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Abstract.  This paper presents the results, achieved at the Aerospace Engineering 

Department Laboratories of the University of Bologna, concerning the development of a 
simple identification procedure, in a Matlab-Simulink environment, in order to obtain a 
representative dynamic model of a small rotorcraft UAV near hovering flight conditions. 
Procedure starts with open-loop identification test flights without any cross-effect accounted, 
cross-effects are then introduced in the simulated model and, at the end, parameters 
refinement is performed using a closed loop identification technique. For each step, training 
data are shown and the adopted cost function to be minimized is described. Moreover cross 
validation is performed and indexes of relative goodness of fit are computed to assess the new 
model. 
 
Symbols legend: 
 
 a,b     longitudinal and lateral rotor flapping 
    longitudinal and lateral attitude angles 
 p,q    roll, pitch rates in helicopter reference frame 
 u,v,w    longitudinal, lateral and vertical speed in body reference frame 
    cyclic longitudinal, lateral, collective control inputs 
g    (9.81 m/s2) acceleration of gravity  
    main rotor time constant 
    lateral and longitudinal fuselage-rotor-bar natural frequencies 
Alon, Blat,, Xu. Yv, Xa,   On-axis derivatives 
Yb, Lb, Ma, Zcoll, Zw      
Mu, Mv, Lu, Lv   Speed derivatives 
Alat, Blon, Mb, La, Mcoll  Off-axis derivatives 

,
 

np , nq
 

colllatlon  ,,
 

e  
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1. INTRODUCTION 
 

It is well known that Unmanned Air Vehicles (UAVs) may represent a promising and 
cost-effective alternative to manned aircraft for a large number of civil applications. 
Compared to traditional air vehicles, UAVs may, in fact, offer significant advantages in terms 
of human safety (especially in dull, dirty and dangerous missions), operational cost reduction 
and work rate efficiency. In particular Rotorcraft UAV (RUAV) systems, due to their 
versatile flight modes, maneuverability and vertical take-off and landing capabilities, 
represent even a more promising solution than fixed wing UAVs. 

In the last years UNIBO has developed an unmanned small scale helicopter that is now 
capable of autonomous flight and that can be used inside the Universities as a platform for 
researches in control and navigation laws, meanwhile it could be proposed as a technological 
prototype for industries interested in UAV development and manufacturing. In order to take 
advantage of existing and cost effective technology, UNIBO has used Commercial Of The 
Shelf (COTS) sensors and electronics for its RUAV avionics package. 

The analysis and design of a good flight control system requires the knowledge of an 
accurate model of vehicle dynamics [1]: such model can be obtained using the known System 
identification techniques used for bigger machines, with some simplifications. 

Aim of this paper is to present a simple System Identification Procedure for Control 
Design. In particular the identified system shall be used, in the future, to compare 
performances of a traditional PID controller versus a feed-forward control algorithm based on 
dynamic model inversion (both for longitudinal and lateral dynamics). The proposed time-
domain identification procedure is entirely developed in Matlab-Simulink environment, and 
requires no other external software applications. 

This paper is made of four parts; in the first a brief description of UNIBO RUAV is 
given. Second part is about Open-Loop (OL) identification without cross-effects, the third 
introduces cross-effects while in last part parameters refinement is performed using a Closed 
Loop (CL) identification technique.  Results will demonstrate how the proposed Identification 
procedure provides a model showing a good agreement especially in closed loop validation 
accounting also for cross-axis effects. 
 
2. UNIBO ROTORCRAFT UAV 
 

The Bologna University Rotary Wing UAV, shown in the Figure 1, is built around a 
modified Hirobo Eagle II 60 hobby helicopter with a more powerful engine, longer fiberglass 
blades (main and tail rotor) and longer tail boom. The new main rotor is a 2 blades see-saw 
type with Bell-Hiller stabilizer with a diameter of 1.84 m and the total mass is about 11.2 kg. 
A National Instruments CompactRIO system has been selected as flight computer and 
performs both the task of Autopilot and FMS. For flight data measurement a Crossbow 
NAV420 GPS-aided Attitude Heading Reference System (AHRS) and ultrasonic sensors have 
been installed which provide accurate signals in velocity, flight altitude and helicopter 
attitude. In such a way, the University of Bologna, through a rapid prototyping approach, has 
been the first Italian University achieving full autonomous flight capabilities on a Rotary 
Wing platform. 

The control system architecture used to control the helicopter is based on a nested PID 
Approach. The Vx and Vy track velocities control is implemented using a two levels, nested 
loop structure. Lateral track velocity (Vy) errors are used to generate roll demands for the roll 
(phi) control module, while longitudinal track velocity (Vx) errors are used to generate pitch 
demands for the pitch (theta) control module. The inner attitude controllers generate 
commands to maintain the desired helicopter reference conditions. 
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The reference track velocities Vx and Vy can be generated either by an outer guidance and 
navigation control system or by a user pre-defined reference velocity profile. 

The vertical velocity control uses a stand alone PI feedback control loop, while 
heading is controlled by a loop closed on the onboard gyroscope control unit  

 

 
 

Figure 1: UNIBO Rotary wing UAV 
 
Preliminary flight tests showed that it has sufficient controllability and robustness for the 
maneuvers required for slow hover-like flight. [2, 9] 
 
2. ON-AXIS IDENTIFICATION 
 

At the beginning, the helicopter longitudinal and lateral dynamics were considered as 
totally separated without any off-axis effect. 
The adopted Time-domain identification procedure is based on the comparison between the 
(real) measured signal and the simulated one. Figure 2 shows a schematic representation of 
the procedure for longitudinal dynamics on-axis identification in Open loop chain. 

 
 

Figure 2: Open Loop On-axis Identification 
 

The cost function (1) is the sum of the errors between the measured and simulated signals and 
is minimized in order to find the optimum transfer function parameters. Sum is performed 
every computing task, with a simulation step time equal to 0.01 s. 
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(1) 
 

Once parameters have been computed by minimizing the cost function over a training data 
set, cross-validation is performed using totally new a data set (fresh data, [4]). 
Author’s scripts have been used in order to find the unknown parameters value by minimizing 
a Cost Function (generally related to the particular identification test) using MATLAB@ 
function [3]:  
 
FMINSEARCH: Multidimensional unconstrained nonlinear minimization  
 

In order to test fitting performances, the following goodness of fit index [4] has been 
computed:  
 

 
where Ymeas and Ysim are, respectively, the measured and simulated data.  
This index relates better agreements to numbers near unity. Since R2 value depends on 
particular test (Ymeas), it is more correct to use it for comparing different models over the 
same inputs rather than to assess goodness of fit of one single model. Moreover R2 can be also 
NEGATIVE (typically when the error is, on average, greater then the amplitude of signal) 
anyway, and also in this case the GREATER is R2 the BETTER is the fitting goodness of the 
model.  
 
2.1 Pitch and roll rate 
 

Following a classical approach [1], second order transfer functions for the pitch and 
roll rates responses to pilot inputs have been considered (2, 3), and the relative parameters 
have been identified for several frequency sweeping commands [2].  

22

2

/1 nqe

nq

e ss
Alon

lon
q




 


       (2) 

 

22

2

/1 npe

np

e ss
Blat

lat
p




 

     (3) 

 
For longitudinal dynamic the following values were identified: 
 
 
 
while, for lateral dynamic, they have been identified in: 

 
 
More details and initial values computation are reported in [2]. 
Figure 3 gives evidence of training data and Figure 4 of cross-validation data. In particular 
left column figures show longitudinal dynamics while right column ones show lateral, 
response angular rates are in the upper boxes while commands are in the below boxes. 
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Figure 3: Longitudinal (left) and Lateral (right) sweeping input commands (below)  
and relative angular rates (upper) used for system training 

 

 
 

Figure 4: Longitudinal (left) and Lateral (right) validation input commands (below)  
and relative angular rates (upper) used for system validation 

 
For longitudinal cross-validation test goodness of fit index have been computed in R2=0.8586 
while for lateral validation R2=0.6085. In this case a better agreement of longitudinal model 
validation can effectively be seen also ‘by eye’. 

Then, in body-frame reference, first order attitude-velocity transfer functions (4) have 
been chosen, and relative parameters have been identified using different usual flight 
maneuvers (near hovering conditions [5]). 
 

             (4) 
 
 
In both cases g parameter was assumed to be equal to 9.81 m/s2 (gravity acceleration) and the 
remaining parameters have been identified. 
Figures 5 and 6 show training and cross-validation data sets for attitude-velocity transfer 
functions (left column: longitudinal, right column: lateral, upper fig.; body frame velocity, 
below figure: input command). 

vYs
gv





uXs
gu









 6

 
Figure 5: Input commands (below) and relative speeds (upper) for Longitudinal (left) and Lateral (right) 

velocity model Identification  

Figure 6: input commands (below) and relative speeds (upper) for Longitudinal (left) and Lateral (right) 
velocity model Validation  

 
Using the cost function defined in (1), the following identified parameters were computed: 
 

Xu=-0.052 (1/s)  Yv=-0.046  (1/s) 
 
with respectively a validation goodness of fit index of R2=0.9366 for longitudinal dynamics 
and R2=0.9586 for lateral,  
 
 
2.1 Vertical speed dynamic 
 
Vertical dynamics have been modeled using a first order transfer function from command to 
velocity [1]: 
 

(5) 
 
 
 
Figure 7 shows training and cross-validation data sets used for heave dynamic transfer 
functions identification.  
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Figure 7: Training (left) and validation (right) data sets for heave dynamic transfer functions  
(upper: vertical velocity, below: collective input command) 

 
 
The relative derivatives have been identified in: 
 
 
 
 
with a validation test goodness of fit index of R2=0.7127. 
 
 
Table n.1 summarizes the values found for the On-Axis parameters found using Open Loop 
identification: 
 
 

Name Xu Yv Alon Blat tf Xa Yb g Lb Ma Zcoll Zw 

Value 0.052 
1/s 

0.046 
1/s 

0.2488 
rad/rad 

0.22 
rad/rad 

0.132 
s 

9.81 
m/(s2.rad) 

9.81 
m/(s2.rad) 

9.81 
m/s2 

327.6 
1/s2 

146.4 
1/s2 

-7.733 
m/(s2.rad) 

-0.3567 
1/s 

 
Table 1: On-axis Open Loop Identified Values using a pure longitudinal or lateral maneuver  

 
 
 
3. OFF-AXIS IDENTIFICATION IN OPEN LOOP 
 

The below system (6) describes the model used for Off-axis Open Loop identification 
tests. In this system, equations present both the On-Axis parameters values (just identified as 
reported in Table1) and new 11 Off-axis derivatives (reported in right column) to be identified  
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This system can be written in the State Space form: 
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This system is similar to the one used by Mettler in [6,7], excepted for the absence of pedal 
input and yaw dynamic: in small scale helicopters, the cross effects due to yaw dynamic are 
close to zero and therefore often negligible (values equal to zero in [6]).  
As in [7], Mcoll derivative have been added in B matrix to account also cross-effect of 
collective input into longitudinal dynamic. 
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The first 7 parameters Ab, Ba, Alat, Blon, Ma, Lb, Mcol have been identified using again 
several frequency sweeping inputs near hovering condition [1].  
After many tests we found that, as suggested by Mettler [8], it can be set Ab=Ba=0.  
Furthermore, since MATLAB@ fminsearch function seems to work better with a maximum 
of 5 parameters, reducing the number of parameters to be identified it is also desirable. 
 
Now, a new cost function, reported in Fig. 8, that takes into account both errors in 
longitudinal and in lateral attitude was adopted: 
 
 
 

  
Figure 8: Off-axis Derivatives Open Loop Identification 

 
Recorded frequency sweeping input commands have been used in input to the model both for 
longitudinal and for lateral dynamics and, as expected, a great improvement has been noticed 
in reducing attitude drifts of the No-Cross-effect-Model (NCM). 
Figures 9 and 10 report training experiments with longitudinal (Fig.9) and lateral (Fig.10) 
excitements; blue signals represent recorded data, while red ones belong to the cross-effect 
model and green ones to the NCM. The left (pitch angles) and right (roll angles) boxes are, 
for each figure, relative at the same data set, and we can notice how the cross identification 
reduce errors in both attitude angles. 

 
Figure 9: Off-axis Derivatives Open Loop Identification - Longitudinal training data set 

(Left: pitch angle, Right: roll angle.) 

))__()__(( 22 simThetameasThetasimPhimeasPhionCostFuncti 
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Longitudinal test goodness of fit is R2= 0.7353 (vs R2= -5.5632 for NCM) for theta angle and 
of R2= -1.5551 for phi (vs R2= -12.5321 for NCM): the fit function show a clear increase in 
attitudes estimation. 
 

 
Figure 10: Off-axis Derivatives Open Loop Identification - Lateral training data set 

(Left: pitch angle, Right: roll angle.) 
 

Also for lateral sweeping test a good improvement can be seen in signals fitting, and it 
can be noticed how certain helicopter responses are now present in the cross-effects model 
(e.g. Fig. 10, left, red vs green signal for the roll angle, t=20...25s). In this case test goodness 
of fit is R2=-3,4643  (vs R2=-6.5254 for NCM) for theta angle and R2=0.7616 for phi (vs 
R2=0.6636 for NCM).  

Starting point for derivatives identification procedure was a set of ‘zero values’. 
In all test cases, in order to verify that a global minimum of the cost function (and not 

to a local one) was found, all the runs were repeated with different initial conditions.  
Analyzing identified values (Table2) it can be seen that the parameters have different 

values if identified with longitudinal or lateral and, sometimes, they present also a change in 
sign., As a consequence, it was decided to assume mean values for these parameters obtaining 
a sort of ‘mean system’ and to measure goodness of fit of this new model with cross-
validation tests only.  
  

Derivative Longitudinal Test 
Value 

Lateral Test Value OL Mean value 

Alat   (-) 0.2023 -0.0446 0.0789 
Blon   (-) 0.0655 -0.0648 3.5000e-004 
La    (-) -0.5404 173.4853 86.4724 
Mb   (-) -37.4823 -69.9203 -53.7013 

Mcoll   (1/s2) -21.8085 -12.3811 -17.0949 
Mu,Mv,Lu, Lv  (rad/(m s)) Set to 0 Set to 0 Set to 0 
 

Table 2: Off-axis Open Loop Identified Values using a pure longitudinal or lateral maneuver  
 
Using mean values for Alat, Blon, Ma, Lb and Mcoll derivatives makes the model to assume a 
mean behavior between the one optimized with longitudinal values only and the one with 
lateral values. This behavior has been noticed in every validation test performed. 
Figure 11 shows the cross-validation of the final system with longitudinal and lateral flight 
real data. 
Longitudinal cross-validation test goodness of fit is R2=0.7549 (vs R2= -0.2332 for NCM) for 
theta angle and R2= -0.7291 for phi (vs R2= -0.7301 for NCM). 
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Lateral Cross-validation test, instead, shows goodness of fit of R2= -0.3219 (vs R2= -2.0041 
for NCM) for theta angle and of R2= 0.1903 for phi (vs R2= 0.1058 for NCM). 
Again, cross-effect model shows a better agreement than NCM especially in longitudinal 
dynamics, and it can be seen (Fig 11, right column, phi signal e.g.  t=74s) that the final model 
captures some off-axis dynamics. 
 

 
 
Figure 11: Open Loop Validation - Longitudinal (left column) and Lateral maneuvers (right column), 
 
 The OL identification procedure for speed derivatives Mu, Mv, Lu, Lv, was done using 
zero as starting values for the optimization algorithm, since the flying tests used were relative 
to flights near hovering conditions.  
However, probably due to too big drifts in simulated speed signals, it was not possible to find 
a set of values different from zero providing a better agreement in cross-validation tests. 
Therefore, zero values for Mu, Mu, Lu, Lv, have been used as starting point for CL 
identification tests (see section 4). 

 
4. OFF-AXIS IDENTIFICATION IN CLOSED LOOP  
 

During closed loop identification the already mentioned 9 parameters Alat, Blon, La, 
Mb, Mu, Mv, Lu, Lv, Mcol were initialized using, the OL identification mean values. 
 
The adopted closed loop identification procedure is based on the control architecture, shown 
in Figure 12. In this procedure, real measured set-point values and the relative off-axis 
commands are the model inputs (e.g. U_set_point+dlat+dcoll for longitudinal, 
V_set_point+dlong+dcoll for lateral maneuvers), while the attitude error (difference between 
real and predicted output of the outer control loop) and the command error (difference 
between real and predicted output of the inner control loop) are used to compute the new cost 
function. For example in longitudinal maneuvers: 
 
 
 
while in lateral maneuvers: 
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Figure 12: Closed Loop Identification logic 
 

 
The following table reports the identified values during step-like cross-validation velocity 
maneuvers. 
 

Derivatives OL (Mean) CL longitudinal CL lateral CL Mean 
Alat  (-) 0.0789 0.1328 0.0777 0.1053 
Blon  (-) 3.5000e-004 2.9896e-004 3.4119e-004 3.2008e-004 
La  (-) 86.4724 157.4712 89.2649 123.3681 
Mb  (-) -53.7013 -108.0648 -55.6379 -81.8513 

Mu  (rad/(m s)) 0 -0.0053 6.4525e-005 -0.0026 
Mv  (rad/(m s)) 0 -0.0018 -1.6989e-005 -9.0849e-004 
Lu  (rad/(m s)) 0 -8.9655e-004 1.2198e-004 3.8729e-004 
Lv  (rad/(m s)) 0 -0.0026 -8.7996e-006 -0.0013 

Mcol  (rad/(m s)) -17.0949 -17.0854 -17.1030 -17.0942 
 

Table 3: Values Identified in Off-axis Closed Loop (CL)  
 
Note that, final values are similar to those reported in [6] and [7] for the X-cell, except for La 
and Mb that are greater than expected but correctly smaller than the on-axis corresponding 
derivatives Lb, Ma (see Table 1). 

About speed derivatives Mu, Mv, Lu, Lv , it can be seen how the final values are much 
smaller than those found in literature for similar rotorcrafts; this, anyway in our opinion, 
confirms that influence of speed in near hover condition is irrelevant. In fact, Mu=-0.0026 
means that a speed of u=2 m/s induces a really poor contribution  (0.0052 rad/s2) to pitch 
acceleration with respect to the contribution of Ma (e.g. 2.54 rad/s2 with a=1 deg.). Mv and 
Lu (the off-axis speed derivatives) are even smaller and therefore negligible. 

Validation tests of the identified parameters in different closed loop controls are 
shown both for longitudinal (Fig.13, left column) and lateral (Fig.13, right column) inputs. 
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Figure 13: Closed Loop Validation Tests (upper: velocity, middle: command, below: attitude angle) 

(left column: longitudinal CL flight, right column: CL lateral flight)  
 
 

GIF index Longitudinal Longitudinal NCM GIF index Lateral Lateral NCM 
R2 u 0.9525 0.9447 R2 v 0.8080 0.7861 
R2 theta 0.7886 0.7699 R2 phi 0.3153 0.2206 
R2 dlong, 0.6449 0.6229 R2 dlat 0.1973 0.0598 

 
Table 4: Closed loop Goodness of Fit Indexes comparison  

 
Finally, table 4 gives final evidence that accounting of cross-effects in dynamic model brings 
to a better agreement of the model regarding speeds, attitude angles and closed loop 
commands and that this improvement exists both for longitudinal and lateral dynamics. 
 
5. CONCLUSIONS AND OUTLOOK 
 

A simple identification procedure, developed in a Matlab-Simulink environment, in 
order to obtain a representative dynamic model of a small rotorcraft UAV near hovering flight 
condition has been presented.  Open-loop identification sessions both with and without cross-
effects have been shown; a parameters refinement through a particular closed loop 
identification technique was then performed. For each test, indexes of relative goodness of fit 
have been presented demonstrating the benefits of the new model. 

The identified model will be used for control design purposes, so it will be possible, 
using MATLAB@ signal constraint blockset, to pre-tune controller gains, giving a set of 
control target performances as raise time, maximum overshoot and final error. 

Moreover, the authors will identify rotorcraft dynamics also in high speed conditions. 
The complete derived models (low and high speed) will be used for pre-tuning control 
helicopter autopilot parameters and to perform comparison between advanced control 
architecture, based on feed-forward actions, with common control architecture.  
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