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Abstract 
 

This paper presents the implementation of the 
overlapping grid technique into DLR’s structured flow 
solver FLOWer. The hole cutting procedure and the 
search methods are described. Trilinear interpolation 
is used to transfer flow data between grids. For data 
interpolation close to solid surfaces, a projection 
algorithm is applied which corrects discretization 
effects. The approach used to prescribe rigid body 
motions for unsteady flow simulations allows to 
relate the motion of any body to any other body. 
Unsteady simulations also require to consider the 
hole motion during the definition of the interpolation 
points. For the integration of forces on grids with 
mesh overlap on body surfaces a unique surface is 
generated. Background grids are created with a 
Cartesian grid generator, which allows for cubic and 
anisotropic cells. Several examples of applications 
demonstrate the generality of the implementation of 
the Chimera technique. 
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Nomenclature 
 

Δa, Δb, Δc spacings of cuboidal cell 
d1, d2 range of weighting function 
IBLANK Chimera tag array 

41 xx r
K

r
 vertex coordinates of tetrahedron 

Pxr  coordinates of interpolation point 

*Px
r  coordinates of virtual interpolation 

point 
w weighting function 

W
r

 vector of conservative variables 

W
r

Δ  change of conservative variables 
per time step 

Δx, Δy, Δz spacings of Cartesian cell 

321 ,, γγγ  interpolation coefficients 
α, β auxiliary variables 
ε
r  projection vector 

ϕ,Θ spherical coordinates 
 
 

Introduction 
 
The numerical solution of the Navier-Stokes 
equations for helicopter type applications is a 
demanding task: First of all, the flow solver must be 
able to account for the moving parts of the 
helicopter, e.g. the main and tail rotors, see Figure 1. 
The second difficulty is to create the computational 
grids, particularly if block structured solvers are used 
and the configuration has a complex shape. Finally, 
the long run time of unsteady flow simulations 
requires efficient solution algorithms in order to 
minimize the execution time. 
 

 

Figure 1: BO 105 Helicopter 
 
One approach to reduce the effort for a flow 
simulation is to use the so called Chimera or 
overlapping grid approach (ref. [1]). This method 
allows to generate the computational meshes for the 
rotors and the fuselage independently. In a 
subsequent step, the grids are embedded into each 
other with an arbitrary overlap, see the 2D example 
in Figure 2. Grids associated with moving bodies 
move with the bodies without stretching or distorting 
the grids. If some grid points of one mesh fall within 
a solid body, these points are blanked and excluded 
from the flow computation. The blanked regions of 
the grid are often called hole. The communication 
among the grids is usually established by 
interpolation techniques. 
 



 
 
Figure 2: Overlapping grid system 

 
The overlapping grid technique also allows to 
simplify the grid generation for complex geometries. 
This is achieved by breaking down the geometry into 
simple shaped components, for which individual 
grids can easily be created. 
 
The Chimera technique has now been used for 
rotorcraft applications for some time. It has been 
implemented in many flow solvers used in industry, 
for example Beggar (ref. [17]), OVERFLOW (ref. [5]), 
CFD-Fastran (ref. [21]), elsA (ref. [8]) and FLOWer 
(ref. [11]). Best practice experiences have been 
summarized in ref. [6]. 
 
In the following, the Chimera capabilities of the block 
structured flow solver FLOWer will be described in 
detail. FLOWer is developed by the German 
research center DLR with contributions from 
universities and aerospace industry. The extension 
of FLOWer for helicopters like configuration has 
been supported during the last six years by the 
French-German cooperative project Complete 
Helicopter AdvaNced Computational Environment 
(CHANCE) (ref. [16]). In this context, the 
implementation of the Chimera technique in FLOWer 
was widely extended. Starting with a basic Chimera-
scheme six years ago, FLOWer has now many 
capabilities to handle moving grids and to simplify 
grid generation. The method has been verified and 
validated for a wide range of applications and much 
experience in its use has been gained. 
 
 

Flow solver 
 

The flow solver FLOWer (ref. [11]) solves the 
Reynolds averaged Navier-Stokes equations with a 
second order accurate finite volume discretization on 
structured, multi-block grids. The fluxes can be 

computed either with a central scheme or with 
various upwind schemes. Turbulence is modeled by 
several 0-, 1-, 2- or 7-equation models, e.g. Spalart-
Almaras, kω, kω-SST, EARSM or RSM. For steady 
flow simulations the time integration of the main 
equations is advanced with a five stage Runge-Kutta 
method with multigrid acceleration. For the 
turbulence equations, an implicit DDADI method is 
used. Unsteady flow simulations are performed with 
the implicit dual time stepping formulation. For high 
performance computing, FLOWer is parallelized 
based on MPI and is optimized for vector computers. 
 
 

Chimera technique 
 

Hole cutting 
 
The first step in a Chimera calculation is the blanking 
of grid points, which are inside solid bodies. For this 
purpose, the user generates one or more auxiliary 
grids, which totally include the solid body, see Figure 
3. Now all cell midpoints of the computational grids 
overlaying the solid body are checked, if they are 
inside the auxiliary mesh. Any cell being inside the 
auxiliary grid is flagged and is excluded from the flow 
computation. 
 

 

Figure 3: Auxiliary grid (thick lines) with two cells for 
hole cutting 
 
No grid hierarchy is used to blank cells. Instead, any 
auxiliary grid can cut holes in any grid which does 
not contain the solid body enclosed by the auxiliary 
grid. 
 
Although the presented hole cutting method is non 
automatic, the effort for the user is usually small, 
since the auxiliary grids can be coarse and they do 
not have to fulfill any quality requirements. The 
advantage of the chosen approach is its very simple 
implementation and its high execution speed. 
Furthermore it allows the user to control the exact 
geometry of the hole. An example of a set of 
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auxiliary grids for a complex configuration is shown 
in Figure 4. 

 
Figure 4: Set of seven auxiliary grids enclosing a 
helicopter fuselage 
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Search and interpolation 
 
Communication between the overlapping grids is 
established by interpolating data from overlapping 
grids. In order to set up the interpolation, at first the 
interpolation cells have to be identified. This is 
accomplished by checking for each cell, if the spatial 
discretization operator accesses cells inside holes or 
non existent cells at the outer grid boundary. In 
FLOWer two layers of interpolation cells are required 
at outer grid boundaries and at the hole fringe, see 
Figure 5. 
 

 

Figure 5: Interpolation points 
 
Now a Chimera tag array IBLANK is set up, which 
indicates the status of a cell. It is: 
 

IBLANK = 0 : hole cell or interpolated cell 
  (excluded from flow computation) 

IBLANK = 1 : valid cell 
 

Following the definition of the Chimera tag array, a 
search is started to find appropriate donor cells for 
the interpolation cells. Since the flow variables are 
given at the centers of the cells, the search must be 
performed for the dual meshes that connect the 
coordinates of the cell centers. In FLOWer the 
search on general type meshes is performed with an 
Alternating Digital Tree method (ADT) (ref. [2]). The 
ADT method uses a tree like data structure to store 
the boxes given by the minimum and maximum 
coordinates of the dual grid cells. During the search 
process, all boxes enclosing the interpolation point 
are identified with log2(N) operations, where N is the 
total number of grid points. In a subsequent step, 
each cell associated with a retrieved box is checked 
if it includes the interpolation point. To this end, the 
cell is subdivided into six tetrahedra and the linear 
system of equations 
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is solved for the unknown coefficients 321 ,, γγγ , 

where 41 xx r
K

r
are the vertex coordinates of the 

tetrahedron and Px
r  denotes the coordinates of the 

interpolation point. If the conditions 
 

1,0,, 321321 ≤++≥ γγγγγγ  
 

are true, then the interpolation point is inside the 
tetrahedron. Additionally it is tested, if the cells at the 
vertices of the tetrahedron are not blanked 
(IBLANK=1). If all checks are successful, the cell is a 
valid donor cell and the flow values at the vertices of 
the tetrahedron are used for the trilinear interpolation 
of flow data with the interpolation 
coefficients 321 ,, γγγ . 
 
A Chimera grid system often consists of more than 
two overlapping grids. In this case, FLOWer 
searches all grids for donor cells without preferring 
one grid to another. If more than one cell including 
the interpolation point is found, the cell with the 
smallest volume is chosen to be the donor cell. This 
choice is based on the assumption, that the 
discretization error of the Navier-Stokes equations is 
smallest on the finest grid and thus the interpolated 
flow data will be most accurate. 
 
In many applications the ADT search algorithm and 
the interpolation method have been proven to be 
very robust even for grids of bad quality.  
 
Background grids for Chimera computations are 
often Cartesian with an equidistant or non 



equidistant distribution of grid points. For these types 
of meshes FLOWer offers a specialized search 
procedure which is much faster than the ADT 
method. While for equidistant meshes the i,j,k-
indices of the donor cell can be directly computed 
based on the cell spacing, for non equidistant grids 
the indices are determined by applying a bisection 
method in one index-direction after the other. 
 
Sometimes the computation of interpolation 
coefficients is not possible, since the grid overlap is 
not sufficient or because parts of the overlapping 
grids are blanked. This situation requires to improve 
the grids. But for large grid systems with many 
overlapping grids around a complicated 
configuration the optimization of the grids may be 
very time consuming. Therefore a method is 
available in FLOWer to enable a flow computation 
even if a non sufficient overlap exists: After the 
computation of interpolation coefficients has failed 
for a cell, all overlapping grids are searched for the 
cell with the smallest distance to the interpolation 
point. The flow data of this cell are subsequently 
used to update the interpolation cell data during the 
flow simulation. The described method reduces the 
accuracy of the flow solution locally. Thus the 
number of cells which requires its application should 
be kept to a minimum. 
 
For unsteady flow simulations including rigid body 
motion an extension of the hole cutting procedure is 
required to avoid an invalid update of flow data close 
to holes, see section “Grids in relative motion”. 
 
  
Flow simulation 
 
Little extension to the flow solver is necessary to 
enable computations on overlapping grids. In the 
case of a purely explicit solver, any spatial or 
temporal discretization operator remains unchanged. 
Only the update of the conservative variables W

r
in 

the blanked regions must be suppressed by 
multiplying the change of the conservative variables 
per time step W

r
Δ  with the tag array IBLANK 

 
WIBLANKWW tt rrr

Δ∗+=+1  . 
 
The adaptation of the implicit residual smoothing is 
accomplished by multiplying the residual before and 
after the smoothing with IBLANK. The implicit 
treatment of the turbulence equation with the DDADI 
algorithm is adjusted accordingly by multiplying the 
intermediate and final results with IBLANK. 
 

For the modifications of the multigrid method the 
following approach has been chosen. During the 
hole cutting procedure, all cells of coarse meshes 
are flagged, if the restriction or prolongation 
operators access cells inside the holes on the next 
finer grid. Interpolation of flow data from an 
overlapping grid is only performed on the finest grid, 
whereas for coarser grids the data at hole fringes 
and outer grid boundaries are interpolated from the 
next finer level of the same grid. The IBLANK values 
are set analogous to the finest grid, where 
IBLANK=0 indicates hole cells or interpolated cells. 
During the flow simulation the forcing function and 
the residuals computed on the coarse grid levels are 
multiplied with IBLANK in order to avoid an update of 
the coarse grid data. A modification of the fine grid 
data is prevented by multiplying the coarse grid 
corrections before and after the prolongation with the 
IBLANK values of the coarse and fine grid 
respectively. 
 
Other possibilities to adapt the multigrid technique 
for Chimera computations have been published in 
ref. [9]. The method implemented in FLOWer has 
been chosen, because the author believes it to be 
the most robust one.  
 
Grid overlap on body surfaces 
 
In many cases the Chimera grids overlap on body 
surfaces. One example is presented in Figure 6 
showing the junction of a wing and a body, where 
the wing and the body are discretized with different 
grids. 
 
 

Figure 6: Grids with overlap on body surface 

A grid overlap on body surfaces requires a 
modification in the computation of interpolation 
coefficients, since the standard interpolation 
described in section “Search and interpolation” may 
yield inaccurate results. The reason is sketched in 
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Figure 7. Due to the different discretization of a 
curved analytic surface in the two overlapping grids, 
the distance of a point P to the discrete surface 
representations is unequal, 21 δδ ≠ . Therefore all 
interpolation points close to a curved surface will 
interpolate flow data from locations with different wall 
distance than expected. This may for example cause 
problems when transferring data within boundary 
layers. Sometimes an interpolation point may even 
be outside of the overlapping grid making an 
interpolation impossible. 
 

 
Figure 7: Non unique wall distance in overlap region 
for point P 
 
In order to circumvent the described problem a 
correction method was developed. The procedure 
starts by searching the grid containing the 
interpolation point P for the point PS on the surface, 
which is closest to point P, see Figure 8, top. The 
point PS is projected onto the discrete surface 
representation of the overlapping grid. The 
projection vector is denoted with ε

r
.  

 

 
 

 

Figure 8: Correction of computation of interpolation 
coefficients, top: projection of wall point Pw on 
surface of other grid, bottom: introduction of virtual 
interpolation point P* 
 
The projection vector is now multiplied with a scaling 
function and added to the coordinates of the 

interpolation point Px
r  giving the coordinates *Px

r  of 
a virtual interpolation point P* 
 

PP xwx
rrr

+⋅= ε*  , 
see Figure 8, bottom. The weighting function is used 
to apply a full correction close to the surface and to 
reduce the correction with increasing distance from 
the surface 
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gives good results. The coordinates of the virtual 
interpolation point are now used to search a donor 
cell and to compute the interpolation coefficients. 
The presented algorithm ensures an identical wall 
distance of the interpolation point and the 
interpolated data, , see *

21 δδ = Figure 8, bottom. 
 
If the interpolation point P is overlapped by more 
than one grid, the correction method is to be applied 
for each donor grid, since in general the projection 
vector ε

r
will be different. 

 
Slightly different correction methods are known from 
literature, see ref. [19] and ref. [6]. But instead of 
introducing virtual interpolation points, the algorithms 
temporarily modify the grid coordinates before the 
computation of interpolation coefficients. As a 
consequence, a correct calculation of the 
interpolation coefficients is not possible if more than 
two grids overlap on the body surface, because the 
coordinates can only be adjusted to match with one 
overlapping grid. This difficulty is avoided by the 
introduction of the virtual target point, since its 
coordinates are computed for each donor grid 
independently. 
 
 
Grids in relative motion 
 
The overlapping grid technique allows to move the 
grids relatively to each other without affecting the 
grid’s quality. It is therefore an appropriate method 
for the simulation of bodies in relative motion. This 
requires to update the intergrid communication each 
time the grids have been shifted to a new position. 
Therefore, the hole cutting procedure and the 
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calculation of interpolation coefficients must be 
executed repeatedly.  
 
Unsteady flow simulations require an extension of 
the method used to identify interpolation points. 
Whereas in section “Search and interpolation” only 
the spatial discretization operator was checked if it 
accesses hole cells, for unsteady flow computations 
also the temporal discretization operator must be 
taken into  account. Otherwise the correct 
calculation of the flow data cannot be guaranteed in 
case of holes with varying positions. Such a situation 
is depicted in Figure 9, top, showing a one 
dimensional grid with a hole moving two cells to the 
right at each time step. The spatial discretization 
operator is assumed to have a width of five cells. 
Thus two layers of interpolation cells are necessary 
at the hole fringe. If now a time discretization 
operator is used, which requires valid data on two 
previous time steps, a valid update of some cells in 
the ‘wake’ of the hole is not possible. 
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Figure 9: One dimensional grid with a moving hole, 
top: invalid update of flow data, bottom: extension of 
hole fringe enables correct flow simulation, 

 : cell with IBLANK = 1,  : interpolated cell,
 : hole cell 

 
In order to solve this problem, all cells whose time 
discretization operator accesses hole cells are 
added to the list of interpolation cells. This results in 
an extended hole fringe in the wake of the hole, see 
Figure 9, bottom. 
 
The motion of a rigid body is either defined based on 
the inertial frame of reference or relatively to another 
moving geometry. For example, the fuselage of a 
helicopter moves relatively to the inertial frame, 
whereas the rotational velocity of the rotor shaft is 
constant relative to the fuselage while the flapping of 

a blade can best be defined relatively to the rotor 
hub. According to these relations, a tree like data 
structure is used in FLOWer to specify rigid body 
motions, see Figure 10. This allows to define a 
complex body movement by a series of simple 
transformations. In FLOWer each transformation 
may include a translation in any direction and a 
rotation around an arbitrary axis. The time 
dependent translation and rotation are specified by 
polynomial and Fourier series. 
 

inertial frame 

 
Figure 10: Tree like data structure for the definition 
of rigid body motions for helicopter 
 
After the user has defined the motion relations each 
of the overlapping grids is linked to any of the 
specified transformations. During a subsequent flow 
computation the transformations are used to position 
the grids in space and to transform vectorial 
quantities when they are transferred between the 
grids. 
 
 
Calculation of global forces 
 
The standard procedure to calculate global forces 
like lift and drag is to sum up the pressure and 
friction forces of all cells on the body surface. This 
approach fails in case of a grid overlap on body 
surfaces, since the forces in the area of the grid 
overlap are counted twice. Therefore a method is to 
be used, which generates a unique surface before 
integrating the forces. In FLOWer this is 
accomplished by a postprocessing tool which 
removes the overlap and fills the resulting gap with 
triangles, see Figure 11.  
 
The procedure can be subdivided into the following 
steps. At first, a criterion has to be defined which 
one of two overlapping cells has to be removed. To 
this end, each cell is assigned a priority. Cells at 
Chimera grid boundaries and at hole fringes are set 
to priority one. This is the lowest priority. All other 

hinge pitch

hinge flap

blade 2

tail rotor

hinge 
lead/lag

blade 1 blade 1

main rotor

blade 2blade n 

fuselage 
motion specification 



cells get a priority, that is increased by one 
compared to their neighboring cells. Therefore the 
priority of the cells is increasing with increasing 
distance to Chimera boundaries. In the next step, 
each cell of the surface grid is checked on overlaps 
with another cell. If this is true, the cell with the lower 
priority is removed. After the execution of this step 
for all cells, the overlap of the surface grid is 
removed. Due to the priority tagging, the resulting 
gap is placed approximately in the middle between 
the Chimera grid and hole boundaries. 
 

Figure 11: Generation of a unique surface for the 
calculation of global forces 
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In the last step the gap is filled with triangles by 
using a Delauny triangulation method. In contrast to 
other triangulation methods (e.g. ref. [4]), that always 
connect points of one side of the gap with points of 
the other side, the Delauny triangulation can build a 
triangle with any points at the gap border. Thus a 
special treatment at branches of the gap is not 
required. Additionally, the quality of the triangulation 
with respect to triangle distorsion and stretching is 
better. 
 
 

Cartesian background grids 
 
The component grids around a configuration extend 
often only a short distance into the computational 
domain. They must therefore be embedded into a 
background grid. While its manual creation is time 
consuming, it may instead be created automatically. 
The approach followed with FLOWer is to place one 
layer of fine Cartesian grids around the component 

grids and to iteratively wrap them with coarser 
Cartesian meshes. This procedure is repeated until 
the complete computational domain is covered by 
the background grid, see Figure 12. 
 
The different cell size of neighboring blocks results 
in patched grid interfaces with hanging grid nodes. 
This type of background grid has already been 
presented in ref. [12]. Instead of using grids with 
patched interfaces, the Cartesian grid blocks may 
also overlap each other, see ref. [3]. But this 
approach does not ensure the flux conservation 
inside the background grid, which may result in 
higher numerical errors in the computed flow. 
Therefore the first-mentioned approach is used. 
 

 

Figure 12: Cartesian background grid 
 
In addition to the methods known from literature, the 
Cartesian grid generator used in this work does not 
only allow to create grids with cubic cells but also 
with anisotropic cells, see Figure 13. This increases 
the similarity of the cell geometries of the component 
and background grids. Hence interpolation errors are 
reduced. In addition, anisotropic cells may also help 
to ensure a sufficient overlap between the grids if the 
component grid extends only little into the far field 
direction. 
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Figure 13: Cartesian background grid with 
anisotropic cells 
 
A description of the numerical treatment of the 
hanging grid nodes in FLOWer can be found in ref. 
[20]. 
 
 
Generation of Cartesian grids 
 
The creation of the Cartesian grid starts with a very 
coarse mesh of  cells, which covers the 
entire computational domain. n is usually taken to be 
4, 8 or 12. The initial grid is iteratively refined and 
subdivided into subblocks of size , until the 
grid blocks have approximately the same cell 
spacing as the overlapped cells of the component 
grid. As long as a grid is partitioned into eight finer 
grids, the grid cells are cubic. A subdivision of a grid 
into one or two index directions yields a grid with 
anisotropic cells. The number of refinements and the 
refinement directions are calculated with a sensor 
function that analyses the geometry of every cell of 
the component grid. Details of the sensor function 
will be reported in the subsequent paragraph 
“Adaptation sensor”. 

nnn ××

nnn ××

 
During the first adaptation cycle, the grids are 
refined without considering the cell spacing of 
neighboring blocks. Therefore the grids are refined 
further until the refinement is not larger than by a 
factor of two. In order to limit the use of grid blocks 
with anisotropic cells, the index direction with the 
largest spacing is coarsened only, if the cell is 
already cubic. 
 
Some blocks of the background grid may be entirely 
inside the auxiliary grids used for the hole cutting. 
For these grids all cells would be blanked in a 

subsequent flow computation. They can therefore be 
removed from the grid without affecting the flow 
solution. This minimizes the number of grid cells. 
 
After the adaptation process is finished the grid 
consists of a large number of grid blocks of size 

nnn ××  cells. The number of grid blocks is now 
reduced by merging grid blocks with the same cell 
spacing. To this end the method of the weakest 
descent (ref. [18]) is used. The algorithm tries to 
maximize the number of merging steps in order to 
minimize the number of the resulting grid blocks. At 
the end of this step, the grid coordinates and the 
information on the patched grid interfaces are written 
to disk. 
 
During the grid generation procedure the grid data 
are stored in an Alternating Digital Tree (ADT) data 
structure (ref. [2]). This method allows to keep grid 
blocks with an arbitrary number of cells where the 
cells can be either cubic or anisotropic. In the tree, 
the minimum coordinates of the grid blocks, the 
number of cells in each index direction and the 
refinement level in each index direction are saved. 
Therefore only nine variables are stored per grid 
block resulting in small memory consumption. The 
actual grid coordinates and the information on the 
grid boundary conditions are only computed during 
the final data output. 
 
 
Adaptation sensor 
 
The adaptation of the background grid to the 
component grids requires to use a sensor function 
which calculates for each of the arbitrarily shaped 
cells the dimensions of a similar Cartesian grid cell. 
The sensor used here requires three steps. At first 
each cell is transformed into a parallelepiped, where 
the edges of the parallelepiped are set identical to 
the length and direction of the lines, which connect 
the mid points of opposite faces of the cell, see 
Figure 14a, b. The parallelepiped is next 
transformed into a cuboid. This is accomplished by 
shifting the longest edges parallel to each other, until 
they are perpendicular to the second longest edges. 
The largest cell faces are now shifted parallel to 
each other until all edges are perpendicular to each 
other, see Figure 14c. Both operations do not 
change the volume of the parallelepiped (Cavalieri’s 
principle). 
 
 



 
 

                 a)                  b)                   c) 

Figure 14: Transformation of a hexahedral (a) to a 
parallelepiped (b) and to a cuboid (c) 
 
For the third transformation, a local coordinate 
system (a,b,c) is introduced, which is aligned with 
three edges of the cuboid. The length of the edges 
will be denoted by Δa, Δb, Δc. The origin of the 
coordinate system is now shifted to the origin of the 
inertial coordinate system (x,y,z). Then, the axis 
directions of the inertial frame are calculated in 
spherical coordinates of the local frame. This gives 
the angles (ϕx,Θx), (ϕy,Θy), (ϕz,Θz), see Figure 15. 
 

 

Figure 15: Transformation relations 
 
The angles are used to compute the sensor function: 
 
     ( ) ( ) xxxxx cbax ββαβα Δ⋅Δ⋅Δ=Δ −−− 1)1(1

          with  ,  , ( )xx ϕα 2cos= ( )xx Θ= 2cosβ

     ( ) ( ) yyyyy cbay ββαβα Δ⋅Δ⋅Δ=Δ −−− 1)1(1

          with  ,  , ( )yy ϕα 2cos= ( )yy Θ= 2cosβ

     ( ) ( ) zzzzz cbaz ββαβα Δ⋅Δ⋅Δ=Δ −−− 1)1(1

          with  ,  , ( )zz ϕα 2cos= ( )zz Θ= 2cosβ
 
where Δx, Δy, Δz are the spacings of the Cartesian 
cell in x-, y-, z-coordinate direction. 
 
The sensor function has been chosen for three 
reasons: 1) the volume of the original cuboid is 
preserved, 2) the spacings of the Cartesian cell are 
identical to those of the cuboid, if the inertial and the 
local frame are identical, 3) if one axis of the local 

and the inertial frame is identical, the spacing in this 
direction is unchanged. 
 
By using the adaptation sensor outlined above, the 
Cartesian background grid will have the same grid 
resolution as the underlying component grid and a 
similar cell stretching. In Figure 1, the shape of the 
computed Cartesian cell is plotted for a rotated 
cuboid. 
 

 

Figure 16: Shape of Cartesian cell (grey) for rotated 
cuboidal cell with stretching 1:4 

Examples of applications 
 
In the framework of the CHANCE project, the 
Chimera technique has been validated for various 
types of helicopter applications. Three test cases will 
be exemplified in the following. 
 
Isolated rotor in forward flight 
 
In ref. [15] the aerodynamics of the ONERA 7A rotor 
in forward flight including elastic blade deformation 
and trim has been investigated by embedding 
individual meshes for the blades into a background 
grid (3.2 million grid points in the whole grid system), 
see Figure 17. In Figure 18 the distribution of the 
normal force and the pitching moment close to the 
blade tip computed with two different methods is 
shown in comparison with experimental data. The 
first calculation (S4 no coupl.) was performed with 
the DLR rotor simulation code S4. In S4 the 
aerodynamics of the rotor is calculated by using the 
blade element theory based on measured airfoil 
tables including unsteady and Mach effects, a 
dynamic stall model, varying velocity effects and a 
prescribed wake model. For the second simulation 
(FLOWer/S4) the FLOWer code was applied. In both 
calculations the elastic blade deformation is 
simulated with the structural dynamics module of the 
S4 code. The comparison of the trimmed simulations 
presented in Figure 18 shows the significantly 
improved results when using the Navier-Stokes 
solver. 
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Figure 17: Overlapping grids for isolated rotor in 
forward flight including elastic blade deformation 
(ref. [15], with permission) 

 

 
 

 
Figure 18: Normal forces (top) and pitching moment 
(bottom) for one revolution of 7A main rotor
(ref. [15], with permission) 
 
 
 
Actuator disc modelling 
 
The time averaged effects of the main and tail rotor 
on the fuselage of an EC 145 helicopter have been 
analyzed in ref. [12]. This was achieved by 
embedding grids for the actuator discs of main and 
tail rotor into an existing mesh for a helicopter 
fuselage, see Figure 19. In Figure 20 the computed 

surface pressure distribution and the surface friction 
lines are shown. The large flow separation at the 
boot of the fuselage is clearly captured. 
 
 

Figure 19: Chimera grid for EC 145 helicopter 
fuselage with actuator discs for main and tail rotor, 
every fourth grid line plotted (ref. [12], with 
permission) 
 
 

 
Figure 20: Surface pressure distribution and surface 
friction lines on fuselage of EC 145 helicopter 
(ref. [12], with permission) 
 
 
 
Complete helicopter 
 
The simulation of an almost complete helicopter 
configuration is reported in ref. [10], where the 
unsteady flow around a BO 105 wind tunnel model 
including main and tail rotor, skids and wind tunnel 
support strut was computed. The authors generated 
twelve overlapping grids for the components of the 
configuration and embedded the component grids 
into an automatically created Cartesian background 
grid, see Figure 21. One result obtained during the 
simulation is the pressure distribution at the 
symmetry plane of the fuselage, see Figure 22. The 
agreement between experimental and computational 
results is good. Unsteady pressure distributions on 
the fin for a half revolution of the main rotor or 2.5 
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revolutions of the tail rotor, respectively, are plotted 
in Figure 23. Although some offset can be observed 
in the cp-values, the unsteady variations of the 
pressure are well captured. 
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Figure 21: Chimera grid system for the time 
accurate simulation of the flow around a BO 105 
wind tunnel model, every second grid line plotted, 
top: component grids without mesh for fuselage, 
bottom: cut at symmetry plane (ref. [10]) 
 
 
 

 
Figure 22: computed pressure distribution 
compared to experimental data in symmetry plane 
for unsteady simulation of BO 105 (ref. [10]) 

 

 
 

 

Figure 23: unsteady pressure distribution on tail fin 
at 50% radius (top) and at the outer radius (bottom) 
of the tail rotor of BO 105 helicopter, red: CFD, 
black: experiment (ref. [10]) 

 
 

Applications by industry 
 
The Chimera technique in FLOWer has also been 
successfully applied by industrial customers.  
 
Eurocopter Germany (ECD) has investigated the 
fuselage aerodynamics of the EC145 helicopter 
including the time averaged influence of the main 
rotor by embedding a separate grid for the actuator 
disc into the fuselage grid (ref. 13). The grid system 
was used to compute polars for the helicopter. 
 
Airbus Germany has used the Chimera technique to 
embed individual grids for ailerons and spoilers into 
an existing grid for a wing-body airplane 
configuration (ref. [14]). The computational results 



showed good agreement with wind tunnel 
experiments. 

 
 

Performance 
 
Unsteady flow simulations are often very time 
consuming. Therefore efficient solution algorithms 
and their parallelized and vectorized implementation 
are required to minimize the execution time. 
 
In order to demonstrate the performance of FLOWer, 
the time needed for one physical time step of a flow 
simulation was measured. The test case chosen was 
the configuration presented in section “Complete 
helicopter”. This test case consists of 11.8 million 
grid cells and 480 grid blocks. The time integration 
was performed with the dual time stepping method 
which required 50 iterations of the flow solver to 
converge the flow equations at each physical time 
step. Convergence was accelerated by implicit 
residual smoothing and three levels multigrid. 
Turbulence was modeled with the kω-turbulence 
model. The time consumption of the FLOWer flow 
solver on a NEC SX8 vector computer and for a PC-
Cluster with INTEL Xeon Processors with 3.06 GHz 
is presented in the following table: 
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 No. of 

procs 
execution time 
hole cutting & 

search 

execution 
time 

flow solver 
1 176.7 s 50 * 30.98 s 
2 100.7 s 50 * 16.44 s 
4 66.9 s 50 *  9.03 s 

 
NEC 
SX8 

 8 47.6 s 50 *  5.47 s 
PC 8 55.0 s 50 * 72.6 s 

 
A flow simulation with less then eight processors on 
the PC Cluster was not possible due to memory 
limitations. The total time consumption for one 
physical time step is the sum of the time needed for 
the hole cutting and search procedures at the 
beginning of a physical time step and the time 
required for 50 iterations of the flow solver to 
converge the flow equations. According to the table 
the Chimera algorithms require on the vector 
computer less then 15% of the total CPU time and 
on the scalar computer less than 2%. This shows 
that the Chimera routines have only a minor impact 
on the total CPU time. The relatively high time 
consumption of the Chimera algorithms on the NEC 
SX8 is due to the ADT search method, which is not 
vectorized because of its recursive algorithm. 
 
The speed up 
 

processorsn n consumptio time
processor onen consumptio time  up speed =  

 
for the NEC SX8 is shown in the following table: 

 
 No. of 

procs 
speed up 

hole cutting & 
search 

speed up 
flow solver 

1 1 1 
2 1.8 1.9 
4 2.6 3.4 

 
NEC
SX8 

 8 3.7 5.7 
 

The theoretical speed up of 8.0 for a computation on 
eight processors is not reached by the Chimera 
algorithms. This is due to the load balancing 
algorithm which is optimized for the flow solver and 
does not take into account the time consumption of 
the hole cutting and search procedures. 
A good speed up is obtained for the flow solver up to 
four processors. With increasing number of 
processors, the time needed to solve the flow 
equations is reduced whereas the time needed for 
interprocessor communication is almost constant. 
This explains the non optimum speed up when using 
eight processors of the NEC SX8. 

 
 

Summary 
 
In this paper the implementation of the Chimera 
technique in DLR’s structured flow solver FLOWer is 
presented. The hole cutting algorithm uses auxiliary 
grids to blank all cells which are in its interior. An 
ADT-search algorithm or a specialized method for 
Cartesian grids is used to find appropriate donor 
cells for the trilinear interpolation of flow data. If the 
grids overlap on a body surface, virtual interpolation 
points are introduced. They enable an accurate 
calculation of interpolation coefficients near surfaces 
despite the different surface discretizations. No grid 
hierarchy is used during hole cutting and data 
interpolation. Instead any solid body can cut holes in 
any grid and all meshes are searched for donor 
cells. For unsteady flow simulations the motion of 
grids are defined with a hierarchical data structure. 
This allows to define complex motions by a 
sequence of simple transformations. A valid update 
of flow data on moving grids is ensured by 
interpolating data for all cells, for which the 
discretization operator accesses hole cells either in 
spatial or in temporal direction. 
 
Chimera flow simulations in general do not require a 
specialized postprocessing. One exception is the 
calculation of forces and moments which must be 
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adapted if a grid overlap exists on body surfaces. In 
order to create a unique surface for the integration of 
forces and moments a tool was developed which 
removes the grid overlap and fills the resulting gap 
with triangles. 
 
The decomposition of the computational domain into 
several independently created grids offers the 
possibility to create the background mesh 
automatically. To this end a Cartesian mesh 
generator is used which adapts an initially very 
coarse mesh to the cell size of the component grids. 
The resulting mesh has cubic and anisotropic cells 
which minimizes interpolation errors and may reduce 
the required overlap width. The spacings of the 
Cartesian cells are computed with a novel 
adaptation sensor. 
 
The implementation of the Chimera technique in 
FLOWer has been validated for several helicopter 
applications. It has been shown that overlapping 
grids can be used to simplify grid generation and to 
simulate the flow around bodies in relative motion. 
 
Performance measurements on a PC-Cluster and a 
parallel vector computer show that the hole cutting 
and search procedures have a minor impact on the 
total CPU time consumption.  
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