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Abstract

The sound pulse emitted by a vortex interacting with a
helicopter airfoil at arbitrary positive or negative angle-
of-attack is considered. A simple analytical expression is
obtained assuming that the vortex follows a streamline
with a given aiming distance from the airfoil center. The
plotting of sound pulses shows that they consist of peaks
of rarefaction and compression. The graphics are
compared with experimental data from the European
Program HELINOISE.

1 Introduction

The helicopter is an important subject of acoustical
study (Cox & Lynn 1972, Leverton 1989; Lowson
1991) because: (i) there are several sources of noise
(main and tail rotors, gearbox and transmission,
engines) and several propagation paths (airborne and
structure-borne); (ii) the operating conditions, either in
civil applications involving flight in populated areas, or
in military operations in combat zones, put a high
emphasis on reduction of the noise signature.
The main contributor to helicopter low-frequency noise
is the rotor, and a substantial literature is devoted to the
prediction (Lowson & Ollerhead 1968; Hawkins &
Lowson 1974, 1976; Unal & Tung 1989) and
measurement (Cox & Lynn 1972; Schmitz & Yu 1986;
Schultz & Splettstoesser 1987) of rotor noise. The
estimation of the latter can be made at three levels of
sophistication: (i) as simple scaling laws, e.g. for Mach
number (Aravamudan, Lee & Harris 1975; Humbad
1975); (ii) on the basis of the theory of singularities
and surfaces in motion (Lowson 1965; Ffowcs-
Williams & Hawkins 1968; Campos 1978a; Farassat
1986) to  calculate separate the thickness, loading and
quadrupole noise components; (iii) using aerodynamic
methods to determine the pressure distribution on the
rotor and hence the radiated sound, which is affected
by the free vortex wake (Dinyavari & Friedmann 1989;
Stangl & Wagner 1994; Röttgermann & Wagner
1994).
One of the main noise generation mechanisms is blade-
vortex interaction (Howe 1989, 1990; George &
Lyrintsis 1988), which appears as a succession of

pulses in the time domain, or spikes in the frequency
domain. The calculation of the broadband component
of helicopter noise from the spikes has been addressed
elsewhere (Campos 1978b, 1983, 1984, 1986; Campos
& Macedo 1992), and we are concerned here with the
mechanism of generation of the pulses (Howe 1975;
Campos 1978c, 1986), by interaction of a vortex with
an airfoil, at arbitrary angle-of-attack; the inclusion of
the latter is important to account for blade flapping,
during rotation. If the blade flap angle is averaged over
a revolution, then the angle-of-attack relative to that
flap angle, increases when the helicopter is climbing
and decreases when it is descending. Thus it is
important to consider arbitrary angles-of-attack,
including both large positive and negative values, to
represent steep climbs and descents, respectively. It is
well-known that the noise field of an helicopter is
distinct in hover, forward flight, climb and descent,
showing that the velocity and angle-of-attack of the
incident stream has important acoustic effects. We
address this issue starting with the sound pulse due to
the interaction of one vortex with an airfoil, and then
proceed to consider multiple, successive pulses.
A vortex can radiate sound as a dipole (Lighthill 1952,
Powel 1968, Howe 1975, Campos 1978c), represented
by Lamb’s vector or vortical force, associated with the
component of vorticity transverse to the velocity. This
force can be projected on the group velocity, i.e. sound
speed in direction of propagation plus convection
effect by the mean flow (Blokhintsev 1946; Lighthill
1978; Campos 1978a, 1988), to specify a work per unit
time, or activity. If the activity is conserved along the
path of the vortex, no sound is radiated, e.g. when it is
far from any obstacle disturbing the mean flow. When
the activity increases or decreases along the path of the
vortex, this is compensated by the emission of
respectively a compression or rarefaction pulse. Since,
in a spherical wave (Rayleigh 1945; Landau & Lifshitz
1953; Morse & Ingard 1958; Goldstein 1963; Whitham
1974; Lighthill 1978; Pierce 1982) the acoustic
pressure integrated over time is zero, the compression
and rarefaction parts of the pulse may balance. The
sound pulse can be modified, if to the direct wave,
radiated by the vortex, is added the sound scattered by
the airfoil, which is also a dipole effect. The exact form
of the acoustic pressure pulse depends on the airfoil
shape, not only because the latter can scatter sound, but
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also because it perturbs the incident flow, and thus
changes the path of the vortex.
These effects can be illustrated for a Joukowski airfoil ,
where it is assumed that the vortex travels with the
flow. Using this approximation it is possible to
calculate analytically the shape of the acoustic pulse in
time.

2 Blade-Vortex Interaction

In this paper four reference frames are considered:

− OXYZ fixed relative to the wind tunnel, with OX
opposite to the mean flow, OZ in the vertical
direction, and hence OY horizontal and transverse;

− Oxyz (Oy ≡ OY) with Oxy in the plane of the rotor
(figure1), so that this plane makes an angle α with
the mean flow (hence α is also the angle between
Oz and OZ);

− O’ξνη  with origin at an arbitrary point O’ on the
blade axis Oν, and Oνη in the plane of the rotor;

− O’ξrνrηr with a rotation αp equal to the blade pitch
around the blade axis Oνr ≡ Oν.

The complex potential of the incompressible flow
around a circular cylinder of radius a, is given by
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where iyxz +=  and ∞U  is the mean flow velocity and

the angle of attack of the airfoil is denoted by tα ; the

circulation Γ is given by the Kutta Condition:

taU απ sin4 ∞=Γ .

Figure 1: Rotor and Wind tunnel Reference frames.
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with the Joukowski transformation zazz /)( +=ς ,

specifies the complex velocity around a Joukowski
airfoil, in the physical plane ηξς i+= :
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Using the inverse transformation z = ζ − a2 / ζ, the final
expression for the complex velocity is given by:
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where
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The mean flow velocity is given by
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in the OXYZ and Oxyz reference frame.

Figure 2: Reference frames ζ  and ζr.

The velocity of the origin of both reference frames  ζ , ζ r

is given by
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where  22
0 yx OOU +≡ ω  (figure 3). The mean flow

velocity ∞U
�

 measured in this reference frame is equal

to 0UUU f

���

−=∞ and its components are:
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The variables αr and U∞ are given by the projection of

∞U
�

on the ξ r η  r plane (figure 4):
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The velocity used in the complex potential is specified
by (9), where pα  was added to the angle:
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Figure 3: O xy plane of the rotor reference frame and
O’ξrνr plane of the auxiliary reference frame ζ r.

After calculating ηξ UU and (4), it is necessary to obtain

them in the reference frame Oxyz of the rotor, using the
transformations:
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In the last equation, the velocity of the origin of the
reference frame was added again.

To simulate the interaction of the blade with a vortex
created by another blade, we shall assume that a point
vortex is moving with the flow. The Lamb’s vector or
vortical force is given by:
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where ρ  is the mass density. The group velocity
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is given by the flow velocity, plus the sound velocity on
the propagation direction, from the sound source   (x, y,
z) to the observer (X, Y, Z):
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where 222 )()()( zZyYxX −+−+−≡∆ .

The projection of the Lamb’s vector (13) on the group
velocity (14) specifies the activity
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i.e. it represents the work done by the vortex on the
group velocity (Lighthill, 1978; Campos, 1992). It can
be shown (Howe, 1975; Campos, 1978a, 1986b) that the
acoustic pressure is proportional to the material
derivative of the activity
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and involves one inverse Doppler factor, where

cUM f /
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=  is the Mach number and ϑ  is the volume

occupied by the vortex. In the far field, the following
approximation is used:
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The rate-of-change of the activity along the vortex path
dA/dτ is calculated at the emission time τ, which differs
from the time of reception t, by the propagation or
retarded time t-τ. If the frequency ω of sound is
specified by the dimensionless Strouhal number         St

= ω l / U, where l is the chord of the airfoil, the ratio of
the wavelength of sound to the latter is given by
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For a Strouhal number of about unity St ~ 1, typical of
convective emission, and low Mach number mean flow,
the wavelength is much larger than the airfoil chord.
Thus the airfoil acts as a compact scatterer, i.e. the phase
differences between reflecting elements are negligible,
viz. The retarded time is the same for sound originating
from all points of the airfoil. It follows that the reception
t and emission time τ differ by a constant and thus can
be identified within a constant time delay.
The final expression for the acoustic pressure is given by
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a) b)

Figure 4: Mean flow velocity fU
�

projection: a) on the

O’ξrνr  plane; b) on the O’ξrηr plane

3 Vortex Trajectory

During the rotor rotation, the interaction between the
incident vortex and each blade is a very complex
phenomenon, due to the number of vortices, created by
the precedent blades.  On a first approximation, it is
considered only the interaction between a blade located
at an angle φ = ω t and the vortex created by the
precedent blade tip (figure 5). The vortex trajectory is
given by the equations
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where the blade that is creating the vortex is located an
angle φ = ω t + 2 π / N . The blade radius is rB, and N is
the number of blades. The variable T indicates “how
long ago” the vortex was created by the blade.

Ω

Ω

Figure 5: Vortex trajectory

It is assumed that the vorticity is along the blade, when
the vortex is created; since the rotor rotation speed is
much greater than the mean flow velocity, the vorticity
doesn’t change its direction along the path and is given
by
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The sound pressure (20) is no longer a function of the
vortex coordinates, but rather depends on the variable T.
The sound pressure produced by the vortex-blade
interaction is given by the integral of (20) along the
vortex trajectory
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In the implementation of the code, the integral was
replaced by a sum; the upper limit Tf corresponds to the
intersection point of the vortex trajectory with the next
blade at β = ω t – 2 π / N.

4 Numerical Results

The sound pressure data for a rotor revolution period
were compared to the experimental data obtained in the
European Program HELINOISE. In this program, a rotor
model was tested in the open section wind tunnel DNW,
with the purpose of creating an acoustic and
aerodynamic database. The measurements were
performed at a low Mach number (wind tunnel speed ≤
80 m/s ⇒  M ≤ 0.24), with a traversal microphone array
that could travel along the wind tunnel (figure 6). The
typical rotor velocity was 1040 RPM
Since the rotor reference frame Oxyz is rotated of an
angle αr, relatively to the wind tunnel reference frame
OXYZ (where the microphone coordinates are given), it
is necessary to calculate the new microphone
coordinates
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The microphone height was constant for all
measurements: Zmic = -2.30 m; the microphones are
numbered from 1 to 11, along the Y axis (table 1).

Table 1: Microphone Positions.

Mic. 1 2 3 4 5 6 7 8 9 10 11

Ymic[m] -2.70 -2.16 -1.62 -1.08 -0.54 0.00 0.54 1.08 1.62 2.16 2.70

On the table 2, one can find: the microphone Xmic

coordinate, the speed of sound in the wind tunnel; the air
density ρ; the mean flow velocity U; the rotor rotation
speed ω;  the rotor angle of attack αr; the flight path
angle (positive for descent) θFP.
The arbitrated parameters are given in table 3. On the
second column the pitch angle αP is shown; the product

of the vorticity and the vortex volume ϑΩ
�

 is given in

column three.

The pitch angle was defined to assure that the blades
would have a positive angle of attack. Values were

given to the product ϑΩ
�

, to present the numerical data

with the range given by the experimental data.

Figure 6: Microphone array, in the DNW wind tunnel.

Figure 6: Case I.
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Table 2: Cases studied.

Case
Xmic

[m]
C

[m/s]
ρ

[kg /m2]
   U
 [m/s]

ω
[RPM]

α
[º]

θFP

[º]

I
II

0.00
-4.00

338.92 1.241 60.15 1042 -7.77 0

Two cases are presented in this article: both are an
typical example of an helicopter travelling at constant
altitude (negative angle of attack). The sound pressure
numerical data (21) for the normalised rotation time
Trotor and the experimental data, are given in figures 6, 7.
As in the experimental data, a transversal translation was
simulated and a sound pressure graphic for each
microphone is presented.

Table 3: Arbitrated Parameters.

Case αP [º]
ϑΩ

�

[m3 / s]

I / II 10 1.4

In figure 6, case I is presented. Four pressure peaks are
observed, corresponding to the passage of the four
blades. Their values decrease, when we go from
Microphone 1 to Microphone 11, which is in agreement
with the numerical data.
When we make the same study downstream (figure 7),
the value of the pressure lower peaks decrease as the
microphone number increases (case II). The comparison
of the numerical and experimental data could be
improved as this simple preliminary model is more
refined.

5 Conclusions

An analytical model was developed, to study the
interaction between a rotor blade and the vortex,
generated by the precedent blade. In this simplified
model the airfoil has no thickness, which implies a
lesser deformation of flow. Besides this important
factor, the vortex trajectory is itself altered by the
passage of the blade; this effect was also not accounted
for. Given the simplicity of the model and the fact that
the sound pressure expression is only valid for far field,
the data obtained is in fair agreement with the
experimental data.

Figure 7: Case II.
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