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UNE NOUVELLE METHODE DE CALCUL APPLIQUEE A LA THEORIE 
DU POTENTIEL D'ACCELERATION 

Resume 

Les methodes integrales soot en aerodynamique tres adaptees a !'etude des 
phenomenes aeroelastiques complexes . Cependant les singularites qui interviennent dans ces 
methodes doivent etre traitees avec beaucoup de soin . Dans cet article , on donne une applica
tion de la theorie du potentiel d'acceleration a l'helicoptere . La pale est schematisee par des 
lignes portantes et une condition de glissement du fluide sur la pale est ecrite en des points par
ticuliers dits de collocation . Le traitement mathematique des singularites qui surviennent 
lorsque une ligne portante passe sur un point de collocation est donne en detail . La theorie a 
ete validee par comparaison avec une experience en soufflerie . Des calculs ont egalement ete 
effectues pour le rotor de Ia G azeile . 
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A NEW COMPUTATIONAL METHOD APPLIED TO ACCELERATION 
POTENTIAL THEORY 

Abstract 

by J-J.Costes and G.Hardy 

Office National d'Etudes et de Recherches Aerospatiales 
BP 72. F- 92322 Chiltillon Cedex , France 

In aerodynamics , integral methods are well suited for the study of complex aero
elastic problems . However the singularities of the functions which are integrated need to be 
treated very carefully . This paper shows an application of the acceleration potential theory for 
the helicopter . The blade is schematized by a set of lifting lines and a non separation condition 
of the flow from the blade surface is written on collocation points . The treatment of the 
mathematical singularities which occur when a lifting line passes on a collocation point is 
detailed . The theory has been validated by comparison with a wind tunnel test . Predictions 
were also made for the Gazelle helicopter rotor . 

I INTRODUCTION 

In recent years, the advent of fast and relatively inexpensive computers has allowed 
aerodynarn icists to write CFD codes for helicopter rotors . These codes have various degrees of 
complexity ( small disturbance potential , full potential , Euler codes ... ) . Developed mainly 
for aeroelastic purposes , the method presented here is less sophisticated but fast (about 2 
minutes on a CRA Y-XMP computer ) . It is based on the linear acceleration potential theory 
and cannot account for wake deformations or shocks. 

II LINEAR THEORY 

1. Acceleration and velocity potentials 

The fluid is supposed perfect , compressible and unviscid , the perturbations are 
small and isentropic . Second order terms are neglected in the theory . The fluid acceleration is 
supposed derived from a potential 'If . It can be proved [1-2) that the acceleration potential 
created at a point P and at time~ by a moving doublet singularity is given by equation (I) . 

'V(P .~) = -

. 
d - -, -d [qollo].Por 
~0 

4Jta I PoP 12 I - V o.PoP 
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4Jta
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I PoP 1
3 [I- aV~.;~ I] 

where: q0 is the doublet intensity 
n 0 is the doublet direction 
P0 is the position of the doublet 
V 0 is the doublet velocity 
Yo is the doublet acceleration 

All the variables with the subscript 0 are at time ~ 0 . 
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The perturbation propagates in the fluid with a finite velocity a . The time -. at 
which the acceleration potential is given is related to the time -. 0 by the equation (2): 

I PoP I -.--.o= a 
(2) 

In fact we wish to compute the velocity potential at a time 1 and this can be done by 
integrating the acceleration potential of equation (1) over time . Moreover , for the case of a 
moving lifting surface another integration must be carried out over the surface . In the particu
lar case of a helicopter , the large aspect ratio blade is replaced by a set of lifting lines . For 
simplification , only one lifting line is considered in the foilowing theory , but the generaliza
tion to any number of lifting lines is simple . It has been proved in [3] that the velocity poten
tial at a point P at time 1 is given by equation (3) where Jt~ , the doublet axis , is normal to the 
surface generated by the motion of the lifting line . 

<i>(P,I) = f 
lift. litw 

· s L 
lift. liM 

V o('t 1).P 0('t 1)P 

a I P 0(-.: 1)P I 

.... ) 
-qo('to).(no(-.o).Po(-.o)P) 
-'-'--"-'-...;;..;._.;;._;..;.,..c--'- d-. 0 d cr 

41t I P0(-t 0)P 13 

-> 

q0,n 0 ,P 0 are also function of cr ,this has been omited in (3) for greater clarity. 

(3) 

The time -. 1 is a function of the lifting line curvilinear abscissa cr . Time -.: 1 is 
defined as follow : 

Let us consider a point P0 on the lifting line at time -.: 0 , the doublet associated with 
P0 is at the position P 0(cr,'t 0) • The perturbation induced into the fluid by the doublet pro
pagates with velocity a and reaches the point P at time 't . If 't <= 1 , the point P 0 influences 
the point P . This condition defines a region of the wake which influences P at time 1 . The 
limit of this region is the line P 0[cr,-. 1(cr)] , which is determined by the non-linear 
equation ( 4) . 

(4) 

When the fluid is incompressible , the velocity of sound becomes infinite and from (4), 
-. 1 = 1 • Furthermore the first integral in (3) is equal to zero . For a compressible fluid , the 
potential <1> is equal to an incompressible term integrated over only one part of the wake 
( seco.nd integral in equation (3) ) . This integration is completed by a curvilinear integral along 
the boundary represented by the line having the equation P 0[cr,'t 1(cr)] ( first integral in equa
tion (3) ) . 

The derivation of <1> with respect to the geometrical coordinates of P determines the 
velocity induced in space by the moving lifting line . For the computation of the lifting forces , 
one only needs to know the velocity component normal to the wake when the point P is 
exactly on the wake . 

2. Application to the helicopter rotor in forward flight 

Let us first consider the simplest case where the blade is schematized by a single 
straight lifting line . Neither precone nor blade movements in flap or lag are taken into 
account . The rotor center of rotation is supposed to be located on the lifting line . For the 
blade i , the azimuthal angle at time-. is given by the equation : 
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where e,+ 1-e, = 
2

1t and n is the number of rotor blades. 
n 

(5) 

In an absolute reference frame , the geometrical coordinates at time~ of a point P 
belonging to the lifting line and located at a distance r from the center of rotation are given 
by ( see figure [ 1 ] ) : 

l X = rcose, - Vx~ 
P(r.~) = Y = rsin91 

Z = Vz~ 

(6) 

where Vx and Vz are coordinate components of the rotor velocity. 

The wake of the blade is taken as the surface generated by the motion of the lifting 
line . A point P (r .~) is selected on the wake of blade i , the normal 1i' to the wake is deter
mined and a point P' is taken on this normal at a height h above the wake . The computation 
of the potential induced at the point P' by the wake of blade j is carried out by means of equa
tion (3) . Once the potential has been found , it is differentiated with respect to h and the limit 
ash tends to zero is computed to obtain the induced velocity. The first integral in equation (3) 
is a simple curvilinear integral which never becomes singular. Its derivative may be obtained by 
a numerical computation which will not be detailed in this paper . The second integral in equa
tion (3) gives a potential <1> 2 and an induced velocity v2 • 

lim aq,2 = 
,..., ah 

lim 
h-->0 

where Ujo, U1 , D , N 1 et N 2 are given by: 

[ 
2 2 ] 112 Ujo = Vx+(r 0Q + Vxsin9i0) 

U1 = [v.f+(rn + Vxsin91)
2 J 

112 

a~~ 
· ah 

D = r2+ro2+(~-~o) 2(V}+ Vl}-2"ocos(9io- 9,) + 2Vx(~-~o)(rocos9jo-rcos9,) 

Nt = Vlcos(9jo-9il +(roil+ Vxsin9jo)(rn + Vxsin91) 

N 2 = rr0J:l 2(~-~ 0) 2 + (r2+r02)J:l(~-~ 0)sin(9i0-91 ) + rr0sin2(9i 0-91) 

In equations ( 8 to 12) we have 9, = 9,(~) and 9io = 9i(~o) . 

(7) 

(8) 

(9) 

(10) 

(II) 

(12) 

The third integral in equation (7) is curvilinear and its denominator is always 
different from zero . Because of these two particularities it is readily computable numerically . 
On the other hand , the two surface integrals in equation (7) may become singular because D , 
which represents the square of the distance between the point P and the point P 0(r0,~ 0) , may 
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become equal to zero when P and ? 0 belong to the same blade wake . The numerical evalua
tion of these two integrals will now be shown . 

2.1. Integration over time in the non singular case 

In this case the denominator D never becomes equal to zero when time •o varies 
from -~ to'' . We must look for a numerical method of integration that is fast and 
sufficiently accurate . For the particular case of a wing moving with a uniform velo
city many methods have been devised [4-9] . That due to Desmarais [6] is particu
larly well known . It approximates the function to be integrated ( the kernel) by a 
set of exponentials . For the particular case of the helicopter in forward flight , 
Desmarais' method does not apply . Furthermore the advent of modern computers 
based on parallel processing principles makes the approximating of the kernel by a 
set of not truly elementary functions less attractive. It may be more advantageous to 
evaluate repeatedly the kernel directly . Let us consider the functions Ui 0 , U; , D , 
N 1 , N 2 , when r 0 is held fixed and •o varies from -~ to • 1 . N 2 and the denomi
nator D are polynomial functions of C•-'to) . As 'o tends toward -~ , Ui 0 , U; 
and N 1 remain bounded and D tends toward infinity like C•-'t0) 2 . This ensures the 
convergence of the first integral in (7) . For the second integral in (7) the conver
gence arises from the fact that D512 increases more rapidly than N 2 as ' tends 
towards-~ . In the numerical evaluation of these two integrals , polynomial terms 
are computed by simple products and are no problem . Unfortunately Ui0 , U, , D , 
N 1 and N 2 also contain sine and cosine terms of the variable 'to. Obviously the 
number of calculations of the sines and cosines should be minimized . Taking r 0 as 
constant and omiting it in the following equations for more clarity. this minimiza
tion can be done in the following manner: 

(13) 

+-

With S 1C'to) = (14) 

For the second integral in (7) the same method applies with S 2 taken as : 

·- 21tk 

[
-3Vl ]~ N2('to-Q) 

S2('to) = q('to) UioU; .£...; [ 21tk ]512 (15) 
<=O D('to-n) 

After some manipulationS 1 and S 2 can be obtained by a combination of the 4 series 
s 1 , s2 , s 3 , s4 below: 

+-

s1('to) = 2:: 1 
( 16) 

[I+ [p.(90+2k1t)+c rr k=O 

+-

s2( 'to) = 2:: 
[ I + [p.(90+2k7t)+c r r/2 <=O 
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+-
"" 90+2k1t 
£../ --:-[ -[:-----=------:---] 2 ]~512 
<=O 1 + p.(90+2k1t)+c 

[ J 
2 ] 512 p.(90+2k1t)+c 

These four series depend on the 3 parameters 90 , p and c . The parame
ter 90 is an angle which is greater than 0 and less than 21t radians . The parameters p 
and c are functions of the coefficients V x , V z , n , r , r0 which are given by the 
rotor flight characteristics and by the positions of the points P and Po . The series 
have been studied for the following range of the parameters : 

0 S 90 S 21t 

10-4 s p s 10+4 

0 S I c IS 10+4 

The order of magnitude of p and c are : 

(Vi+Vz') 112 Vx 
p = A. I Vz I c = Vz with 

( v 2+ v 2) 112 
A= X z 

nr 

A is the advance ratio computed for the radial distance r of the point P . It should 
be noted that the particular case of Vz=O is not covered by the numerical method 
presented here . In fact the case V z = 0 , where the wakes of the blades are supposed 
to remain in the plane of the rotor disk , is mathematically extremely difficult and 
can be ignored in most engineering applications . Even for the case of the hovering 
rotor , the blade wakes are carried downward by the flow which exist across the rotor 
disk . However , in this case the wake deformations • which cannot be included in 
this theory, are likely to introduce large errors especially when Vz is small or nega
tive . 

s 1 , s 2 , s3 , s 4 are determined by one of the four following methods according to 
the values of p and c (see figure [ 2] ) : 

Method 1 • The series are replaced by integrals from zero to infinity over 
the variable k . The analytical value of the integral is known but it can 
also be computed by the trapezium formula: 

+-
s= l:s(k) = 

k=O 

+-

- ; s(O) + J s(k) dk 
.1:=0 

This relation gives an approximate value for the series . 

Method 2 . A number N is selected . The series is divided into two 
parts : 

<=N 
s=Ls(k)+ l:s(k) 

.i:=O k=N+ 1 

The second series is computed by means of method 1 . For the first 
series . s(k) is determined for 100 equally spaced values of k 
(N = 100 p) . The variation of s(k) is supposed linear between to adja
cent values of k . 

Method 3 . It is the same method as method 2 except that 1000 values 
of k are taken between 0 and N (N = 1000 p) . 
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Method 4. For some particular combinations of the parameters p and c, 
the linear interpolation is not sufficient . Following the ideas applied in 
the auto-adaptive routines used in numerical integrations [10] , that is to 
say the successive division of the original interval and polynomial approx
imations , a special method of integration has been devised . Between 
k=N 1 and k=N 2 , s(k) is approximated by a polynomial of the 8'' 

Jc:N2 

degree. With this assumption the sum s(N"Ni) = L: s(k) is calcu-
Jc=N 1 

lated and then compared to the more accurate value obtained by cutting 
the original interval [N 1 Nil into two equal sub-intervals and calculating 
each partial sum by the same process . If the two results agree within 
some prescribed limit the computations are halted and if not the process 
is repeated for each sub-interval. 

Remark 1 . It has been shown numerically that the parameter 90 is not a determin
ing factor in the choice of the method of summation . 

Remark 2 . Extensive computations have been carried out to compare the approxi
mate evaluation of the series s"s2,s3,s4 with values obtained by direct summation . 
In every case the error has been found to be inferior to 3 w-s . So far no attempt 
has been made to optimize the number of points in methods 2 and 3 . The approach 
employed in method 4 using a linear approximation of s(k) is possible and perhaps 
faster . 

Remark 3 . The calculation of the sums of the 4 series s is the only part of the 
computer code that has been vectorised in the version used on the CRA Y-XMP . 

2.2. Integration over time in the singular case 

In the singular case the points P and Po belong to the same blade wake ( i= j ) . 
For t=to , D tends toward zero as r 0 tends toward r . For the first integral in (7) let 
us define J 1 as : 

( 17) 

For t 0 = t and r0 = r ; N 1 , U,0 , u, are bounded and different from zero . Thus 
J 1(r0) becomes singular as r 0 tends toward r . Let us consider the product 
(r0-r)a.J 1(r0) where a> 0. It may be written as: 

't'l(ro) 

(ro- r)aJ t(ro) = (ro- r)af 

t+A-c 

( 18) 

+ (ro-

As r0 tends toward r , the first and the third integrals in ( 18) are not singular and 
their contribution to (r0 - r)a.J 1 can be neglected , due to the fact that they are 
multiplied by (r 0 - r)a. Thus: 
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lim (ro- r)a.J 1(ro) = lim (ro- ( 19) 
7o~r "o~" 

This is true even if C.~ is small and therefore the integral in (19) can be studied by 
limited expansion After lengthy developments , one can prove that 
(r0 - r)a.J 1(r0) has a finite value A 0 foro:= 2. The process may then be repeated: 

Thus 

lim(r0 -r)[J1(r0)- Ao 2 ]=A 1 
r 0-+r (r0 -r) 

. Ao 
lim] 1(r0) = 

2 
+ 

"o_,,. ( ro - r ) 

A, 
..,---..;_-,...+ 
( r 0 - r ) 

(20) 

Remark 1. The above analysis is not complete , it overlooks any logarithmic singu
larity . Nevertheless , the contribution of a logarithmic singularity to 1 1 would be 
small compared to the contribution of the two terms A 0 and A 1 and has thus been 
neglected . 

Remark 2. A 0 and A 1 are determined analytically and therefore are known with 
great precision . 

For the second integral in (7) , let us define J 2 as : 

'C't (ro) 

]z(ro) = l_ (21) 

For 't='to and ro=r , both N 2 and D are equal to zero but the integral ]z is not 
singular . This can be proved by a limited expansion of the summed expression in 
12 • As r 0 tends towards r , the limit of ]z is finite but it can only be determined 
by a numerical integration over the whole interval [-= .~ 1 ] which includes ~ . In 
fact , it is unnecessary to compute ]z for r 0 = r because this can be obtained by the 
method of the preceding paragraph for values of r 0 very close tor . 

r: [ : 1-~: S 0.0001 ] . This determines J, with sufficient accuracy 
I r I • 

because the participation of ]z in equation (7) is small compared to that of 1 1 • 

2.3. Integration along the blade span 

As it has been shown above , J 1 is singular when r 0 tends toward r . The first 
integral in (7) must be taken as a Cauchy principal part integral , that is to say an 
original integral function must be found analytically and the value of the integral is 
given as the difference between the values of this function evaluated for r 0=R 0 and 
ro= R 1 • In the general case the original integral function is unknown . The idea is 

.then to extract the singularity and to integrate numerically over the interval 
[ R 0 , R 1 ] • The Cauchy principal part of the singularity will then be added to the 
numerical result . The details of the method are given below : 

J 1 ( r 0 ) is approximated by the series K 1 • 

J,( ro) = K 1( ro) = 
1 

2 [Ao+( ro- r )A 1+ ...... +( ro- r )"A.] (22) 
( ro- r ) 
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The coefficients A 0 and A 1 have already been determined in (2.2) , the remaining 
coefficients A 2 •••. A. may be chosen such that the relation (22) is verified for some 
selected values of the radial distance r 0 • For example with n= 3 the relation (22) 
may be exact for rrt=r ± O.r . The difference 1 1-K 1 is not singular and may be 
integrated numerically over [R 0 , R 1] • To avoid numerical problems , J 1- K 1 is 
assumed to be equal to zero in the interval [ r- O.r ,r+ O.r ] . Thus we have : 

[ 
-Ao 

( r0 - r ) 
(23) 

A very important question is the accuracy obtained in the evaluation of the Cauchy 
integral in equation (23) . 

Let us consider the two integrals of equation (23), these integrals must be 
evaluated numerically. If r0 is close tor± O.r the function J 1-K has the same order 
of magnitude as ( 1/0.r ]2 which is very large when O.r is small. In the numerical 
computations ( r0- r )2.1 1(r0) is evaluated instead of J 1 because the product of J 1 by 
( r0-r ) 2 is not singular when r0 tends toward r. As ( r0-r ) 2.J1(r0) is a result of a 
complicated numerical process , its accuracy is likely to be poor ( typically the rela
tive error is equal to 3. w-•) . The error is multiplied by [ 11 O.r ]2 which has catas
trophic effects when O.r is small . The above "analysis shows that O.r must be chosen 
as large as possible for a good evaluation of the two integrals in equation (23) . 
In the interval [ r- O.r , r+ O.r ] , J 1 is represented by the series K 1 with only four 
terms in the example chosen in writing equation (23) . The series K 1 must represent 
very accurately the function 1 1 over the whole interval [ r-O.r , r+O.r] and for this 
reason O.r must not be too large . The value of O.r must then be a compromise 
between two contradictory requirements . How this compromise should be made is 
not entirely understood at present . One possible solution is given below : 

1- !!.. large value of O.r is chosen . 

2- The function ( r0- r ) 2.1 1(r0) is numerically evaluated for 
ro == r ± Ar . 

3· The second degree polynomial G (r0) equal to A 0 for r0 = r and to 
( r0-r ) 2.J 1(r0) for r0 = r ± O.r is determined. 

4- The derivative of G is computed and its value for r 0 = r is compared 
to the theoretical value of A 1 • If the difference between both values is 
considered negligible , then the value of O.r is retained . Otherwise O.r is 
halved and the whole process is repeated again , starting from 
step 2 . 

3. Determination of the aerodynamic forces on the rotor disk. 

In the preceding paragraph we have shown how to calculate the velocity 
induced at some selected point on the lifting line path . This will now be used to 
determine the aerodynamic forces on the rotor disk . 
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The lifting force by unit length, F(r0,~ 0) , along the lifting line is related to the 
doublet intensity by the equation : 

F ( ro ' ~o) 
q ( ro , ~o) = - _..:_:c..:_....::..:.. 

Po 

where p0 is the density of the undisturbed fluid . 

(24) 

F ( r0 , ~ 0 ) is decomposed in a set of polynomials for the radial variable r0 and in a 
Fourier series for the time variable ~0 . 

N N M 

F ( r 0 , ~ 0 ) = _L,x,P,( r 0 ) + L _L,r,iP,( r 0 ) cos j9( ~0 ) (25) 
i=l i= i )•1 

M 

L z,iP,( r 0 ) sin j8( ~0 ) 
i:::d j::z 1 

In equation (25) , the polynomials P,(r0) may be chosen as Legendre's polynomials, 
but in some of the applications presented in this paper , Jacobi's polynomials have 
also been used . These poiynomials are orthogonal over the interval [R 0 , R tl with a 
weighting function equal to I as for the Legendre polynomials , but the additional 
condition that they are equal to zero for ro= R 0 is imposed 
The velocity induced in the fluid by each of the functions 
P,( r0 ) , P,( r0 )cos j9( ~0 ) , P,( r0 )sin j8( ~0 ) is computed for N. (2M+ 1) 
points carefully selected on the rotor disk . For each point , a non separation condi
tion of the flow from the helicopter blade is written . This determines the value of 
the unknown coefficients X,,Y,i,Zii if the blade movement is known . It is now 
necessary to specify the positions of the collocation points on the helicopter blade . 
Starting from the azimuthal position 8=0 , 2M+ I equally spaced azimuths are 
selected and each is the azimuth of N collocation points. In the numerical applica
tions presented below , the rotor blades are rectangular and the feathering axis is 
located at the quarter chord position . The feathering axis is assumed to generate the 
blade wake . In the case of the Jacobi polynomials J(y) , let us call Yi the values of 
y which put the polynomial of degree N +I to zero. One of these values is equal to 
R 0 and is not considered . The remaining N y, are on the interval ]R 0 , R 1[ 

( limits excluded) , and are used for the definition of the spanwise positions of the 
collocation points . In the acceleration potential theory , 2D steady analysis as well 
as empirical evidence from the 3D unsteady case suggest placing the collocation 
points on a line located at the third quarter chord position ( when there is only one 
lifting line ) . Now , on this line , two possibilities have been considered for the 
span wise position of the collocation points : 

1- The span wise coordinates of the collocation points are equal to the y, 
and' therefore do not depend on the azimuthal angle e. 
2- Let us call Q, the point on the quarter chord line at the span wise coor
dinate y, and P, the collocation point that will also be determined by y, . 
We want the spanwise component of the local flow velocity to influence 
the position of the collocation point P,. This is done by allowing the col
location point P, to position itself to leeward of the point Q, while still 
remaining on the third quarter chord line . The spanwise coordinate of 
the point P, now depends on the azimuthal angle e. 

III NUMERICAL APPLICATIONS 

Though the development of this new computational method for the accelera
tion potential theory is far from complete , some applications and comparisons with 
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experimental results have already been done . We first made computations for the 
incompressible case with a Prandtl correction for the non separation condition of the 
flow. These assumptions give a simpler program where some features such as the 
choice of /;r ( see : II-2.3 ) are more easily investigated . A more complete code 
for compressible flow is also under development . It is possible with this code to use 
more than one lifting line to schematize the blade . One preliminary result has been 
obtained with two lifting lines . 

As we are mainly concerned with the computation of the aerodynamic forces, 
in all the following applications the blade movement is supposed known and given 
by experiment or other codes . The full aeroelastic problem will be addressed later 
using a method devised by Tran [11] . His method can couple any aerodynamic 
model with elastic properties of the blades . 

For our comparisons, we first used an early (1970) wind tunnel test to validate 
the codes, and then an application was attempted for a flight test case of the SA 349 
G V Gazelle helicopter . 

1. Validation of the codes 

In 1970 a series of tests was carried out in the Sl wind tunnel in Modane on a 
rotor model having 3 rectangular blades . The lifting part of the blades was situated 
between the two radial positions R o=0.473 m and R 1=2.075 m . The chordwidth 
was c=0.21 m, and the profile was a NACA0012 along the whole blade span . With 
these dimensions , the glass fiber blades were very rigid , and any blade deformation 
such as bending or torsion could be neglected. The rotor had flap and lag hinges but 
there was no cyclic pitch . During the test , the blade flap and lag movements were 
recorded . The rotational speed of the rotor was about 96 rd/s which gave a velocity 
at the blade tip of about 200 m/s . There was no fuselage and the model design was 
such that its flight characteristics be close to those of actual helicopters of that time , 
though with purer aerodynamics, and the rotor attitude and blade movements be 
well defined . Four sections at radial distances R I R 1=0.952, 0.855, 0.71 , 0.52 
were instrumented with 10 differential pressure transducers . During the tests , the 
lift force per unit length was recorded , but there were not enough transducers for a 
reliable measurement of the moments and thus they are not available. 

For the comparison between theory and experiment which will be presented 
below , a case with an advance ratio of 0.3 has been selected . The rotor was not 
heavily loaded , Cricr= 0.1 , and thus the non linear aerodynamic effects on the 
retreating blade were probably small . The tip path plane angle , a.0 = 7.53" , was 
rather large but still representative of an actual flight case . The inputs for the com
putations were the experimental collective pitch angle and the recorded blade move
ment . No attempt was made to adjust the inputs and the comparisons given are for 
the lift per unit length (normalized by the chord x static pressure product) . Though 
this case is not too difficult , the comparison between theory and experiment is still 
meaningful . 

For the computations , 5 Jacobi polynomials and 6 harmonics were considered 
. The blade was schematized by a single lifting line at the quarter chord and the col
location points positions were varied with the azimuthal angle . The computer time 
required was about 2mn on a CRA Y-XMP . Figure [ 3 ] shows the results obtained 
with an incompressible flow and a Prandtl correction for the non separation condi
tion . The same figure also gives the results when the compressibility of the air is 
correctly included into the theory . These theoretical results compare very well with 
the experiment . The discrepancies are somewhat larger at the blade tip section 
(R IR 1=0.952) but the results remain very satisfactory, especially if one notes that 
they are obtain with a single lifting line blade model. 
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2. Application to the Gazelle helicopter 

A series of flight tests has recently been completed with a Gazelle helicopter. The 3 
blades of the rotor have a rectangular plan form and an OA 209 profile along the 
whole span . During the flights, pressures were measured on 3 instrumented blade 
sections . The blade movements were not recorded at the same time as the pressures 
but during another flight campaign . The measured blade collective and cyclic pitch 
were inaccurate because of the elasticity of the control system . Furthermore , our 
computations are at present restricted to the case of a hinged rotor with rigid blades . 
For the comparisons between theory and experiment , a flight case with a helicopter 
forward speed of 290 km/h was selected. The necessary inputs for the computations 
were obtained by using an earlier computer code [12-13] where the collective and 
cyclic pitch were trimmed to obtain the required lift and forward forces of the rotor. 
The lift is given as the aircraft gross weight , but the forward force which coun
teracts the total aircraft drag has been extrapolated from wind tunnel measurements 
by the Aerospatiale . 

In the computations 5 Legendre polynomials and 6 harmonics were used. The 
results are given in figures [ 4 to 7 ] . For a high advance ratio flight case , we hope 
to improve the classical lifting line results by optimizing the positions of the colloca
tion points as a function of the blade azimuthal angle . It is for this reason that the 
method of optimized collocation points is used here , even though in the case of the 
moderate advance ratio of the test ( J.l= 0.356 ) , the effect of the variation of the 
position of these points is not very significant (see figure [ 6]) . 

The comparison between theory and experiment is given in figure [ 4] for the 
lift coefficient CL . Though at first the comparison may seem good , an important 
phase shift is obvious between the theoretical and the experimental curves for the 
advancing blade at about 90° azimuthal angle . This phase shift can be seen more 
clearly in figure [ 5 ] where the lift coefficient CL is multiplied by the square of the 
local Mach number. This Mach number M is derived from the normal component 
of the blade velocity . The product CL .M 2 is a kind of normalized lift per unit 
length . The error on the section located at the radial position R I R 1= 0.88 is parti
cularly large . As shown in figure [ 6 ] the discrepancies cannot be explained by 
changes in the positions of the collocation points which , as expected , have no 
effect at 90° and 270° azimuthal angles. We have also attempted to remove some of 
the simplifications in the theory . As explained in II-2 , the blade wake is approxi
mated by the surface generated by the movement of the blade quarter chord line . 
The movement of the quarter chord line is itself simplified and does not take into 
account the lateral tilt of the rotor plane . Though the complet-e blade movement is 
taken into account for the non separation condition written for each collocation 
point , it is necessary to know the effect of the wake simplification . Following the 
method given in II-2 , the complete equations have been derived . It has been 
found that the integration can still be done by using the four series 
s 1 (~ 0) , s2(~0) , s 3(~ 0) , s 4(~ 0) given in II-2.1 . Thus the theory given in II can still 
be used with only a few modifications of the computer code. The results which were 
obtained with an exaggerated lateral tilt ( 5° ) of the rotor tip path plane differ only 
very slightly from the ones shown in figures [ 4 and 5 ] and are therefore not 
pre sen ted here . 

We have also tried to increase the number of lifting lines . Though the general 
theory remains unchanged , many details must be modified , in particular the 
definition of the aerodynamic forces along the blade span in equation (25) . The 
wake of the blade is still defined by the movement of the quarter chord line , but 
the lifting lines must now be projected on the wake . This has far reaching conse
quences on the computer code . The code is still in the development stage but 
results have already been obtained with 2 lifting lines . These are given 
in figure [ 7 ] for the lift coefficient CL . The results with one or two lifting lines do 
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not differ much, and the main differences occur at. the 270° azimuthal angle where 
they have very little effect on the lift . 

The phase shift between the theoretical and experimental lift curves, illustrated 
by figure [ 5 ] , remains unexplained. The large torsion (1°) measured at the blade 
tip during the experiment may explain some of the discrepancies . The torsion is 
probably induced by the aerodynamic forces whose moments around the blade tor
sion axis must be large . These moments may come from 3D effects at the blade tip 
or from transonic effects , or they may be due to the flow separation from the blade 
upper surface on the retreating side of the rotor disk . 

IV CONCLUSION 

The computation of aerodynamic forces by means of integral methods is 
appealing to the dynamicist who must deal with very complex aeroelastic problems . 
The aerodynamic forces are decomposed into functions and the velocity induced by 
each function is computed . A condition of non separation of the !low from the 
blade surface is used to determine the aerodynamic forces . This approach is well 
suited when there is strong coupling between structure and aerodynamics because 
the induced velocities are only computed once . It can also be applied to stability 
problems . These methods were successfully used in airplane stability studies but 
their application to the helicopter rotor present many difficulties . The aerodynamic 
part of the problem is developed in this paper . 

The helicopter blade is schematized by lifting lines. A new and accurate 
method for the treatment of the singularities which occur when a lifting line passes 
on a collocation point is given . The computer code has been validated by a com
parison with a wind tunnel test. A more ambitious application to a flight test of the 
Gazelle helicopter has given acceptable results but has also brought to light some 
problems ; it is necessary to increase the number of lifting lines to compute the 
moments of the aerodynamic forces at the blade tip . A good prediction of the 
moments seems necessary in the case of the Gazelle rotor where large torsional 
deformations of the blades were measured . This study will be continued to include 
a full aeroelastic treatment of the problem . 
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