstacle clearance maneuver is presented basdteaedults from this simulation package.
Fig. 7 presents the response of the nonlineardpke model performing obstacle clearance
maneuver with strong wind disturbance. From tharkigwe can clearly observe that the air-
craft follows the command accurately and rejecesdisturbance very well. It is clear from
these figures that the proposed control schemeiqas\satisfactory performance for nonlin-
ear maneuver.

4.4 ADS-33 Performance Evaluation

One of the important parameters that measure titigyals the helicopter to achieve rapid and
precise change in attitude when performing a shaapeuver is the attitude quickness. The
attitude quickness parameter in ADS-33 is defimethe pitch axis as the ratio between the

maximum angular ratéq,, ) and the peak attitude angle char(@, ) [1]. The attitude quick-

ness parameter is measured at the nominal flighdliton for a series of pulse inputs with
varying pulse duration.
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Fig. 7. Helicopter Response for Obstacle Clearance Maneuver.
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Figure. 8 illustrates the attitude quickness patameith respect to the minimum pitch atti-
tude changgAd,,,) for different pulse durations in a straight angeleflight condition and a
forward speed of 290 Kmph. The Level 1 boundary meguent is also plotted to show that
the FENC scheme satisfies the ADS-33 requiremeingsiré 9 shows the attitude quickness
parameter with respect to the minimum roll attitwi@nge(A8,,,, Jor different pulse dura-
tions in a straight and level flight condition aadorward speed of 290 Kmph. The Level 1
criteria requirement is also plotted to show tlee FEENC scheme satisfies the ADS-33 re-
quirements. The attitude quickness parameters foh,pioll and yaw responses for the flight
conditions hover, 100 Kmph, 200 Kmph and 290 Kmph @rovided in Tables 2, 3 and 4

respectively. It can be seen that FENC scheme igatisevel 1 criteria for all these condi-
tions.

Table 2. Attitude quickness parametersfor longitudinal cyclic input ( 2s pulse duration)

Flight condition A6, (deg) qpk/Agpk (1/sec)| Meets Level 1/Level 2/Level 3
Hover 12 0.6 Level 1
100 Kmph 7 1.1 Level 1
200 Kmph 7 0.7 Level 1
290 Kmph 8 0.7 Level 1

Table 3. Attitude quickness parameter sfor lateral cyclic input ( 2s pulse duration)

Flight condition| A¢, .. (deg) P /D@, (1/sec)| Meets Level 1/Level 2/Level 3
Hover 25 2.4 Level 1
100 Kmph 14 2.0 Level 1
200 Kmph 12 2.0 Level 1
290 Kmph 15 2.0 Level 1

Table 4. Attitude quickness parametersfor yaw, pedal input ( 2s pulse duration)

Flight condition| Ay, . (deg) | r, /Ay, (1/sec)| Meets Level 1/Level 2/Level 3
Hover 7 2.6 Level 1
100 Kmph 9 1.9 Level 1
200 Kmph 10 1.7 Level 1
290 Kmph 7 2.4 Level 1

12
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Fig. 9. Roll attitude quickness criterion at nominal flight condition.
5. CONCLUSION

In this paper, we have presented the feasibilitysihg an adaptive neural controller for an
unstable helicopter model. A NARX algorithm is ugeddesign a feedback error learning
neural controller. An attitude command and attithd&l for the pitch axis and rate command
and attitude hold systems for the roll and the yxes are designed. The baseline controller is
designed using a full state feedback scheme atrradrflight condition. The controller com-
pensates for unknown nonlinearities and parametegrtainties. From the simulation results,
it can be inferred that the control strategy ustogtroller algorithm exhibits good tracking
performance. The attitude quickness criterion clesmtlicate that the FENC scheme satisfy
the ADS-33 flying quality requirement and also rebunder parameter uncertainty. The atti-
tude quickness parameters for pitch, roll and yasponses for the flight conditions hover,
100 Kmph, 200 Kmph and 290 Kmph are studied andlaogvn to meet the Level 1 require-
ment of ADS-33 for all these conditions.
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