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ABSTRACT 

Helicopter flight control systems can be successfully tuned using sensitivity 
functions. Systematic adjustments to control system parameters are made on the 
basis of responses measured from the system to be tuned. The importance of the 
method lies in its ability to optimize controllers in the presence of unmodelled 
dynamics such as those of the rotor. The adjustment procedure will yield a 
controlled system whose dynamics are as close to those of a reference model as 
the plant dynamics will allow. 

1 l INTRODUCTION 

Much effort is currently being expended in attempts to design helicopter 
flight control systems using active control technology (ACT). The motivation 
behind this work is largely a desire to produce battlefield helicopters with better 
handling qualities and more extensive flight envelopes. Indeed, the lethality of 
the modern battlefield demands improved helicopter performance and ease of 
operations. Some of the "nap of the earth" manoeuvres required for a successful 
mission will only be possible through the use of ACT in control system design. 
The helicopter community is relying on its ability to successfully design control 
configured vehicles (CCV's) in order to meet these requirements. However, at 
the heart of every design will be a mathematical model of the raw plant dynamics 
and the outcome of the design process will largely be determined by the accuracy 
with which the plant dynamics are known. 

There are numerous examples of fixed wing aircraft which have had to 
have their multivariable control systems redesigned because the of unsatisfactory 
performance of the original design [1]. Problems with the implementation of 
ACT will be more severe on rotorcraft than on fixed wing aircraft because the 
dynamics of the helicopter plant, particularly those of the rotor, are not as well 
understood nor modelled. As the bandwidths of flight control systems are 
extended to higher frequencies, unmodelled high order dynamics can degrade the 
performance of the controlled system [2]. Unmodelled rotor and actuator 
dynamics will be stumbling blocks for many types of control theory such as modal 
control because these dynamics can have adverse effects on stability. These 
unmodelled dynamics create a need for tuning flight control systems which will 
become increasingly important as ACT matures. 

The need to adjust the flight systems 
preliminary flight tests is not a new problem. 
techniques which are presently being used will 
full- authority fly- by- wire flight controllers. 
integration which is implied by the use of ACT 
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of helicopters as a result of 
However, the trial and error 

undoubtedly be inadequate for 
The high level of system 

will obscure the relation of each 



adjustable parameter of the controller to the overall dynamics of the system. 
Making a series of test flights in order to find the best set of controller 
parameters using trial and error techniques is not only costly, but also inefficient. 
The fundamental difficulty with the trial and error approach is that it suffers from 
a lack of quantitative information concerning the parameters which should be 
adjusted and the amount by which they should be changed. 

Sensitivity functions provide information which is useful concerning two 
aspects of the tuning problem. First, since sensitivity functions provide a measure 
of the change in the system response which will result from changes in control 
system parameters, their amplitudes indicating which parameters are significant in 
terms of the system response. By tuning parameters which significantly affect the 
system's dynamics, adjustments can be kept to a minimum. The second aspect of 
the tuning problem is that of knowing how parameters will affect system response 
and this information is also provided by the sensitivity functions. As will be 
shown, time domain optimization can be performed by using state variable 
sensitivities to determine the required shifts in controller parameters. 

2 ) THE PARAMETER ADJUSTMENT ALGORITHM 

The adjustment algorithm is based on the idea that from the sensitivity 
functions it is possible to predict the changes which will occur to the system 
response as a result of changing the parameter values, "'i• in the flight control 
system. The prediction of what the modified state response will be is generated 
using Newton- Raphson techniques. The predicted system response after 
parameter shifts, to second order accuracy, is given by, 

(1) 

Where ~m(t) is the predicted or modified system response vector 
~aCt) is the measured or actual system response vector 
ra~a(t)/aa] is the matrix of first order sensitivity funtions 

of the actual system response 
[a2~aCt)/aaa~J is the matrix of second order sensitivity 

functions of the actual system response 
M1 - [ t.a1 b<>2 ban ] T 
M2 - [ bal bal ful fu2 banban ] T 
bai are the changes in the values of the control system 

parameters ai 

In order to systematically tune a flight control system, there must be a 
criterion by which improvements in system response can be measured. Sensitivity 
functions allow the prediction of what the modified system response will look like 
but this information is virtually useless if it is not possible to quantitatively say 
that one response is better than another. For each set of possible control system 
parameter values, a figure of merit must be assigned to the system response. By 
comparing the figures of merit associated with various sets of parameter 
perturbations, it is possible to identify the ·~hanges which will lead to the greatest 
improvement in response. 

The figures of merit used to compare the possible sets of parameter values 
can take many forms. This paper describes the use of a figure of merit which is 
calculated using the Least Integral Error Square Performance Index which attempts 
to tune the system response towards an 'ideal' system response. It is a model 
reference technique. 
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2.1 ) Least IntegTal Error Square Performance Index 

The objective of the Least Integral Error Square Performance Index is to 
make the system responses as similar as possible to desired or 'ideal' system 
responses. These 'ideal' responses can be generated by any means, but are in 
general just the responses which one generates from the simulation model used for 
the design of the control system [3]. When the simulation model and the actual 
system are excited by the same inputs, there will be differences in the responses 
which one observes from the two systems. With the Least IntegTal Error Square 
Performance Index, the difference between the two signals is squared and summed 
to yield a measure of the difference between the two response signals. The 
difference between these two signals is squared in order to avoid positive and 
negative excursions of the difference signal cancelling each other. 

In the past, single- input single- output systems have been successfully 
tuned using a Least Integral Error Square Performance Index. For single- input, 
single- output systems, the time domain adjustment algorithm is given by Winning 
et.al. [4]. The primary constraint on the expansion of the single- input 
single- output tuning theory towards multivariable systems is in the generation of 
sensitivity functions. For single- input single- output systems, sensitivity functions 
can be generated in real time by either a sensitivity cosystem [5] or the signal 
convolution method [4].[6],[7].[8]. The possibility of using a sensitivity cosystem 
with a Least Integral Error Square Performance Index to tune an Advanced 
Boiling Water Reactor with multivariable controller has been successfully explored 
by Winkelman [3]. Unfortunately, dynamic modelling of helicopters is not 
sufficiently accurate for a sensitivity cosystem to be employed to tune flight 
control systems. Indeed, lack of information concerning· the helicopter plant 
produced the need for tuning in the first place and one of the fundamental 
constraints on the project is that the plant must be treated as a 'black box'. 
The decision to use signal convolution techniques is based on this fact and forces 
one to accept that tuning will not be performed in real time. For multivariable 
systems, only a sensitivity cosystem can yield the state variable sensitivity functions 
in real time. 

Assuming that the first and second order sensitivity functions, along with 
the system response, are known, then by careful manipulation of the control 
system parameters, "'i• it is possible to decrease the residual error, Be(t), between 
the actual system response, ~(t), and a desired response, !(j(t), 

[ 
oxa(t) ] [ o

2
xa(t) ] 

iid(t) - iia(t) + oa LlA1 + oao{3 AA2 + Re(t) (2) 

Adopting the notation of Equation 1 for the modified system response, 
!m(t), it is possible to express Equation 2 in terms of the projected residual error 
vector, B.,(t). 

(3) 

The performance index to be minimized becomes the time integral of the 
inner product of the residual error vector. 

J- [ [ Re(t), Re(t)) dt (4) 

For helicopter applications, it is necessary to tune with regards to dynamics 
which are excited by all four pilot inceptors. Therefore, the performance index 
must be capable of optimizing with regards to more than one input signal. For 
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example, if the actual aircraft system has undesirable phugoid and pitching 
characteristics, then it is beneficial to be able to tune the controller with respect 
to these two modes simultaneously to avoid improving one mode at the possible 
expense of another. If the phugoid dynamics are excited by an input confined to 
the longitudinal inceptor and the pitching dynamics are excited by an input on the 
vertical inceptor, then it makes sense to stimulate the system with separate inputs 
on each of these inceptors. The response to each of these separate inputs is 
then to be used as data for the tuning process. It is beneficial to take the data 
in two distinct test sequences rather than using the two inputs in close succession 
in a single test. The problem with performing a single data run in which the 
longitudinal inceptor is excited followed by the vertical inceptor is that the fast 
pitch mode excitation would occur at a time when the phugoid was already 
excited. The phugoid mode would then add dynamics to the fast pitch section of 
the measured time history and this would create a bias towards phugoid tuning at 
the expense of fast pitch tuning. Therefore, the Least Integral Error Square 
Performance Index, J, which has been used in the study is a sum over h distinct 
time histories. 

J - ~ [ I: [ Re ( t), Re ( t) ] dt I (5) 

By m1mmizmg Equation 5, it is possible to find the set of controller 
parameters <>i which is optimal in terms of minimizing the difference between the 
desired response and the actual system response. In practice, the process requires 
a small number of iterations to obtain the closest fit to the desired response. 

When one remembers that the residual error vector is a function of the 
control system parameters, a;. Equations 5 helps to make it clear that the ai's 
must be optimized in a three dimensional sense. Not only must changes in 
parameters, Llq, be chosen to minimize the relative error on a state with time, 
they must also be chosen to minimize error across the various output states and 
with respect to several test manoeuvres as well. This is particularly true in a 
highly coupled system such as a helicopter because each control parameter may 
influence each state in a fully integrated, multivariable flight control system. 

2.2 ) Minimization Routine Theory 

The search for the set of control system parameter values which minimizes 
the performance index of Equation 5 is performed on the computer using the 
routine E04JAF of the Numerical Algorithm Group (NAG) Libraries [9]. This 
algorithm determines values of the performance index with various parameter sets 
subject to bounds on the parameters [1 0]. The algorithm makes use of 
quasi- Newton methods during its search of sets of parameter values. 

It was decided at an early stage in the development of the adjustment 
algorithm that perturbations to the designed controller parameter values should be 
kept to a minimum. This led to the decision to bound the range over which 
parameter values could migrate. The motivation behind this decision was that 
during the tuning process attempts were to be made to maintain the underlying 
control strategy as much as possible. There seemed little point in letting the 
tuning process move the dynamics of the controlled system significantly away from 
those which it was designed to have. The easiest method of accomplishing this 
objective was to restrict control system parameter movement. The optimization 
methods used [9], [1 0], allow bounds to be placed on the range over which 
controller parameters may be adjusted. 
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3 l HELICOPTER MODEL AND FLIGHT CONTROL SYSTEM DESIGN 

Testing of the tuning procedure has been conducted using a computer 
simulation model of a single rotor helicopter. The control system developed for 
these tests helps to show that the tuning process can be applied to controllers 
with various and even unconventional structures. Representations of the helicopter 
plant have been supplied by the Royal Aerospace Establishment (Bedford). The 
HELISTAB software package [11],[12] generates a system matrix, [A], and input 
distribution matrix, [B], given an initial flight condition. The helicopter plant is 
represented by the linear state space canonical form, 

s X(s) - [A] X(s) + [B] Q(s) (6) 

Modal control theory has been used to design an acceleration demand 
flight path controller. Following the work of Parry and Murray- Smith [13], a 
feedback matrix is designed such that the closed loop eigenstructure satisfies two 
criteria. First, the eigenvalues are chosen such that the system will have stability 
characteristics consistent with good handling qualities. Second, the eigenvectors 
are chosen to minimize the amount of coupling in the system. By minimizing 
the principal angles between desired (perfectly decoupled) eigenvectors and those 
which are achievable with the given plant dynamics, coupling in the system is 
minimized in a least squares sense [11]. The motivation behind attempting to 
decouple the longitudinal and lateral dynamics is that the pilot's workload will be 
eased. 

The design of the controller was carried out for a flight condition of 80.0 
knots forward speed. The acceleration demand controller is designed such that 
the pilot will pulse his inceptors in order to change between one trimmed state 
and another. Although it is appreciated that this input strategy has disadvantages, 
the controller is illustrative of the extent to which ACT can be used to configure 
a pilot's inputs. This example also helps to show that the tuning procedure is 
widely applicable to closed loop systems. The structure of the controller was 
designed to regulate the three linear fuselage accelerations (vertical acceleration, 
w; forward acceleration, u; lateral acceleration, v) and the roll rate, p, in earth 
axes. The following diagram shows the structure of the flight path controller as 
implemented using the state space plant of Equation 6. 

R(s) J;;(s) 

~(s) 

Figure 1: The Structure of the Flight Path Controller.' 

67-6 



Pilot inputs are co11verted from inceptor displacements to earth axis 
acceleration demands by the diagonal pilot input gain matrix, [G]. and then into 
body axis demands by the Euler angle relationships of the conversion matrix, [ '71· 
In the above, the acceleration feedback matrix, [ O, is used to select the particular 
quantities from the acceleration vector, Y(s), which are to be compared with the 
pilot inputs in body axes. The gains of the feedback matrix, [K]. and the 
compensator matrix, [P]. are chosen to yield the desired eigenstructure. 

The equation governing the dynamics of the controlled system is, 

~(s) ~ { s[l] - [A] + [B] [K] + [B] [P][~] }-
1 [B]~[P][7J] [G] R(s) 

(7) 

The closed loop transfer function matrix is given by, 

[W(s)] ~ { s[l]- [A]+ [B][K] + [B][P][~] }-
1 [B]~[P][7J][G] 

(8) 

The eigenstructure assignment in the design method of Parry and 
Murray- Smith [13] is based on a single feedback matrix, [Kpl· The flight path 
controller shown above is given the same eigenstructure by equating the 
characteristic polynomials of the two system's to yield Equation 9. 

[Kp] ~ [K] + [P] [~] (9) 

It is possible in this manner to preserve the decoupling of modes as 
designed and at the same time allow the structure of the controller to be 
modified to accommodate different control strategies. 

4 ) CALCULATION OF SENSITIVITY FUNCTIONS 

Systematic tuning of helicopter flight control systems relies on the 
information provided by sensitivity functions. The problem at hand dictates the 
use of signal convolution techniques [4].[6],[7].[8] for the calculation of sensitivity 
functions. Not only does the signal convolution method work without knowledge 
of the plant, but it also helps to minimize the amount of flight testing which is 
necessary. Although the theory is developed with respect to a flight path 
controller designed using modal control theory, the signal convolution method can 
be applied to other controller structures designed by other methods. The signal 
convolution method of generating sensitivity functions is in no way linked to the 
control strategy; however, the structure of the flight controller will affect details 
concerning the implementation of the theory. The following theory shows the 
equations governing the signal convolution method as applied to the controller of 
Section 4. 

The equations which describe the sensitivity functions are found by 
successive implicit differentiations of the system equation (Equation 7) with respect 
to the control system parameters. Assuming that the parameters to be tuned are 
located in either the feedback matrix, [K], or the compensator matrix, [P], then 
the first order state sensitivities can be shown to be given by, 
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{ - o[KJ Y(s) o[PJ 
oai - - oai [~] X(s) + ~~~] [1J] [G] R(s) } 

1 

(10) 

At this point it is convenient to consider the sensitivity function equation 
as a product of the closed loop transfer function matrix, [W(s)], and a sensitivity 
signal vector, ;;~;l,,j(s). 

o)S;(s) - [W(s) J z1 (s) 
aai -ai 

(11) 

where, 

( i:l[K] Y(s) i:l[P] 
oai - - oai [~] X(s) + ~~~] [1J][G] R(s) } 

1 

(12) 

The preceeding equations show that the sensitivity signals are generated by 
applying signals taken directly from the system, namely X(s) and B(s), to a 
sensitivity filter which has a form which depends only upon the controller and its 
structure. Therefore, if one is able to estimate the closed loop tranfer function 
matrix, [W(s)], then the sensitivity functions can be generated without precise 
knowledge of the system plant. 

For the purposes of time domain optimization, Equation 11 is transformed 
into a convolution integral, 

oli(t)- Jt [w(r)] 
oai 0 

(13) 

In the simulation trials which have been performed, observable system 
signals have been recorded and subsequently fed through software representations 
of the sensitivity filters, thereby generating the sensitivity signals, kd1(t). The 
linear convolution of data sequences representing the time histories of the impulse 
response function matrix, [w(t)], and kdl(t) can be carried out efficiently using 
Fast Fourier Transform (FFT) techniques [15]. 

The second order sensitivity functions are calculated using the same 
techniques as were used to calculate the first order sensitivity functions. Since all 
of the control matrices are first order in the control system parameters, all terms 
containing second order partial derivatives of the control system matrices will be 
zero. Thus, 

- 0 (14) 

After simplication, the second order sensitivity functions of the state 
variables of the flight path controller are, 
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- -1 -1 -1 
-- (W(s)](G] [~] [P] s 

{[ o[KJ + o[PJ[~J 
ocq ilcq l ilX(s) 

ilaj 
il[K] 
ilaj 

X 

ilX(s) } 
~ 

(15) 

Once again, the time domain calculations involve the convolution of the 
impulse response function matrix with a sensitivity signal. The use of second 
order sensitivities gives a much tighter control over how the parameters are 
adjusted than is possible with just first order sensitivity information. 

One of the benefits of using signal convolution techniques on flight test 
data is that the convolution integral will help to filter system noise. This is of 
obvious importance for helicopter applications. 

4.1 ) Identification of the Closed Loop Transfer Function Matrix 

The signal convolution technique requires the identification of the impulse 
response function matrix. It has been shown that because of the possibility of 
each input coupling into each output state in an unknown multivariable plant, 
[w(t)] cannot be identified simultaneously with the sensitivity signals [8]. Since the 
state response to each inceptor must be determined individually, the identifitication 
of [ w(t)] precludes real time tuning using signal convolution techniques. In 
addition, it must be stated that [w(t)] strictly exists only for linear systems. 
However, through judicious choice of inputs, nonlinear plants such as that of a 
helicopter can be made to operate in a small region about an operating point, 
thereby reducing nonlinear effects. Both pulses and step inputs have been used 
to identify [w(t)]. 

5 ) PARAMETER ADJUSTMENT RESULTS 

The tuning procedure has been used to successfully tune the responses of a 
system with rotor flapping dynamics included in the plant description towards a 
system which ignores rotor dynamics. Both systems were simulated by fully 
nonlinear models and only a small subset of the controller parameters was allowed 
to change. In order to avoid driving the responses into nonlinearities, a doublet 
input of 10% amplitude was used on each inceptor and the length of time history 
was restricted to 1.0 seconds (sampled at 64 Hz.). The improvement in 
performance index with one pass of the adjustment algorithm was 17%, reducing 
the performance index from 1.17x10- 3 to l.OOxlO- 3. The value of the 
performance index is indicative that the original error between the responses was 
small. 

In order to highlight the improvements which can be made, Figure 2 
shows the state responses to a pulse input on the collective. The desired 
response (solid line) is generated by a linear simulation of an eighth order plant 
with the designed control matrices. The actual response (asterisks) is generated 
by the same simulation model but with 3 compensator parameters perturbed. The 
problem for the adjustment algorithm is to retrieve the original, designed 
parameter values. After one pass of the tuning process, the adjusted response is 
shown as the dashed line which corresponds to a reduction of the performance 
index from 2.97xlo-1 to 6.59xl0- 4, an improvement of over 99%. Most of 
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the adjusted responses are coincident with the desired responses. Of the three 
perturbed parameters, the perturbations have been reduced from I 0% to 0. 7%, 
0.9%, and 0.4% for Pll, P22• and P33· respectively. 

6 l CONCLUSIONS 

Although the Least Integral Error Square Performance Index, can be used 
to successfully tune controller parameters, there are problems associated with 
model reference tuning for flight control systems. One of the fundamental 
concerns regarding the use of this performance index is how does one ensure that 
the 'ideal' response is in fact ideal. By using the design model to generate the 
'ideal' signal, one is probably coming as close to ideal as possible provided that 
care has been taken to ensure that the response of the design model with 
controller satisfies the performance specifications for the design. The second 
concern over the use of a Least Integral Error Square Performance Index is that 
the system response may only be tuned for the input sequences used during the 
tuning process. In helicopter applications it will be impossible to tune the 
controller with the infinite set of pilot inputs which may be used throughout the 
flight envelope. It is therefore important that tuning on helicopters relies on 
input signals which are representative of as many manouevres as possible. 

Research into a performance index which directly' measures improvements 
in handling quality characteristics is being undertaken. By tuning handling 
qualities directly, both of the disadvantages mentioned above can be overcome. 
Results of this work will be reported in the near future. 
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