
ELEVENTH EUROPEAN ROTORCRAFT FORUM

PAPER No. 60

H/W AND S/W REDUNDANCY TECHNIQUES FOR
90's ROTORCRAFT COMPUTERS

A. Of GIOVANNI and P. GARRO
SELENIA

POMEZIA, ITALY

SEPTEMBER 10-13, 1985- LONDON, ENGLAND
THE CITY UNIVERSITY, LONDON,

EC1V OHB, ENGLAND

ABSTRACT

Future trends in aircraft and rotocraft designs is to utilize computers for flight critical
operations.

In this way it is possible, for example, to improve the rotocraft performances by operating
with greatly reduced stability margins. But computers for these applications must have a
reliability comparable to the major structures of the aircraft. Therefore computers correctly
operating also in the presence of faults is a matter of great interest for avionic designers.

The paper describes the most commonly used techniques for the implementation of real
time fault tolerant computers and their application made by Selenia in two avionic systems.

The paper moreover describes the error detection and error handling techniques used
in the SLIAYK 204 airborne computer.

60-1

1.0 BASIC CONCEPTS

A fault tolerant system is a system which remains operational alter an internal fault has
occurred or an external input peripheral gives incoherent data. Many authors, to indicate such
a system, refer to "fail operational" or a "high integrity" system, which means that the system
will deliver the correct control signals at the correct time even when a fault has occurred
internally in the system.

To permit system operation, in the presence of fault, a certain degree of redundancy is
introduced in the system. In case of a fault in a redundant unit of the sistem, its role is taken
over by others units, where a unit may be both a hardware component of the system or/and
a software component.

To obtain the redundancy, the hardware and software units of the system may be duplicated
or triplicated: in general more copies (identical or not) with the same function inside the system
may be used, so that a faulty unit may be immediatly substituited by its copy.

Depending on the system requirements a different granularity of the redundancy may
be used: for example it may duplicate or triplicate the whole computer or only its memory
or a particular peripheral unit, etc.

1. 1 H/W Reliability

As mentioned above, redundancy can be applied at many levels, but perhaps high level
rendundancy is more easily managed and is cheaper than that applied to LSI or VLSI circuitry
level. For this reason this paper considers only high level computer hardware redundancy.

1 .1 .1 Stand-by computers -

In many applications not requiring the concept of "high integrity", stand-by computers
can be used to continue the processing in case of a fault in the master unit. The switchover
from the master to stand-by computer can be carried out manually or automatically. In such
a redundant system, the master processor may produce incorrect data during the period in
which the fault occurs and the time the switchover occurs. Such a computer system is not
considered a "high integrity" system, and should only be used in critical applications where
its peripherals can perform a sort of data-check on data coming from the failed computers
(intelligent peripherals).

Moreover the system is limited to those applications in which the state of the system
can be resumed by the stand-by computer: for example by reading sensors or other peripherals,
and the state is independent on the history of the system evolution (combinatorial system).

In applications in which the state of the system depends from its history (sequential
systems), the following architectural solutions can be used.

In the "warm standby" solution a backup computer is used but the application functions
are carried out by the current "master" computer only, while the transactions caused on the
system state are reported into the standby.

60-2

After a fault in the master processor, the stand-by computer has its internal state condition
such to continue the computation that the master has interrupted.

For a system to have a "high integrity" the following conditions must be respected:

the switchover must be performed very quickly compared with the system time evolution

the detection capability into the master and slave must be very high

Another architecture which allows a faster switchover and a more consistent state between
the two processors is the "hot stand-by" solution. In this architecture the stand-by system
is used as above, but the two computers operate at the same time on the same inputs, while
the peripheral units are driven only by the master unit.

1.2 Software reliability

In fault tolerant computers the same reliability provided by the hardware must be found
in the software. At present there is no generally accepted method to quantitatively determine
software reliability, although several mathematical models have been proposed. Moreover a
number of factors contribute to system reliability and the software designer should give them
due consideration during the development process; they include at least:

developement methodology

program structure

programming language

coding standards

instruction set complexity

testability

error detection capabilities

system redundancy

file and program protection systems

software maturity

software production support tools

60-3

The traditional and most used method to remove errors from software is testing. The skill
and method with which this testing is designed and planned, greatly determines the probability
of removing errors from the software.

Another method of improving the probability of having an error free software, is to use
standard software modules. For example an operating system is subject to additional testing
in its normal operation so it can be expected that there would be a high probability that all
normal modes of operation would have been exercised and any error thereby discovered.

In the environment of computer control, much of the software can be generalized and
reused in many different applications. Hence taking into account that normal operation of a
software package is an extension of testing, we can safely say that mature software is more
error free than new software.

Recently some authors have used the term "fault tolerant software" referring to software
techniques originally described under the name of "recovering block". The idea is to divide
a software block into two parts:

the first composed of two or more programs all performing the same functions

the second composed of a different acceptance test for each of the previous
computational program.

The program "version 1" is first executed, followed by carrying out an acceptance test.
If the acceptance test shows that the output generated by the program is satisfactory, then
the block is exited and next part of the overall program is run. If, however, the acceptance
test fails, then the next version of the program is run, followed by running another different
acceptance test. The objective is to permit that at least one of the program versions succeeds
in passing the acceptance test.

Several considerations concerning such an approach must be carried out:

the different version of the program should not produce "side effects", i.e. corrupt
data structures used by others program versions.

the test program must be reliable, i.e. must not reject correct results; and therefore
should be kept relatively simple.

this approach is usually designed to correct undetected software errors, but in certain
cases can also detect and correct hardware faults.

Using this approach, the amount of software to be developed is larger than in the classical
approach, thus causing memory size to increase. The overhead associated with providing fault
tolerance is very low unless a fault actually occours, because only the running of the acceptance
test is the normal overhead.

Hovewer it is in certain cases difficult to design an acceptance test that propely checks
for the correct output of a program without itself being so complex and consequently so large
to cause more overhead and to be itself subject to errors that would reject the whole approach.

60-4

2.0 SELENIA APPROACH

This section summarizes the implementation of a highly reliable avionic computer based
system developed by Selenia.

The implemented solution is the "stand-by" architecture based on a full duplication of
the computer node. Fault detection is independently performed on both nodes. At every time
only one of the two nodes, named the "master" controls the peripherals, while the other one,
named the "slave" is always ready to substitute the Master in case of failure. Depending on
the application requirements, the Slave node can be in "hot" stand-by mode or in a "warm"
one. In both solutions the application software is supported by a run-time environment which
makes transparent the duplicated configuration of the system to it.

2.1 The matched pair solution

In fig. 2 is depicted the Selenia implemented architecture for the stand-by solution, named
"Matched-pair" configuration.

110

~~ ·I"

....
ROLE, AVAILABILITY

NODE .. NODE
1

""'-
ROLE, AVAILABILITY 2

BID. SERIAL LINK ..
~ ...

The two nodes of the pair are identical (in a Mono or Multiprocessor configuration) and
are based on the "M.A.R.A." architecture. The two nodes communicate each other using a
bidirectional serial data link, and using dedicated special lines to notify to the partner its own
availability and role. Peripherals are independently connected to both nodes, that receive all
incoming data, while only the currently selected master provides the output to the peripherals.

Each node has its own error detection hardware able to provide a high degree of error
detection. Error detection is then separately performed on the nodes without making any
matching between the computed results.

60-5

If the Master detects an error, an automatic role switching is performed. If the Slave detects
an error, no role switching is performed and in presence of a second fault in the Master, the
whole system is unavailabe due to its intrinsic capability to tolerate only the single error.

The main difficulty in the implementation of a matqhed-pair configuration is the role
switching, after which the new Master must resume the ~eripheral output, starting from the
point in which the old Master was interrupted. Therefore it needs to know exactly the point
from which it is to continue the execution and part of the previous done computation: and
hence the internal system state.

To obtain the state knowledge, Selenia implemented the two techniques above mentioned:
namely the "warm" and "hot" stand-by methods. Before describing in more details the two
solutions, some concepts should be made clear.

2.1 .1 Stable Memory -

We call "Stable Memory" an ideal storage device for which the atomic operations "stable
read" and "stable write" are defined. The two operations have the following characteristics:

1. if no error occurs during its execution, the operation is succesfully performed.

2. if an error occurs during its execution, there are two possibilities:

the operation is succesfully performed.

the operation is not executed at all.

2.1.2 Atomic Transaction -

The stable memory provides read and write atomic operations. To provide the application
software to perform atomic read and write sequences, the basic software supports the following
primitives, according to Lampson and Sturgis definitions:

Begin transaction: this primitive must be used to start the atomic transaction;

End transaction: this primitive must be used to request the succesful termination of all
actions of the transaction;

Abort transaction: this primitive must be used to abort all the actions of the transaction.

If a role switching occurs before the end transaction request, or if an abort transaction
is called, the old states of the special objects updated by the transaction are restored.

If a role switching occurs after the end transaction request, all updates required by the
transaction on the special objects are executed.

For "stable" special objects we mean the objects that are unaffected by the node failures,
i.e. memory, special data structures, stable mailboxes, intelligent peripherals, ecc.

60-6

2.2 Warm Standby

In the warm st<!ndby solution it is the master that performs the application functions and
updates, through the system state, the standby node that is performing only autodiagnosis.

The role switching is correctly performed by using a memory stable data base and atomic
transactions.

Tha main features obtained by this solution are:

the user writes an application program as a sequence of transactions:

all the information requested to continue the execution after a role switching are contained
in the stable data base;

during a transaction execution the user performs data base accesses, receives external
inputs and sends output data to peripherals;

data base changes and output data produced during a transaction will be definitively
performed only after the end of a transaction request;

if there is an abort transaction request, the data base is not updated so that the whole
atomic transaction may be reexecuted;

when a role switching occurs all the currently executing transactions are aborted to allow
the new master to continue the system control by executing a new set of transactions
starting from their initial point;

The following flow diagram shows the structure of a generic application transaction:

+ INITIALIZATION
PHASE . ..---------,
BEGIN

TRANSACTION • STABLE RESOURCES ACCESS
INPUT/OUTPUT DATA EXCHANGES

YES t NOT

ERROR DETECTED?

ABORT TRANSACTION END TRANSACTION

NON CRITICAL COMPUTATIONS

60-7

2.2.1 Peripherals Handling

Peripherals handling must be done to allow the repetition of the involved transactions.

2.2.1.1 Input Peripherals

If the data coming from the peripherals are stable i.e. a peripheral transmits continuously
the block of data, a transaction may be repeated simply by restarting a read operation from
the peripher<JL The other way round if the peripheral sends data once, it is necessary to transform
these data into stable data in order to allow the repetition of an aborted transaction in a faulty
case. This can be achieved by using intelligent peripherals able to handle a repetition protocol
(if requested), or by storing the incoming data directly into the stable memory: in this case,
however, a less heavy handshaking protocol must be used between the node and the peripherals,
because the data need not to be changed until written into the stable memory.

2.2.1 .2 Output Peripherals -

Data produced by a transaction must be buffered and transmitted to the output peripherals
only when the end transaction request is executed. This can be done by the peripheral handler.

2.3 Hot Standby

In the hot standby solution both the master and the standby node perform the application
functions using the same input data and each node autonomously updates its own internal
state, but only the master drives the peripherals.

Compared with the warm solution the hot standby has the following improvements:

master faults have no side effects on the standby node. In fact in the warm solution a
fault in the master node can corrupt the stable data base even if the probability can be
kept at very low levels.

in the switchover event it is not necessary to reinitialize the data structures because the
old standby, being active, achieves a consistent state. For this reason the switchover can
be done in a reduced time.

However to optimize the hot standby solution, the following problems must be solved.

2.3.1 Synchronization of the pair -

The application software can execute non deterministic algorithms, but to obtain the same
computation from the master and the standby node is necessary that they make the same
choices every time at the same time. This means a need of synchronization between the two
nodes through a bidirectional serial link handled by the operating system of each node.

Typical non deterministic sources in the application processes are the synchronization
primitives inside each node, such as loocks, semaphores, messages exchange, ecc.

60-8

This problem can be solved by performing all the synchronization primitives inside the
operating system which must wait for the same synchronization primitive executed on the other
computer.

Another non deterministic source can be the commonly accessed memory areas between
tasks without synchronization.

This kind of access cannot be controlled by the operating system and its use must be
prohibited.

The non deterministic handling causes a decrease in synchronization efficiency owing to:

communication handling between master and standby;

delay increase on the internal synchronization primitives due to the synchronization with
the partner.

It is to be noted that in the hot standby solution the application software can be more
transparent to the matched pair configuration with respect to the warm standby, because it
is not necessary to structure it into atomic transactions. However, all the data structures in
common between tasks must be handled via the operating system.

2.3.2. Peripheral Handling -

2.3.2.1 Input Peripheral -

Input peripherals, during the normal system evolution, must provide the two nodes with
the same data in the same order. A fault in a node must not cause side effects on the input
peripherals, i.e. the correctly working node must be fed by correct data.

2.3.2.2 Output Peripherals -

A failure in the master node, may interrupt the output data flow in any moment. Moreover
the old standby can be asyncronous with the faulty master. Due to these reasons, to be sure
that the new master resumes the output exactly from the point in which the old master was
interrupted, it is necessary to structure the outputs to the peripherals into transactions, as
above seen on the warm standby. This is, obviously, a transparency limitation of the application
software for the matched pair.

60-9

3.0 RELIABILITY MODEL FOR THE PAIR

The described fault tolerant computer architecture pre-supposes that failures on the master
can be detected, and that reliable switching to the backup is possible.

In practice, there are limitations on the probability that reliable fault detection and
subsequent switchover can be accomplished.

In this chapter we define a finite state reliability model for the matched pair as reported
by J.H. Wensley:

Normal
state 1

p

p

Backup
fails

Master
fails

Detection Switch
to backup

CD cs
4

1-CD 1-CS

No
detection

Switchover
fails

CD

Faiulure
detected p

Master
fails

}----~9 }---~·1o

p
J----~12

No
detection

60-10

Master
fails

Backup
fails

p

7

wllere:

P is the rate (probability per time unit) at which one provessor will fail

CD is the probability to detect a failure in a processor

CS is the probability that a switchover is correctly performed

We can define the various states of the model:

1. both master and standby computers are correctly functioning

2. this represents the state when the master unit has failed. This is a transient state. Erroneous
results can be produced by the system.

3. this is the state after which the master has detected, (with CD probability) that it failed.
It has not yet switched to the standby. During this state erroneous results can be produced
by the system.

4. this state represents a correct switchover to the standby computer which is now controlling
the system. In this state correct control is achieved.

5. the system enters this state if the master does not detect the failure. In this case the total
system failure can occur.

6. if the failed master detects the failure but switchover fails the whole system fails.

7. following state 4 if the standby fails the system enters state 7. The whole system is corrupted.

8. the matched pair enters state 8 if while in state 1 the standby fails. In this· case the master
continues to work correctly.

9. is the state in which the failed standby has detected its failure. Correct operation for the
matched pair is mantained.

10. while the matched pair is in state 9 the master can fail. This causes a failure of the system.

11. the pair enters in this state if the standby fails but the failure is undetected. The system
continues to function correctly.

12. while the matched pair is in state 11 the master may fail. This cause a failure of the system.

From this state diagram it is possible to observe the following characteristics:

the system tolerates the single fault. in fact states 7, 10,12 are terminal states.

states 9 and 11 are states in which the system tolerates a failure of the standby computer.

states 5 and 6 are critical for the system.

60-11

*

*

the reliability performance of the system can be greatly increase by having a CD (probability
of error detection inside a processor) very close to 1.

the reliability performance of the system can be greatly increased by having a CS (probability
of a. correct switchover)very close to 1.

This analysis shows that great care must be taken when:

implementing a powerful fault detection mechanism

design the switchover mechanism.

4.0 SELENIA ERROR DETECTION AND SWITCHOVER MECHANISM

As seen in the above reliability model it is possible to increase the "pair" reliability, by
having a powerful error detection and switchover mechanism.

4. 1 Error Detection

Error detection in a SELENIA computer node is implemented by means of control hardware
which monitors the correct functioning of that node and by periodic on-line diagnostic
procedures.

Each application task has its own separate virtual address space and runs in a "protected"
environment. Protection is required to prevent programs from improperly using unauthorized
code or data. Each code or data segment has a particular "privilege level" assigned to it which
determines which procedure can access the segment.

This protected enviroment is primarily oriented to the immediate detection of a hardware
fault or of a software error which can corrupt the system. Minimization of the error detection
time is very useful for the system integrity: in facts, as seen in the reliability model, during
the transient states 2 and 3 erroneous results can be produced by the system.

The error detection circuits are placed so as to achieve a high coverage in the hardware
which has the highest failure rate such as memories, and in areas which have high usage
such as data paths.

All connections between interface cards and standard peripherals include some forms
of redundancy in the information flow, i.e. parity bit.

Three standard error types are related to the bus use; these are: protection violation,
bus timeout and slave error, and the hardware which detects them is normally enabled during
every bus cycle.

A protection violation arises when a processor attempts an illegal access. The processor
itself is notified of the event and access is aborted.

60-12

A bus timeout occurs when an agent attemps an access to a slave peripheral and no
slave peripheral activates the ready signal within a given time from the beginning of the bus cycle.

A slave error occurs when a slave is unable to perform the request read or write access
correctly.

Moreover inside the processor module there are other particular circuits for error detection
such as:

power failure alarm signal which is activated by the power supply when a power failure
occurs.

processor inactivity time-out which is activated when the intercycle time of the processor
is too high.

non maskable interrupt service time-out which is activated when the time to service a non
maskable interrupt is too higt.

watch-dog time-out which is based on a software retriggerable timer, to test if the global
activity of the processor is correct.

Those classes of error which are not detectable by using the above mentioned hardware
circuitry are covered by on-line diagnostic procedures which continuosly run inside the
processor.

4.2 THE AVAILABILITY CONCEPT

One of the basic requirements of modern control systems is the automatic isolation of
faulty units to avoid error propagation and to have faster error recovery, when the adequate
redundancy is available.

This concept is extensively implemented in SUA YK computer nodes as well as in any
environment based on SLIAYK nodes.

Within a node each processor unit contains availability logic based on:

state flag

error flag

A processor in the on-line state performs all functions in the node. The loss of its availability
state can be caused by:

its own fatal error

software actions as a consequence of error previously detected by the above mentioned
dedicated hardware

software actions as a consequence of error detected by diagnostics.

60-13

All these actions cause the error flag to be set. Once the error flag has been fired the
processor looses any access right to the node, so that no wrong action can be propagated
in the common resources.

Two strategies can be implemented by the system designer, and SELENIA computer
architecture offers adequate support for both of them through a special line on the bus, called
the availabilities line:

the first strategy does not attempt any dinamic recovery action within a multiprocessor
node. The availability line is the logical AND of all the processor availabilities within a
multiprocessor node.

a second strategy, after one or more errors resulting in the unavailability of some modules,
allows the remaining "healty" modules to decide whether to continue in a degraded
environment. In this case the availability line is the logical OR of the availabilities for each
of the processors of a node.

Independently from the adopted strategy, if a node has lost its availability, it is automatically
disconnected from the enviroment with the hardware passivation of all critical outputs.

4.3 Switchover Mechanism

The foundation hardware of a node declares its state with two external discrete lines:

the node availability state

the "ROLE" master/standby state

and can receive the homologous signals from a partner node.

Direct coupling of two "partner" nodes is possible as well as indirect coupling via a control
panel.

The active state of these signals corresponds to the availability and the master role in
the matched pair configuration. The loss of the availability of the role switching of the master
(master-standby) causes in the partner node the recovery action to gain the master state.

5.0 SELENIA IMPLEMENTED FAULT TOLERANT SYSTEMS

SELEN lA has developed both warm standby and hot standby solutions to implement fault
tolerant systems.

The warm standby solution, based on atomic transactions was implemented for a civil
application using a redundant disk unit as stable memory.

A Disk File Management System, a Memory File Management System, a Mailbox
Management System and a Peripheral Management System has been implemented, all
supporting the above explained atomic transaction mechanism.

60-14

In the military avionic field a Stores Management System (SMS) for the AMX aircraft has
been implemented and the main computer unit (MCU) for the EH1 01 helicopter is under
development, both based on SLIAYK dual redundant computer architecture.

These are hot standby redundant systems because both applications require a fast
switchover time and a shortest time in which the output data may be manteined inconsistent.

REFERENCE:

1. J.H. Wensley, A review of techniques for achieving high reliability in hardware and software.
Paper presented AT ISA conference, Philadelphia october 1982.

2. J.H. Wensley, Reliability in batch control processes. Paper presented at ISA conference,
Philadelphia october 1982.

3. P. Ciampi et al., A highly available multiprocessor system for real time applications. SAFE
COMP. 83 Cambridge 20-22/9/1983.

4. P. Ciampi et al., A rendundant distributed system supporting atomic transactions for real
time control. Arlington 6-8 dicember 1983.

5. J. Goldberg et al., Development and evaluation of a software implemented fault-tolerant
(SIFT) computer: Sift operating system. SRI International Technical Report, april 1980.

60-15

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (6.96 53.67) Right top (56.65 791.07) points

 0
 6.9566 53.6689 56.6465 791.067

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 2
 Mask co-ordinates: Left bottom (61.25 3.95) Right top (787.35 51.37) points

 0
 61.2495 3.9516 787.3528 51.3706

 2
 SubDoc
 2

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 3 to page 3
 Mask co-ordinates: Left bottom (551.49 49.40) Right top (591.02 792.62) points

 0
 551.4868 49.4008 591.0199 792.6231

 3
 SubDoc
 3

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 4 to page 4
 Mask co-ordinates: Left bottom (150.54 786.39) Right top (194.12 817.10) points

 0
 150.5436 786.3947 194.1221 817.0977

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 4 to page 4
 Mask co-ordinates: Left bottom (9.90 45.56) Right top (50.51 796.30) points

 0
 9.9042 45.5615 50.5114 796.2989

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 5 to page 5
 Mask co-ordinates: Left bottom (551.39 48.58) Right top (596.02 784.42) points

 0
 551.3893 48.5778 596.0162 784.4247

 5
 SubDoc
 5

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 6 to page 6
 Mask co-ordinates: Left bottom (8.91 67.35) Right top (51.50 789.37) points

 0
 8.9138 67.3508 51.5018 789.366

 6
 SubDoc
 6

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 7 to page 7
 Mask co-ordinates: Left bottom (554.36 48.58) Right top (593.04 781.45) points

 0
 554.3644 48.5778 593.0411 781.4496

 7
 SubDoc
 7

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 6
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 8 to page 8
 Mask co-ordinates: Left bottom (6.94 53.51) Right top (49.54 778.80) points

 0
 6.9359 53.5107 49.5419 778.804

 8
 SubDoc
 8

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 9 to page 9
 Mask co-ordinates: Left bottom (553.88 42.61) Right top (591.53 786.73) points

 0
 553.8784 42.6115 591.5303 786.7307

 9
 SubDoc
 9

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 10 to page 10
 Mask co-ordinates: Left bottom (1.98 48.41) Right top (45.46 787.68) points

 0
 1.9767 48.4125 45.4631 787.6815

 10
 SubDoc
 10

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 11 to page 11
 Mask co-ordinates: Left bottom (546.31 29.63) Right top (596.69 787.34) points

 0
 546.3063 29.629 596.689 787.3449

 11
 SubDoc
 11

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 10
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 12 to page 12
 Mask co-ordinates: Left bottom (-3.96 49.52) Right top (52.49 791.35) points

 0
 -3.9617 49.5232 52.4922 791.3468

 12
 SubDoc
 12

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 11
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 13 to page 13
 Mask co-ordinates: Left bottom (553.64 55.47) Right top (584.35 784.41) points

 0
 553.644 55.4657 584.347 784.4139

 13
 SubDoc
 13

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 12
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 14 to page 14
 Mask co-ordinates: Left bottom (11.90 58.49) Right top (50.58 780.46) points

 0
 11.9005 58.4949 50.5771 780.4579

 14
 SubDoc
 14

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 13
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 15 to page 15
 Mask co-ordinates: Left bottom (550.62 59.53) Right top (586.34 781.78) points

 0
 550.6226 59.5259 586.3387 781.7841

 15
 SubDoc
 15

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 14
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 16 to page 16
 Mask co-ordinates: Left bottom (13.83 65.19) Right top (54.33 784.38) points

 0
 13.8305 65.1932 54.3343 784.3812

 16
 SubDoc
 16

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 16
 15
 1

 1

 HistoryList_V1
 qi2base

