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Abstract

Thls paper describes the results of an investlgatlen
into methods of controller design for linear pericdlc systems
utllizlng ap extension of modern contrel methods. Trends
present 1Iin the selectlon of varlcus cost functions are
outlined, and closed-loop contreller results are demonstrated
for two cases: first, on an analeg computer simulation of the
rigid out-of-plane flapping dynamics of a single rotor blade,

and second, on a four foot diameter single-bladed medel
helicopter rotor In the M.I.T. 5x7 subgonic wind tunnel,
both for wvarlous high levels of advance ratio. It 15 shown

that modal control using the IBC concept is possible over a
large range of advance ratios with only a modest amount of
computational power required.

Introductlion

To further expand the utility ang¢ performance of the
modern helicopter, improvements must be made in the response
of the alrcraft to the many and varled disturbances present
in its normal operation. These responses are primarily of
aerodynamic origin, and are transmitted to the vehlcle
through Its rotating blades. Thus, 1f sufficlent action is
taken at the source of these preoeblems, It would appear
possible to considerably Aimprove the hellicopter's handling
qualities, reduce vibration and increase overall stablility.

Recent efforts to apply active control technology to rotary
wings have shown promise in reducing respcongse due to
atmospherle turbulence [1,2]. retreating blade stall {3],

vibration suppression [4,5]. blade-fuselage interference [6],
and flap-lag modal damping enhancement {7].

These appllcations have all vused the methed of active
pitch contrel to preduce counteracting aerocdynamic forces,
but the generation of the control actuatlon <an be divided
Into two fundamentally different approaches. The first and
currently more widely wused in vibration suppression ls
Higher-Harmonic-Contrei (HHC} [4.5.8.9.10]. where integral
multiples of rotor rotaticnal frequency are appropriately
scaled and phase shlfted sc as to generate pitch gommands,
either open- or closed-loop, that approximately cancel the
narmenics of wvibration passed down from the rotor to the
fuselage. The second and more versatile of the two is
Individual~Blade-Control (IBC} [1.3.6,7,11,12,13,14]}.
involving the contreol of the pitch of each blade individually
in the rotating frame of reference. Thls latter approach ls
essentially a ~"broad-band" controcl of the rotor blade
dynamlcs, as cppesed to the BHC limitatlon of discrete
frequency disturbance suppresslon, and as such is capable of
aeroelastic contrel of the blade modal responses to both
external disturbances and pilot commands.

IBC

Since the controel and the motion sensing of the

system” is done in the rotating blade's frame of reference,
the equatlons describing the dynamlcs  will contaln
coefficlents that are perlodic functions of blade azimuth

angle due to the rotor's non-uniform flowfield in forward

flight [15]. This time dependence of the system dynamics
thus makes the use of standard time-invarlant controller
design technlques invalild for fllght speeds exhlbiting
moderate levels of periodiclty. Hence, a definite need
exists for rules and guidelines in the selectlon of a
controller design for systems with periodlic coefficients Lf

the IBC concept 15 to become a plece of flight hardware.

The sections in this paper fil]l this gap in knowledge
and experience 1in designing wmodern control systems for
linearly perlodic systems through a methodical series of

investigations culminating in the periodic control of a model
helicepter rotor in forward flight. FElrst, the equations of
motion for a single hellcopter rotor blade in forward flight
are presented in Section Z.

Section 3 presents modern control theory in the context
of perledically varylng systems, with some numerlical results
concerning trends in closed-luop pole locatlons with changes
in the cost functlon, An extenslon s made in the theory to

nandle  implicit-model-follewlng  controller design  for
pericdic systems, and an efficient computational technique
for calculating the feedback and feedforward galins is
outlined.

This research was sponsored by the Ames Research
Center, NASA, Moffett Field, California 94035.

In Sectlion 4, the system 1dentlflcation precblem for
linear perlodic systems Is treated ln two parts. First, a
nevel technlque for estimating rotor states using position
and acceleration measurements 1is described. The method is
unjque in that it contains no periodically varying elements
In its cobserver structure. Second, a least-Zquares procedure

for extracting the periedic system coefflclients 1s explalined.

The regression uses the state estimates of the cbserver in
1ts computations.

Sectlon 5 iz devoted to describing the hardware uzed in
the wvarious experiments conducted in the thesis. The analog

computer board that simulates the out-of-plane roter flapping
dynamics is dlagrammed, and then the actual model helicopter
rotor system is described.

Sectlon 6 contaling experimental results. These
encompass work done on the analog simulatlen concerning state
estimation, parameter ldent!fication and closed~loep control,
as well as data from the actual rotor at hlgh advance ratlos.
Parameter identification trlals and closed-loop controller
results are detalled for the wind tunnel test data, and
comparisons both with theory and with the results from the
simulation tests are made.

Conclusions from this research are drawn in  Sectlon 7,
and recommendations for areas of further work are glven,

2. [Hlapping Equation @f Motlon
From [16] the flapping equation of motion ls:
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The three reglmes indicated correspond to: (1} normal
flow, encountered over azlmuth angles such that [ -xi <
u *sin( %) <y ): (2) mixed flow. where part of the span is
in nermal flow and part is in reversed flow, encountered over
the the range of azimuth angles such that { -1 <u *gin{ ¥) <
-xi ); and (3} reversed f{low, where the full blade span lIs in
reversed flow, valld where ( u*sin{y ) < -1 ). This third
category <an obvicusly enly exist for rotors operating at
advance ratlios greater than unlty.

Plots of these three moment coefficients can be seen in
flgure 1, 2 and 3 as a function of advance ratlo. A few
important aspects can be seen in these time histories. Most

apparent 1s the increase of higher harmonlic content in each
of the coefficlents with increasing advance ratio. Thiz lis
due te the fact that all the periodic terms in the
coefficlents enter the expresslon as preoducts of advance

ratlo and sines or cosines of azlmuth angle. As advance
ratlc increases, these terms dominate the coefficient's
character, Seccnd, the flap damping term never changes sign,
although itg value deoes become quite small- for certaln
reglons near the boundary between reglons (2) and (3} on the
retreating side. This makes sense since the local velocity
due to any flapping motien would preduce sectleon angle of
attack changes, generating In-phase lift forces that wotld
cppose the motion (for the quasl-static case). And finally.
the contrel moment due £o ¢hanges in pltch angle ¢an be seen
to pass through zero on the retreating stde for high advance
ratios. This ls due to the 1Lft in the normal regime on the
outhoard span of the blade exactly cancelllng the 1l1ift iIn the
reversed flow reglcon on the inboard section. These first two
cbservations will help the evaluatlon of the parameter
identificatlon results that follow in a iater chapter, and
the last effect will be seen to produce singularlties for
certailn types of controiler designs.

3. HModel-Following Systems

3.1 Introduction

As any helicopter engineer knows, a successful rotor
system wmust be deslgned and bullt with careful attenticn
given te its aercelastic propertles. Contreol over the many
natural frequencies present in the rigid and elastic modes
must be maintained ln order to limit vibratlion, reduce blade
stresses and prolong blade life. This includes the aveldance
of resonances ot Ainteger multiples of rotor rotation
frequency to prevent large modal excltations due to the
aerodynamic forcing of the harmonlc rotor wake. As  was
demonstrated in [16]. standard linear-guadratic regulator
{LQR} approaches to penallize excurzicns In flapping response
result in closed~loop systems with a high bandwidth. 7This is
not partlcularly desirable, because: (1) there may be
interaction effects with other modes not accounted for in the
math model that are destablilizing at such hlgh bkandwidth
({gain) wvalues:; (2) the closed—licop natural frequencies may
fall clese to an integer multiple cof rotation frequency and
thus promete possible aerodynamic forclng: and (3) the large

galn values may be difficult to implement ln the controller
hardware.

Problems exist even for the other ceost functions
considered that included some penalty on state rate
deviations. While these provide a means of reducing

controller bandwldth, they do not offer much promise in
specifying the level of perledicity In the closed-leop
system. Thus, tight contrel over a mede would require an
excessive amount of literation in order to generate the

desired elgenvector structure.

Because of these drawbacks, a straightforward LOR
approach to rotor blade modal contrel could run into serious

difflculty. However., many other cost functions are possible
for controller design using modern methods, the most useful
for this case probably being medel-following.

Madel-fellewing entalls expressing in  the cost function a
deslre for the plant being contrelled to possess dynamics
similar to some grototype system. This prototype can be
elither be a physical (often electronic) system, such as for
explicit model-following [17]., or an implied dynamlc
structure, as realized through selectlon of the elements in
the welghtlng matrices [18,19)]. The appeal of thls technique
for periodic system control is twofold. First, the desired
pole locations of the closed-loop system can be achleved by

incorporating them into the model, and then forcing the
system te emulate the model through lliberal welghting of the
difference between the twe in the cost functien. Second,
control over the tevel of periodicity can be achieved through
the same technique ~- proposing a model with as much (or as

little) periedicity desired and penalizing the deviations
from it.

This latter feature 1is especlally attractive for
hellcepter roter control. Since the 1ift, propulsion and

control of the helicopter are all accomplished through the
rotor system, lncreased control over the blade response to
pllot commands,- flight conditlien and atmospheric disturbances
would provide a better handling wvehicle. Pilot stick
deflections are essentlally magnitude and directlon commands
on the rotor thrust vector -— any deviation of this resultant
force from the desired constltutes degraded performance.

Such a deviation might come from a sub~ and super-harmonic
raesponse of the perlodic blade dynamles, translating into a
wobbling of the tlp-path-plane of the rotor and possible
instabllity at high forward speed. For thls reason, then,
the periodic nature of the flapping dynamics is conslidered a
nuisance. something to be reduced through feedback control.

The model used as the prototype for this design study
(and  subsequent test) was that of the hover flapping
dynamlcs, although thls cholce is somewhat arbitrary. This

particular cholce of medel has the advantage that: {1) the
feedback galns go to zero at hover; (2) the model 1is a
constant-coef{{lcient system, helping to reduce the
periodiclity of the closed-leap system in forward flight (and
augment 1ts stabllity}: (3} the bandwidth of the model is
well defined and thus should preduce a controller wlthout
modal interaction problems: and (4} a stability-augmentation
system for a full-scale helicopter would he greatly
simplified 1f the rotor dynamics, due to inner-loop control,
were relatlvely constant throughout the flight envelope.

3.2 Impliclt-Model-Following with Input Feedforward

Az mentioned above., model-following for linear-quadratic
regulator design can take twoe forms, elther expliclt or
implicit. 1In explicit-model-following, an external analog
system is used as a prefllter, or command generator, to
provide reference signals for the system belng controlled.
The cozt function is a gimple welghted guadratic in the
difference between the cutputs of this analog system and the
actual plant. The resulting controller has not only feedback
gains on the state variables of the plant, but alsa
feedforward gailnsg on the states of the analog medel. This is
an unfortunate (but not very surprising) result, since it
requires the constructlon of additional hardware for the
anilog model, &s well a means of implementing the feedforward
gains.

Impliclt-model~following, however, ls not so demanding
an  closed-locp system complexity. By formulating the cost
function to penalize the difference bhetween the time
derivative of the state vector and the desired model
accelerations, a set of welghting matrices is arrived at that
are functlons only of the plant state and control vectors.
This results in a set of galns that are only a5 numerous as
the number ef states. For a censtant—-ccefficlent plant, this
saving in hardware may not be significant: for a periedig
system It could ke substantial due te the nesd te program
time-varying gains. Because of this reduced hardware
requirement, the approach taken in thls paper was to use the
impliclit-medel form.

The model-following approaches described In the previous
paragraphs are regulator-type designs, in thot no mentlon was
made of including command inputs. These can be Incorporated
through varlous means. sSuch as adgmenting the state with a
vector differentlal equatlion whose initial cenditions can he
altered to produce typical command historles, or by including
the command signal explicltly in the model cdJynamlcs [19].
Due to our ever-present constraint on system order. we will
develop the galn equatlons for the latter approach.

Given the system:

x(t) = Aft) x(t) + B(t) u{t) (3.1
and the model:

x (£} = F x(t) +C d{t) (3.2)

m

where d(t) represents input commands to the model, consider a
cost  function penalizing deviations In accelerations
according to:

J o= (1/2) r{(if-;c }oe(x-x ) +uRu}de
m n {3.3)

Substltution of (3.3} and into the

(3.2)
glves, after some algebra:

abeve integral

a/2) L { %o x + uHuu v+ d wad @

J =

+2xWxuu - 2% Wxdd —2d'Wc%uu)} at
where: Wax = (A-F)Q(A-F})

Wue = {R+BQB)

Widd = G QG

Wxu = {(A-F) QB

Wxd = (A~F) QG

Wdu = G'Q B
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Next, the derivation follows the standard steps: append
the dynamical eguations of the plant to the cost funcelon as
a conztraint, integrate by parts, and take the first
variation Iln c¢ost with respect to the control, state, and
adjoint varliable {20,21]. Varlations in the input varliable
d(t) =are not allowed because it jis external to the system.
and can be thought of as an unknown disturbance. This
results Ln three egquations relating the input d{t} and the
control u{t) to the state x(t) and adjoint state 1Et}:

1 = -Wexx - Wau + Wedd - A1

Wuu { -Wau'x - B'1 + Wdu'd}

x = Ax + Bu
{3.6)

and upon substituting for u(t):

. -1 ’ -1 .
1 %] | [A- B Wuu Wxu ] [ «B Wue B ]
1 = 1 = , . -1 .,

I 1] | T ~¥hex + Wxu Wuw Wxu ] [ -A + Wxu Wuu B )
-1 .

[ [ B Wuu Wdu ] !
+ -, jld1] {37
§ [ Wxd ~ Wxu Wuu Wau ] |

Comparlison with the derivations in [20,21] wll)l show
that the only difference here ls in the extra term due to the
model 1nput. As was done for the homogeneous equation of
[20,21], we will assume the solution for the adjont variable
to be a linear function of the state variabkle, but we'll alse
include an inhomegeneous part due to the model input:

1) = Pt} x(£) ~ St} () (3.8)
which upon taking the derivatlive becomes:
1(t) = B(t) x(t) +P(£) x{t) - St} d(t)
(2.9)
Since the medel input 1s & measurable but unpredictable
quantity, the best estimate of 1lts derlvative 1is zero:
therefore 1t does not appear in equatlon (3.9) [19].

Substituting inte (3.7} gives:

. . -1,
Px + P[ A - B Wuu W ]x + P[ -B Wuu B ]JPx ~ PSd
-1 -1

+ P[ B Wau Wdu'Jd = §d = [ —Wor + Wxu Wuu Wxu 3x
_1 -

. 1, ..
- [A-BWautwxu ] Px+ [ A- B Wau Weu } 5d
3

+ [ Wxd - Wxu Wuu Wdu 1d
(3.10)

If the cost were truly at a minimum, then the above
equation must be true regardless of the varlation in x or the
vaiue of d. Thus, we can separate out all the dependence
upon these two quantltles, glving two separate eguatlons:

. -1, -1, .,
-P = P[A-BWuuWm]+[A-B"wWwmbmWwu]Pp
-1, -1,
- [ -WXX + Wu Wuu W' 3 o+ P[ -B Wuu B ]P
(3.11)
. s -1,
-8 = [A-BHwWnu]s+P[-BWuB]s
— -1

1 . .
- P[ B Wuy Wdu I + [ Wxed - ¥Wsu Wau Wdu
(3.12)

and the control is then:

- ’ . -1 . .
u = ~Wuu [ Wmw + BPF Jx + Wuu [Wdu + B S5 d
(3.13)

Several observations concerning the form of  these
equations can be made. First, the Riccatl equatlon for the
state cost matrix, (3.11}, Is unchanged from the standard
form [16]. The only differences are the actual values for
the cost matrices. From ({3.4), one may note that these cost
matrices are independent of G. the input matrix in the model
dynamics. Second, equation (3.12) for the varlatlon of 8,
the state and model ilnput cross-cost, is linear and depends
explicitly on both the G wmatrix and the solution to the
Riccatl equation (3.11}. And finally, the expression for the
optimal control shows a feedback gain for the states that
depends on P and a feedforward gain for the model input that
depends on 5. Only the feedforward galn is infiuenced by the
cholce of the medel input matrlx G.

Since the homogeneous eguations were shown to have an
efficient “spectral® sclution that could be calculated after
at most two ntegratlon passes over tThe fundamental perilod

[16,22], it would be very deslrable to develop a similar
technique for handling the caleulation of the feedforward
gains. Fortunately, one was found by Incorporating a

conbination of the methed of algorithm for

[22] with the
initlal condltlons of [23].

Follewlng the lead of [22], if one represents equatlon
{(3.7) in the form:
| x| | V] ox g | M(c} ¢
I = | Afe} } | -
(I L [ { Nty | {3.14)
one can numerlically compute this system's (2nx2n) augmented

state transition matrix, where n is the dimenslon of both
x(t) and 1{r) [24]. Call this matrix B{t,t0}. JIf orne solves
for the elgenvalues and elgenvectors of the resulting Floquet
transition matrlx for this 2n system, and then separates them
into stable and unstable mpodes, the steady-state periodlc
solution to the Riccatl equation of (3.11) can be shown to
be:

P(T) = T21(T) Tn('l_:iL
and: P(t+T) = [ B21(t,D)*Til(T} + B22(t,0D)*T21(T) ]
* [ B1l(t,0)*T11{T)} + Bi2(t.0) *'I‘ﬂ('é‘} ]

where the matrices Tll and T21 represent the (2nxn)
elgenvectors associated with the stable modes of the FIM.

This is only the solutlen te the homogeneous part of
(3.14) . One then solves for the {2nxm) particular perledic
solution of (3.14) using [23]:; call the transpose of thls
{2nxm} tlme-varyilng matrix [ Xp' | Lp' ]. where m is the
dimension of <the model Lnput. Then (with considerable
hindslght) one has the solutlon to the cross-cost matrix §
as;:

S{t) = -Ip(t) + B(t) Xp(v}

Verification of this result can be done by taklng the
derlvative of (3.i6), substlitutlng the tWwo equatlons of
(3.14) and the Ricatti equation of (3.11), and comparing the
result with {3.12).

(3.16)

This process can be lmproved upon by combining the
solutlon for the particular form of (3.14) with the procedure
for determlning the {2nx2n) state transition matrix by
integrating the augmented matrix:

| | x(e) |
z(t) = | B(Y) [---——| (3.17)
(amx(2n+m)) | | L{t) |
with the Inltia} conditions:
BOY = 1 . X(0) = L(0) =0C
{2nx2n) {nam)
over a modified form of (3.14}):
. ] | Mt} |
() = A(r) * Z(t) + | i

a]
| (2nx2n) I Nt} | (3.18)

vhere I represents the ldentlty matrix. After ocne cycle of
integratien, one hag:
| I X(T) |
Z(T) = | FT™ {roan} | (3.19)
[ (zaxzn) | L(T)
{nxm)
Then from [23] one obtains the initial conditions for the
particular solution as:
| ¥p(0) | | EX(T)
= - FTM™
| Lp(0) | | (2nx2n} (2nxan) i | L(T} |

(3.20)

Upon finding the eigenvalues and elgenvectors of the FTM, one
need only preform a second integration pass over egquation
(3.18) to solve for the matrices P(t) and S(t). In this way,
the number of Integration passes can be reduced by one, a
considerable saving for high-order periodic systems.

3.3 Numerical Results for Implicit-Modei-Following

In order te¢ see the effects of a model-folleowing design
on a perlodic system using a constant-coefficient model, the
following scalar example was used:

)t} = a(t) x(t) + bE) u(t)

§1-3 = (9 = rx(t) +gd(®



where: aEt; = -1. + cos(t)
bty = 1.
I = -1,
g =1,

As the weighting matrix @ was varied, the

following
behavior in the poles was chserved (with R=1.0):

Q F-plane pole L-plane pole
0. 1.868e-03 -1.0
.01 1.822e-03 -1.004
G.1 1.552e-03 ~1.029
1.0 1.23le-03 -1.066
3.0 1.392e-03 ~1.047
1C. 1.642e~03 -1.020
i00. 1.83%9e-03 -1.010
(R=0.) 1.867e-03 ~1.000

This behavior is typleal of model-following designs for
periodic plants thot posess enough controllablility to allow
an exact model matching. This can be seen in figure 4, where
the gain functlon for the case of no control penalty (R=0.)
iz plotted. The curve is a perfect cosine function, which
exactly cancels the system's periodicity. as can be seen in
fégure 5. where the open— and clesed~loop eligenvector are
shown. - B

For the hellgopter rotor operating at a high-advance
ratie, however, exact model matching is not always possible.
A good example of this can be Seen in figure 6, where cne of
the rotor feedback gain functlons for an advance ratlc of 1.4
is plotted for increasing values of state penalvy, Q. Even
though the flapping dynamicz represent a higher-order system,
the fact that the equations are  written in a
control-cancnical form (meaning the states are just the
varicus time derivatives of the displacement) reduces the
model-matching cost term in (3.3} to a scalar., The most
striking feature of this plot 1s the manner in which the galn
values approach singularities on the retreating side of the
rotor azimuth. This can be explained by referring to the
control power term in the egquation of motlon {2.1) in figure
3. At this high advance ratio, the control term can be seen
te cross through zere twice on the retreating slde. Thus, in
order to cause the cloged-icop system

x = [ A{t) - B{t) K{t) 1 » + [ B(t) Kf£(t) 7 4
(3.20)

to act likte a constant-coeffliclent system, the aln would
have to become infinlte to cancel the perlodicity of A(t) at
that particular azimith angle.

This result raises the question of
linear perleodic systems. {253
controllablility, all ef which are rather difficult to assess
without substantial computational resources. The strongest
lavel is "unifoerm controlilabilitvy”, where the state can be
driven through impulsive inputs in an infinitesimal time to
another desired state at any Instant over some specified time
interval, Clearly the above example falls short of this
ideal, since it is uncontrollable at two specific azimuth
locatlons on the retreating side. All is not lost, however,
as these two polnts are isolated instants and net continucus
stretches of time, and thus limit this example to a case of
"total contrellability”". Quite reascnable Tresults can be
achleved even for thls case, as can be seen by the plot of
the real part one of the eligenvectors of the closed-loocp
system -in flgure 7. Signlficant reductions are realized in
the system's periodicity for moderate levels of
model-matching cost and feedback galns.

contrellability fer
defines several types of

The closed~loop pole locations for filxed cost and
varylng advance rtatlo are shown in figurex 8a for the
Laplace-plane and 8b and 8c for the Floquet plane. It is
evident that the effect o©f increasing advance ratio is
diminished for larger cost values, as the poles do not shift
nearly as much as for previously censidered controller
designs. Thls is indeed an attractlve feature for hellcopter
rotor control, and thus this approach was used for the
centrollers demonstrated in the following sections of this
paper.

4. Observer Deslgn and Parameter Identification

4.1 Introduction to Observer Theory

Mast control system engineers, L1f they have produced a
design using modern control theory state—space concepts, have
had to wrestle with the follewing problem upon cempletion of
their cholce of a candidate regulatoer: not all the state
variables of the system are avallasble for weasurement. The
most frequent, situation is that just a few are wmeasurable,
and even these may be constralined to be measurable only in
caertain linear combinationsz. This general situation can be
represented by the linear time-varying set of eguations:

(4.1.1)
(4.1.2)

x(t)
y{x)

vhere x{t) is the n-dimensional state vector, u(t) the
m-dimensional contrel vector, and y(t) is the l-dimensional
measurement vector. This predicement is not unsolvable
within the context of the theory, but the solution 1s often
the most complex element of the contreoller design process.

A(r) x{t) + B(t) u(x)
() x(t) + D(t) u{c}

One obvlpus way to generate the estimates of the state
variables Iis to integrate the equations (4.1.1-2} forward In
time. This simplistic approach is, 1n general, doomed to
faillure because it requlres both an exact representation of
the actual system dynamics and the knowledge of the Inltial
condltions of the state varlsbles. Such a technigque makes no
use of the current value of the measurement and as such

becomes susceptible to any and all errors intreduced through
disturbances acting cn the actual system. Furthermore, if
the system being modelled 1s unszteble. these errors are

iikely te grow withcut bound.
Cbserver theory incorporates the concept of negatlve
feedback to force the errors in the state estimates To
approach zero exponentlally with time, Thiz J= done by
driving @ model of the system with an Ilnput proportienal to
the difference between the actual measurements and the
predicted values based on the current state vector estimate.
Tnat is, we formulate the system (for the continuous-time

case) as:
x(t) = A(r) x(t) + B{zr) u(r) + K(){ y{r) - C(x} X(’Sg 1
(4.1.3

where:

yE) = cfr} x(v) {4.1.9)
If we define the estlmation error as:

e(t) = x(t) - x(¥) (4.1.5)
then the error ls governed by:

eft) = [At) - K{)C(£)] e(%) (2.1.6)
The choice of this proportionality conastant K(t) determines

the speed in which these  errors are reduced, and can be
selected using any of several methods, the most popular beling
the Kalman Flliter. But perhaps the most important result
from chserver theory s the fact that use of the state
estimates ingstead of the actual states for feedback does not
alter the closed-loop stabllity of the system., _The poles of
the combined observer-controller are those of the
state—feedback controller, plus those of the observer error
dynamics. The only consequence of using an cbhserver ls often
a deterioration of the transient response of the complete
clesed-loop gSystem, This result iz called the "separatlon
principie” and allows one to perform independent designs of
the state feedback gains and the obgserver dynamics.

A Kalwan Filter 1z a technique for producing the bast
linear estimate of a state vector glven the a-priorl
knowledge of the random processes perturbing the system to be
chserved, the knowledge of the structure of the nolse
corrupting the measurements. and the exact model of the plant
dynamics relating the varlous physical quantities. It can be
shown that the formulation of the Kalman Flltering problem is
“dual" to that of the optimal contreller problem, in that the
cptimization equations only differ through a sign change,
representing a forward propogation of time linstead of a
reverse one {21]. The proportional feedback gains on the
measurement errors (known as “residuals”} are computed as
representing the best tradeoff between reduced sensitlvity te
sengor nolse and increased ablillty te guickly track changes
in the state vector.

The requirements for implementing & full Kalman Filter
for a coemplex plant are often too severe in terms of required
a-priorl Knewledge and system order to warrant its use in a
feedback controller deslgn. In the context of hellcopter
rotor contrel, a full-blown Kalman Filter would necessitate
modelling several rotor blade medal degrees of freedem aleng
with the highly complex dynamics of the rotor wake, including
any effects of gusts, dynamic inflow, returning tip vortices,
and 50 cn. Such a medel, even Lf made reasonably accurate,
would be sc complex and costly as to render 1lts use ina
contreol deslgn impractlcal. Thus, techniques to generate a
simpler, sub-gptimal estimate of the state vector would be
very valuable.

4.2 Cbse-vers for Rotor Control -

The solutlion presented ln the following pages to this
proeblem arcse out of the need to adequately describe the
sensor complement present in  the Individual-Blade-Control
model rotor system. The two availlable sensors for
cut-of-plane blade motion detection are a tip-mounted
accelerometer, with 1ts sensitive axlis perpendicular to the
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hlade surface, and a blade root angle transducer mounted at
the flapping hinge. As can ke seen in figure 9, this
particular cholce of location for the accelerometer results
in 1ts oktput being preportional to out-of-plane position as
well as acceleration, due to its orientation in a centrifugal
force fleld, If the rotor blade motlon ls described by an
infinite series of time-varylng modal displacements, then the
ratio of these two effects ls determined by the mode shape
slcpe and displacement at the tip for each hlade umode

considered. That is, 1f the out-of-plane displacement is:
inf
z(t) = sum (%} g () ., Xx=r /R {4.2.1)
1=1 1 i
then the accelerometer senses:
2
inf d g(t} Z dg{x)
accel(t) = sum { N (x) —-—-2~ -+ r @ ——L-b g (£} }
1=1 i dt 1
{4.2.2)

1f we restrict curselves to considering only +the first
out—of-plane mode of the blade, namely, rigid flapplng. then

this infinite sum ls truncated at the first term, and we have
a sensor that gives a signal that is a llnear combination of
flapping posltion and acceleration. Looking bagk at eguatlion
{4.1.2), one notices that the standard form for representing
a sensor's output is as a llinear comblnaticon of =states and
controls, but it is immedlately apparent that this has been
complicated by usling an accelerometer. _Since modal
acceleratieon is not a state varlable but a time derivative of
a state, one must represent the sensor by Incorporating the
system dynamics in the cbservation matrices. Thus, for an
accelerometer that senses the combination:

accei{t) = HI x(t] + H2 x(t} (2.2.3)

then this can be reconfigured to be:

accel{t) = HI x(t) + Hz { A(t) ={t) + B(t) u{t) }
(4.2.4)
or.,

accel(t) = { Hi + H2 A{t) } x(t) + { H2 B{t) } u{t
{£.2.5
This is indeed an unfortunate sltuatlon. Whereas before
we had @ sensor that was related to a combination of the
state vector and ltsz time derivative, now the representation

af the semsor content 1g directly dependent upen the
description of the system dynamics, Including all its
elements of periedicity and varlation with fllght conditlon.

An observer or Kalman filter design based upon thiz set of
equations would be complex indeed! Fortunately, there are
techniques to circumvent such difficuities, two of which are
described In the next sectlon.

4.3 Incorporation of Accelerometers into Observer Deslign

For a lumped-parameter system, 1f one knows the lumped
mass and Inertial propertles of a system incorporatlng an
accelerometer sensor, lt becomes possible te solve for the
applied forces and moments acting on lt. These Include any
control actlons or disturbances of the plant, and thus ceuld
supply a predictive gquallty. or "lead", for any cbserver
uzing an accelerometer in the estimatlon task. Ir" is with

thls  <©oncept in mind that +the followilng approach was
developed: the acceleration is considered te be a
deterministlc input into the system, which can be accurately
measured.

If one i3 willing to assume that process nolse dominates
the stochastic elements present In the system, we can traat

the acceleration as a measurzble, “determinlstic™ gquantity
and use it to drive a system modelled by the equations:
d | x| | 0 1] 3= | | |
m—— . = | . + | | accel(t) + | | wit)
ét | x | o o 1x] |
(4.3.1)
¥y{ty = | 1 0 |} x,l + [ 1] vi(x) (4.3.2)
| = |

where w(t) represents a zero-mean gausslan process nolse, and
vl{t} represents a zerc-mean gaussian sensor noise.

Trading off the values of the process nolse covariance
with the positlion sensor covariance produced a design with a
gain matrix of:

K = | 14.14 |
| 100.0 |

and observer poles of (~7.07,7.073}). To test this design. a

digital simulation of a higher-order system was run with
non~zero initial conditiens, using this cbserver to compute
the state estlmates. The tracking performance of this

observer deslgn is illustrated in flgure 10b, vwhere the
veloclty estimate is almost Indistingulszhable from the actual
system response in figure 10a. This observer structure would
alse appear to be a good candidate for use in a feedback
controller deslgn. The advantage of this approach is a
reduction in observer bardware without a deterloration in
per formance.

4.4 Cbserving the States of a Time-varylng Plant

Since the ultimate purpose of these cbserver designs 1s
te generate state estimates of a time-varylng rotor system.
it seems most appropriate to test them against the actual
values present in such a complex environment. This
valldatlon procedure, however, 1s complicated by the [fact
that the M.I1.T. Indivldual-Blade-Control model rotor system
has no means of measuring flapplng rate -~ 1f it did, the
need for an observer would then not exist! Instead, an analog
simulation of the full out-cf-plane rigid flapping eguations
of motion was bullt up from operational " amplifiers and
integrated clrcults, as cutlined in Section 5, to serve as a

test bed fer boeth observer design and controller
implementation, This simulation Includes the effects of
reversed flow and provides as ocutput several voltages

representing all the rotor states, controls, Sensor oOuLputs,
and periedically-varying equatlon coefflcients present in the
linearized small-displacement flapping equation of motion.

The second-order observer designed in the previous

section was also built from analog hardware and connected to
the “sensor" outputs of the analog simulatlicon. These
"senser™ signals represent the outputs from the flap straln

gauge and the tip accelerometer. Since the observer was
designed on the assumption that the acceleratlon was directly
measurable, the centrifugal component ef flapping
digplacement had te be subtracted out of the simulated tip
accelerometer signal prlor te lncorporatlon into the observer
structure. This by no means presents any difficulty, as the
portion of the tip accelerometer signal multiplyling flapping
displacement is ~ time—invarlant, being nelther a function of
azimuth nor flight conditlen.

Just as was done previocusly for the digital computer
simulation trials, the flapping rate signal was selected as
the means of comparisen Ior evaluating the chaerver's
tracking performance. In order to provide adequate testing
of transient condltions, a square-wave was fed intoe the pltch
signal of the analog simulation, and the resulting flap rate
and flap rate estimate were observed. These signals, along
with the once-per-revolutlon timing pulse, are plotted in
figure 11, representing a rotoer operating at an advance ratlic
of 1.14. The results are simllar for all other advance
ratics and all other types of external forcing functlions: the
flapping rate signal is essentially perfectly reconstructed.
There is no doubt that use of this quantitvy in a
state-feedback controller would produce satlsfactory results,
as 1t tracks even small detalled fluctuations in state due to
the pitch forcing.

This most fortunate result has Interesting lmplicatlons,
Since a time-invariant observer incerporating acceleration
measurements s capable of adeguately cbserving the state of
a complex, tlme-varying plant, one then wonders 1f similar
techniques are equally applicable to nonlinear or even
nonllinear and time-varying gsystems as well. Cf equal
interest 15 how to estimate additional modal degrees of
freedom using the same type of sensor complement, and how to
attribute the measurement residuals to the varjous modes,

This latter question appears to be solvable using the
second method outlined above, that of forcing a
"double-integral®™ plant with a modal acceleration and
correcting 1ts output with a position measurement. Since all
that is really needed for such an applicatlon is an accurate
measurement of the particular modal acceleration and
displacement., one does not even need to simulitanecusly
estimate the dynamics of the lower-order modes. This can be
best seen Lif one considers the modal content of each of the
SeNsers.

For a system «f, say, tw0 modes Instead of one, each
accelercmeter will measure some Jlinear combinatlion of the
modal accererations that will depend upon its location on the
structure, Thus, 1if two accelerometers are located at
different polnts on the structure, thelr outputs can be
combined so as to solve for each modal acceleration, provided
their outputs do not also contain modal positicn information
as  well, such as in equation (4.2.2). This same argument
halds for requiring two positlion sensors in order to solve
for the twe modal displacements. For the case of the
Individual-Blade—Control rTotor, since the accelerometers
contaln modal displacement informatlon as well, one can add
twe additional accelerometers to the previcus complement of a
tip accelerometer and rcot angle transducer, and still solve
for the twe modal accelerations and displacements uniquely.
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Once one has the lndlvidual modal acceleration and
dispiacement information, one need merely design an cbserver
such as that of (4.3.1-2), with a bandwidth picked to be
sufficlently faster than the mode's natural fregquency.
tUnlike a conventional Xalman Filter, there 1s no need to
estimate the lower modal states, and thuz the observer need
only be of order two for any mode desired. However, we have
reduced the complexity o©f the Kalman Fllter approach, with
all its possible vime-varlatlon and higher order, at the
expense of addltional sensors. For some plants, this may not
be justifiable. but for helicopter rotor control, the
advantages appear to outweigh the additional cost of more
Sensors.

4.5 Periodic System Parameter Identlflcation

Even with perfect wuweasurements of the system state
variables, any controller deslgn based on modern technlques
would be doomed to fallure if the mathematical model fer the
plant heing controlled were grosgly 1n error. Thils applies
equally for periocdically time-varying systems as well as for
time-invariant ones. Fortunately, glven the accurate state
variable estimation results of the previous section,
extracting the periodic coefficients of the flappling equation
{or for that matter, any reasonably uncoupied modal response)
can be reduced to @ basic least-squares procedure. The
technique described below 1s equally applicable to any other
type of time-varying dynamics, provided that the time
varlation of the coefficients can be described using welghted
linear combinaticns of orthegonal time functions.

Given the flapping equatlen cf the rotor Lin the rotating
frame as:

B+ ALY g+ AO(g*R = {4.5.1)

where the primes indlcate differentlation with respect to
azimuth angle, the periodic coefficients Al, AQO and can be
represented as an inflnite sum of trigonometric functions of
azimuth according to:

int
Al(y) = A10 + ﬁET { Alen*cos{ny) + Alsn*sin(nd) 3}

BO(y)*0

inf
AD(g) = AQO + ig? { Alcn*cos(ny) + Alsn*sin(ny) 1}

inf
BO(¢) = BOD + 53m { BOen*cos{ny) + BDsn*sinEnW) ¥
n=1 4.5.2)

1f these expressions are substituted Into egquation (4.5.1)
and the resulting products of state variables and ccefflcient
harmonics are expanded, one obtains (after solving for the
acceleration):

= [8 =+ gfcos(y) + 8fsin(y) + ghcos(zy) +
ésin(zw) + glcos(3)) + ... +8 +Brcos{¥) +
3‘51“(¢) + prcos (2p) + BEsiIn(ZY + ... +
9 +8 *cos{y) + g*sin(y) + O'cos(2y) +
B @ *tzin(2y +0*cos {3y} + ... I *
[ -AlD -Alcl -Alsl -AlcZ -AlsZ -Alcd ... —AOD -AO0c1
-A0s1 ~AGcZ —ACGs2 ... BOO EOcl Bﬂsl(Bﬂczai.. ]

This equation ls linear in the parameters representing the
harmonics of the perledic coefficlents, Since the chserver
structure outlined in the previous section provides accurate
estimates of the states and modal acceleration, 1f we measure
the centrol input (as we must) we can treat these harmonlcs
as the unknowns ln our preoblem. This then gives us a linear
equation in @5 many unknowns as We care %o estimate,
corresponding to the number of harmonlcs desired to represent
the periodlc ccefficients.

Since this equation is valid over any azimuth angle,
substitution of the rotor states, control input and
accelerations into (4.5.3) for many different azimuth
locatlons will preovide as many or more eguations than
unknowns that are needed to solve for these coefficlents

the complex nature of the rotor wake, a
used in order to reduce the
variance in these estimates due to process noise. If one
rewrites {2.5.3) in vector form and solves for the error
between the measured acceleration and that predicted from the
coefficlent values, one has:

Y - [ dY/dA ]*A

unigquely. Due to
least-sguares approach was

E = {4.5.4)

where: E is o [mxl) vector of prediction errers

¥ is a mel vector of measured acceleratlons

[ dY/dA ] 18 a (mxn) matrlx of preducts of
states and tontrols with sines and cosines

A is a (nxl1l) vector of harmonics of coefficlents

m is the number of data pelnts [(azimuth
locatiens) consldered

n is the number of harmonlcs to estimate

and to minimize the sum-squared error in the
takes the first derivative
equates it to zero.
equations":

estimate, one
of the sguare of {4.5.4) and
This results in the traditlional ™normal

T -1
A = {[a¥/er] [ dY/dA ] ¥ *[ dY/dA J*Y

{1.5.5)

In order to reduce the sffects of unmodel led
accelerations or sensor neise. many data polnts should be
used. This will cause the data-dimension {m) of the vector Y
and of the matrix [ dY/dA ] to grow to an unafceptable size
in terms of storage requirements unless the follouinﬁ steps
are taken. Since the dimension m gets "absorbed"” in the
inner products of [ dY/dA ] with itself and in dY/dA ] with
¥. one can treat thes¢ Two products as "buffers” of dimension
{nxn) and (nx1}, and sum each new data polint vector into them
according to:

-1 m T
A = U *V;: U=sum [ d¥ /dA ] [ dY /JdA ]
1=1 i %

m
V=sum [ dY /dA ] Y
i=1 i 1 (4.5.6)

azimuth angle. It should be
noted that U 1s formed by summing guier products of
sensitivity vectors. In thls way the largest storage
dimension is just n, the number of coefficlent unknowns.

vhere i represents a single

To test this approach, a computer program was written
[16] that would solve for the perlodic coefficlents given the
desired number of harmenlcs and the data flles of rotor
state, acceleratlon and control input. The analog simulation
described in Sectlon 5 was once again used to generate time
hlstories for such testing purposes, and the results can be
seen in figures 12a, 12b and 12c. ‘The analog model was
excited uslng a swept-sinewave source on the pitch simulation
channel, and the outputs representing flap and tip
accelercmeter signal were fed lnto the second-order ohserver
to generate flapping acceleration and rate estimates. These
signals as well as the actual coefflclent voltages were fed
into the PCP-11/03 computer, digltized, and stored as data
files. The estimated coefflclents compare qulte favorably
with the actual wmeasured values, indicating the valldity of
this technlque.

5. Experimental BApparafus

5.1 Analog Simulation

In order to both test concepts and valldate controlier
deslgns, it wasz felt negessary to construct an electronic
circult that would produce signals much 1like that of the
Individual Blade UControl rotor in the wind tunnel. This
circuit card was designed to have coeffliclients that were
periecdic  functions of time similar to those of the actual
model. During the early stages of design it was found that
by lincorporating several veoltage multipllecatlon integrated
circuits (IC's} it would indeed be possible to simulate the
single flapping mode equations. Throeugh & series of
comparitor IC's described below, it was even possiblie To
include the effects cf reversed flow in the coefficlients.

Construction of the simulatien was done on a single
plug-in card that was compatible with the lnstrumentation
rack used in the actual rotor signal processing. This was
initially JAintended to allow its use as a dynamic element
within a full-blown Kalman filter state estimator., although
this later proved o be unnecessary. The rack meunting
provided the card’s supply voltages, and all other voltages
representing rotor states and coefficlents were brought te a

central terminal strip at the front of the instrument
cabinet.

The layout of the circult was done in four segments:
timing generatlon, coefflelent computation, ceefficient

selection, and blade flepping simulation. This divislon was
ugsed in order to reduce the parts count of the simzlation as

much as possible. As was explalned in Sectlon 2, the rotor
blade passes through at least two and possibly three
ditferent regiens of tangential airflow as lt rotates 4about
the shaft. The aercdynamic moments created about the

flapping hlnge for these cases of normal, wixed., and reversed
flow can be expressed analytically. although each coefficlent
formula 15 only valld for that particular reglon. In order

6i-6



to accurately express this perlodic varlatlon of coefficlents
analytically for the entire azimuth, many harmenlcs wJould
have to Dbe retained. This would create the need for an

unacceptably large number of IC's, and thus the design
incorporated an analog switching network to select the
approprlate equation coefficlents for the current azimuth

angle of the simulation.

Inspection of the coefficlent equations In Sectlon 2
reveals that, for the case of ne hinge offset. each region's
varlation with azimuth angle is constralned te pglynomials in
the product of advance ratic and the sine of the azimuth
angle. Thus, given an input Sinusold with ampl ltude
proportional to advance ratlo, one may readily generate the
higher terms of the polynomial using analog mulziply IC's.
Weighted values of these products of sinusoids were then
combined uslng standard operational amplifiers to produce
voltages that corresponded te the expressions valid for each
flow regleon. These were fed simultanescusly to a  set of
analeg multiplexers that would select whichever of the three

voltages {three for each of three coeffilclents) was
appropriate at  the particular azlmuth angle of the
simulation.

Timing for the circult was accomplished using a
commerclally available function generator IC. capable of
oscillating at a frequency set’ by external passive
components. Outputs of this IC included a fixed-amplitude

sine wave and square wave, Since a cosine wave was aiso
needed for the coefficlent generation (in the aerodynamic

flapping spring term}., a constant-amplitude phase lead
network was bullt to shift the sine wave signal by 90
degrees. As such a network's phase shift is not Independent

of freguency, it became necessary to [ix the oscillator
frequency to a speciflc vaiue. This was set to 5 Hertz in
order to match the rotation speed of the actual medel rotor.

The osclllator's sine wave was input to an ampllfier to
vary lts amplitude according to ah “advance ratic" get by a
dial potentiometer on the front panel. Slnce the transltion
batween different flow states of the blade (and hence its
coefficlent expressions) 1s directly dependent tpon this
value, this was also used as a control voltage for input to
the comparltor IC’s that generated the select voltages that
drove the multlplexers. This same amplified slnusoid was
used for the polonomial term generatlen as described earller.

Finally. the blade dynamies were simulated using
standard op-amps as With most analog computers, but the
coefficients for the system were taken from the outputs of
the multiplexers., These were fed into another set of analog
multiply IC's in order to permit time-varylng dynamics. The
integrators 4in the simulation were scaled to keep these
coefficient voltages to values well within those of the power
supply. Also, the veltages representing the flap angle and
flap acceleration were caombined to simulate the blade tlp
accelerometer signal. This voltage, along with the voltages

representing the rotor blade flap angle, flap velocity,
acceleration., pitch angle, coefflclent values,
cosine waves and the square wave timing signal, were all
Lrought to a terminal strip on the front panel, This
arrangement allowed rapld evaluation of candidote control
laws as well as verification of the response of thie modal
grate estimator.

flap
sine and

5.2 Model Rotor Hardware and Instrumentatlion

The Individual Blade Centrol medel rotor used at M.I.T.
15 a four feot diameter single-bladed rotor with two opposing
counterwelghts. The biade flapping hinge is offset slightly
from the shaft centerline and attached to a fully articulated
nul incerperating a spherical bearing arrangement, permltting
flap, iag and plteh degrees of freadom to have colncident
axes. A steel flexure attached to this hub  allews
measurement of blade flap and pltch angle through a set of
strain gauges mounted on itz surface. f#iounted within the
hlade structure at the tip iF a miniature accelerometer, witch
1ts sensitive axls criented perpendicular to the blade
surface. This location permits measurement of both flapping
displacement as well as flapplng acceleratlon, as described
in  Section 4. Blade pltch controal is achieved through a
series of pushrods and gears driven by a ghaft mounged BDC

motor, with a servo loop closure formed arcund the pitch
angle strain gauge and the motor's integral Tachometer
signal.

The model rotor hub geometry and pitch actuator were

unchanged from that used for a previous gust-response test
[1]. FHowever, since the rotor no lohger needed to allgn with
external gust generators, a new housing was constructed for
the glipring assembly at the end of the shaft that permitted
a vertical shaft orjentation. This eliminated spuriocus
once-per-revoiutlon gravity effects on the tip accelercmeter
sensor allowing operatlon at Jlower rotatlon speeds on an
existing rotor test stand within the M.I.T. acoustic wind
tunnel. Figure 13 shows the single-bladed model votor and
rotor stand, along wlith a simulaved fuselage  forebody
attatched to the upstream side.

While the rotor hardware was unchanged frem the gust
alleviation tests, the instrumentatlon complement for
acquirlng, displayling and processing the wind tunnel data was
vastly improved. Flgure 14 detalls the signal paths from the
rotor sensors to the ampllfiers, signal condltioners and data
recorders used ln the experiment. Central to the experlment

was the signal conditionlng rack. This unit centajned the
pltch and flap strain gauge differential amplifiers, the tip
accelerometer amplifier. the serve motor current amplifier
and power supply along with the serve feedback centreller
card, the Lnstrumentation amplifier power supply, and a Set
of timing c¢ircultry capable of measuring rotor rotatlon and
supplying a squarewave at votation frecuency and anaother
squarewave at an integer multiple of rotation fredquency.

Attached to this rack were an FM tape recorder for
saving analcg woltage data; a Nicolet 6608 dual-channel
spectrum analyzer for transfer function, power spectrum and
quick-leook data =2nalysis; a set of oscllloscopes for rotor
sensor monitoring: and a PDP-11/03 minicomputer = for dlgltal
data collection and storage. Thls same computer was used to
generate the synchrenized perledic feedback galns and control
commands, and becanse of the time-critical nature of this
rask, the computer data collection for Closed-loop tests was
done off-line using the signals collected on the Fi tape
recorder,

A typical experiment run consisted of the followlng set
of procedures., First the pitch servo was energlzed and the
retor brought up to rotation speed uslng the hydraullc drive
system mounted in the tunnel. Then the wind tunnel speed was
increased while the rotor collective pltch was adjusted to
minimize  the flapping response of the Eliade, A
swept-sinewave source was fed into the blade pltch command
summing Jfunction. and a set of cpen—loop analog data was
stored on the four-channel FM tape recorder. consisting of
the l/rev timing squarevave, the excltation signal, the
flapping gauge slgnal, and the tlp accelerometer voltage.
After a record of sufficient length was captured, the
appropriate program was run on The computer to generate the
pericdie gains and output the control commands through a
digital-to-analog converter board to the piltch serve summing

junction. The computer used the state estimates from the
anaicg cbserver as its 1input, and comprised the feedback
controller clrcoultry. A dlgltal structure was used, as the

computation speed regquired for the muitiplication operatlions

was within the capabllity of the computer.

The same four voltages were then Stored on the tape
recorder, and the spectra of the pitch and flap channels were
monltored to observe the affect of controller action on the
system. Upon tumnel and rotor shut-down, the cables were
swapped and the tape recorder was played back into the signal
conditioning rack to generate the timing pulses [or the
analog~to-dlgltal converter board. These same slgnals were

fed into the cbserver clircultry. and the vhole complement of
gsensor and state estimate data was fed through an
eight-channel low-pass antl-aliasing filter box and into the
computér. The data files resulting from the dlgitized data

were uszed for subsequent analysis an parameter
édengification experiments, the results of which appear 1in
ectlon 6.

6. Experimental Besulis
6.1 Introduction

Classical representations of system dynamlcs, such as
transfer functlons, cannot easily be uzed to describe systems

with periecdic coefficlents. Famlliar concep“s such as rphase
and gain wmargin are not appllcable =since these systems
exhibil, responses at several frequencles to a single

exclitation Irequency. Because of this, & higher level of
sophistication {8 necezsary to quantlfy the character of a
periodic plant. In Section 4, z unique direct parametric
repregsentation was shown to be possible, due to the relative
ease of reconstruction of the missing state variables. This
same technigue will be used in this Sectlon. By comparing
the ldentified periedic coefficlents for open— and
closed-loop time response  tests on the experimental
apparatus, we will be able to judge the effect of a
particular control law on system performance.

Prior to actual wind tunnel tests of the rotor model, a

serles of control laws were tested on the analeg simulatien.
All the cleosed~loop controller designs were of
model-following  structure, with the model pnssessing
time—invariant dynamies. Thus, the cieser the identlfied
ceefficients appreached a constant value, the more the
closed~loop system behaved llke the desired model. The next

two parts of thils Sectien jllustrate exactly thls behavier
for both the simulation and the actual rotor.

6.2 Analeg Simulation Results
The test procedure for the analog slmulation was very

similar to that for the wind tunnel model as described in
Sectlon 5. First, a swept-sinewave excitation was fed Iinto
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the pltceh channel of the simulatlion, and this signal as well
as the simulated flap channel and tip accelerometer <hannel
were stored on an FM tepe recorder. After a sufficlenz:
amount of data was collected, these signals were played back
as Input to the observer. These signals, os well as the
observer's estimates of simulated flap rate and acceleration,
wvere then brought to the B-channel anti-alliasing fllter box,
dligitized and stored In a data flle in the computer. After
several of thege flles were collected, the coefficlent
regression reutlne was run on them, and the flitted values as
well as  statistical goodness—of-flt parameters were printed
on a hard-copy terminal. Then the dlgital controller was
turned on and the entire process repeated. A plot of a
typlcal data flle for use in the coefficlent ldentification

process can De seen in flgure 15 It should perhaps be neted
that the regressien enly uses four of these channels
directly: the excltatlien signal., and the flap, flap rate and

flap acceleration sigrnals.

In order te provide a sultably harsh test environment,

the simulation was run  at an effective "advance ratlo” of
1.4, corresponding to the hlghest advance ratio to be
experienced by the model in the wind tunnel. This test

condition provided the highest level of perledicity present
in the gsystem to be controlled, and hence the largest galins
and greatest controller effort required. Inspection of
figures iGa, 16b and 1€c reveal that this simulation
operating point pesed no problem for the controller, as the
periodicity c<an be seen to be readuced for the contrel power.
spring and damping terms of the system.

Closer inspectien of these figures shows that in  gome
cages the mean levels of the parameters were reduced. This
is not a destabjllzing effect of perliodic contrel., but

instead a ¢onsequence of the partlcular medel chesen for the
per formance function; a model with higher damping would have
produced higher damping. levels Iin the closed-loop system.
The limiting factor in model-follewing abjillty appears to be
assoclated with the contrellabllity issue addressed earller.
Systems that do net posess fuill contreollabllizy over all
azimuth lecatliong cannot be made to match a mode) perfectly.

As a final check of the reduction of perliodicity In the
system, 3 single frequency excltation was fod inte the
simulation for both the open— and closed-lcop cases. The

resulting Input and output power spectra are shown In figures

17a and 17b. Not only 1s the subharmonic Just below the
fundamental (at 5Hz reduced, but responses near twice the
fundamental and at wvery low ({reguenciles are eliminated
entirely. This would indeed be a desirable property for the

cut—cf-plane flapping dynamics of the rotor.
6.3 ¥Wind Tunnel Model Results

Glven the succesaful demonstratlon  of the conzrol
concept on the analog simulation, tests were run on the
actual rotor in the wind tunnel. Open-loop excitation runs
were performed first to extract the system cocfflclents on
which to base the control deslgn. Initial efforts to
astimate these periodic parameters were hampered by the
presence of extraneous fluctuations and strong levels of
perliodicity 1n the transducer si¢gnals. Due to the controlled
and bepign nature of the analeg simulation, no special

measures were found necessary to ildantify the parameters for
that situation. For the rotor data. however, two additional
features had to be incorporated In the parameter estimation

scheme: incluslen of additional "forcing" terms, and a change
in sampiling speed.

The need for additional terms in the Identified model
can be best understood by consldering the effect of a blas
present in any of the pltch, flap, flap rate or flap
acceleration signals of equation {4.5.1). These blases would
get multiplied Ly the pericdic coefficients and show up as
spurious harmeonics present in the flapping acceleration
estimate. By combining the effects of all these blases, one
can  account for their contrlbutleon te the estimatlion error
quite easily. If {4.5.3) iz extended to inglude the terms:

e 1+ cos() +sin( ) +cos(2 ) + 5in{2 ) + cou(3 )

+ ...] % [ 0 fle fis f2c £25 f3c ... ]

then these free coefficlents ¢an be solved for at the
time a5 the perlodic parameters using the same technique.
Incorporatlon of these additlonal terms into the math model
also accounts for responses due to any higher harmonic rotor
wake effects.

Even though the non~dimensional first out-of-plane
bending frequency was at seven times rotor rotation speed,
the tlp accelercmeter was corrupted by a significont amount
of wvibration energy. This tended to force the initlial
parameter estimates to have a larger higher harmonlc content
than was predicted by the guasi-stezdy theory. In order to
eliminate this effect, the FM tape recorder was played back
at a higher speed through the anti-aliasing filters, and the
data was sampled at 32 samples per revelution, half its
narmal rate. This effectlvely doubled the number of rctor
cycles present in any given data fille, and signiflcantly
improved the quality of the identified parameters. It should
be pointed out ‘that the time constants ©f the obzerver had to
be appropriately reduced in order to allow it to track the
higher f{regquencles present.

Same

in

at azn advance ratle of 1.4.
reverse
can be seen to be
tendencies
closed-loop control.

dramatic as
blade's low Lock number (requiring a higher gain
the partlicular
these results show
dynamics in

Results of the parameter estimatlon routline are plotted
figures 1B8a. 18k and 18c for open- and clesed-loop cases
Even for this severe case of

the roter, the pericdicity of the system
reduced. All the coeffliclents exhlbit
te approach a constant value with the addition of
The level of reductien 15 not as

analeg slmuilotion due to the model
value} and
cholce of modei-following cost. However,

that periodic contrel of rotor blade
rotating frame is definitely possible even

flow over

for the

the

for rather extreme flight conditions.

in

7. Congluslons

The modal control of individual helicopter rotor blades
the rotating frame has been shown te be possible through

demonstration of 2 digizal centrol system on a model Toter in

a

moGel-followlng modern control
SYSLems.

wind tunnel, This was achleved through an extension of

metheods  to handle perledic

Incerporation of a novel observer structure using

acceleration measurements permltted reconstructlon of missing

state varlables,

as well as provided sufflcient informatien

to ildentify the perlodic parameters of the syztem.

10.

11,

i2.
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14,

15.
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