
THE OVERLAPPING GRID TECHNIQUE FOR THE TIME ACCURATE SIMULATION
OF ROTORCRAFT FLOWS

 Thorsten Schwarz

German Aerospace Center (DLR)

in the Helmholtz-Association
 Institute for Aerodynamics and Flow Technology

Lilienthalplatz 7, D-38108 Braunschweig, Germany

Abstract

This paper presents the implementation of the
overlapping grid technique into DLR’s structured flow
solver FLOWer. The hole cutting procedure and the
search methods are described. Trilinear interpolation
is used to transfer flow data between grids. For data
interpolation close to solid surfaces, a projection
algorithm is applied which corrects discretization
effects. The approach used to prescribe rigid body
motions for unsteady flow simulations allows to
relate the motion of any body to any other body.
Unsteady simulations also require to consider the
hole motion during the definition of the interpolation
points. For the integration of forces on grids with
mesh overlap on body surfaces a unique surface is
generated. Background grids are created with a
Cartesian grid generator, which allows for cubic and
anisotropic cells. Several examples of applications
demonstrate the generality of the implementation of
the Chimera technique.

 86.1

Nomenclature

Δa, Δb, Δc spacings of cuboidal cell
d1, d2 range of weighting function
IBLANK Chimera tag array

41 xx r
K

r
 vertex coordinates of tetrahedron

Pxr coordinates of interpolation point

*Px
r coordinates of virtual interpolation

point
w weighting function

W
r

 vector of conservative variables

W
r

Δ change of conservative variables
per time step

Δx, Δy, Δz spacings of Cartesian cell

321 ,, γγγ interpolation coefficients
α, β auxiliary variables
ε
r projection vector

ϕ,Θ spherical coordinates

Introduction

The numerical solution of the Navier-Stokes
equations for helicopter type applications is a
demanding task: First of all, the flow solver must be
able to account for the moving parts of the
helicopter, e.g. the main and tail rotors, see Figure 1.
The second difficulty is to create the computational
grids, particularly if block structured solvers are used
and the configuration has a complex shape. Finally,
the long run time of unsteady flow simulations
requires efficient solution algorithms in order to
minimize the execution time.

Figure 1: BO 105 Helicopter

One approach to reduce the effort for a flow
simulation is to use the so called Chimera or
overlapping grid approach (ref. [1]). This method
allows to generate the computational meshes for the
rotors and the fuselage independently. In a
subsequent step, the grids are embedded into each
other with an arbitrary overlap, see the 2D example
in Figure 2. Grids associated with moving bodies
move with the bodies without stretching or distorting
the grids. If some grid points of one mesh fall within
a solid body, these points are blanked and excluded
from the flow computation. The blanked regions of
the grid are often called hole. The communication
among the grids is usually established by
interpolation techniques.

Figure 2: Overlapping grid system

The overlapping grid technique also allows to
simplify the grid generation for complex geometries.
This is achieved by breaking down the geometry into
simple shaped components, for which individual
grids can easily be created.

The Chimera technique has now been used for
rotorcraft applications for some time. It has been
implemented in many flow solvers used in industry,
for example Beggar (ref. [17]), OVERFLOW (ref. [5]),
CFD-Fastran (ref. [21]), elsA (ref. [8]) and FLOWer
(ref. [11]). Best practice experiences have been
summarized in ref. [6].

In the following, the Chimera capabilities of the block
structured flow solver FLOWer will be described in
detail. FLOWer is developed by the German
research center DLR with contributions from
universities and aerospace industry. The extension
of FLOWer for helicopters like configuration has
been supported during the last six years by the
French-German cooperative project Complete
Helicopter AdvaNced Computational Environment
(CHANCE) (ref. [16]). In this context, the
implementation of the Chimera technique in FLOWer
was widely extended. Starting with a basic Chimera-
scheme six years ago, FLOWer has now many
capabilities to handle moving grids and to simplify
grid generation. The method has been verified and
validated for a wide range of applications and much
experience in its use has been gained.

Flow solver

The flow solver FLOWer (ref. [11]) solves the
Reynolds averaged Navier-Stokes equations with a
second order accurate finite volume discretization on
structured, multi-block grids. The fluxes can be

computed either with a central scheme or with
various upwind schemes. Turbulence is modeled by
several 0-, 1-, 2- or 7-equation models, e.g. Spalart-
Almaras, kω, kω-SST, EARSM or RSM. For steady
flow simulations the time integration of the main
equations is advanced with a five stage Runge-Kutta
method with multigrid acceleration. For the
turbulence equations, an implicit DDADI method is
used. Unsteady flow simulations are performed with
the implicit dual time stepping formulation. For high
performance computing, FLOWer is parallelized
based on MPI and is optimized for vector computers.

Chimera technique

Hole cutting

The first step in a Chimera calculation is the blanking
of grid points, which are inside solid bodies. For this
purpose, the user generates one or more auxiliary
grids, which totally include the solid body, see Figure
3. Now all cell midpoints of the computational grids
overlaying the solid body are checked, if they are
inside the auxiliary mesh. Any cell being inside the
auxiliary grid is flagged and is excluded from the flow
computation.

Figure 3: Auxiliary grid (thick lines) with two cells for
hole cutting

No grid hierarchy is used to blank cells. Instead, any
auxiliary grid can cut holes in any grid which does
not contain the solid body enclosed by the auxiliary
grid.

Although the presented hole cutting method is non
automatic, the effort for the user is usually small,
since the auxiliary grids can be coarse and they do
not have to fulfill any quality requirements. The
advantage of the chosen approach is its very simple
implementation and its high execution speed.
Furthermore it allows the user to control the exact
geometry of the hole. An example of a set of

 86.2

auxiliary grids for a complex configuration is shown
in Figure 4.

Figure 4: Set of seven auxiliary grids enclosing a
helicopter fuselage

 86.3

Search and interpolation

Communication between the overlapping grids is
established by interpolating data from overlapping
grids. In order to set up the interpolation, at first the
interpolation cells have to be identified. This is
accomplished by checking for each cell, if the spatial
discretization operator accesses cells inside holes or
non existent cells at the outer grid boundary. In
FLOWer two layers of interpolation cells are required
at outer grid boundaries and at the hole fringe, see
Figure 5.

Figure 5: Interpolation points

Now a Chimera tag array IBLANK is set up, which
indicates the status of a cell. It is:

IBLANK = 0 : hole cell or interpolated cell
 (excluded from flow computation)

IBLANK = 1 : valid cell

Following the definition of the Chimera tag array, a
search is started to find appropriate donor cells for
the interpolation cells. Since the flow variables are
given at the centers of the cells, the search must be
performed for the dual meshes that connect the
coordinates of the cell centers. In FLOWer the
search on general type meshes is performed with an
Alternating Digital Tree method (ADT) (ref. [2]). The
ADT method uses a tree like data structure to store
the boxes given by the minimum and maximum
coordinates of the dual grid cells. During the search
process, all boxes enclosing the interpolation point
are identified with log2(N) operations, where N is the
total number of grid points. In a subsequent step,
each cell associated with a retrieved box is checked
if it includes the interpolation point. To this end, the
cell is subdivided into six tetrahedra and the linear
system of equations

() () (
1

143132121

xx
xxxxxx

P
rr

)rrrrrr

−=
−+−+− γγγ

is solved for the unknown coefficients 321 ,, γγγ ,

where 41 xx r
K

r
are the vertex coordinates of the

tetrahedron and Px
r denotes the coordinates of the

interpolation point. If the conditions

1,0,, 321321 ≤++≥ γγγγγγ

are true, then the interpolation point is inside the
tetrahedron. Additionally it is tested, if the cells at the
vertices of the tetrahedron are not blanked
(IBLANK=1). If all checks are successful, the cell is a
valid donor cell and the flow values at the vertices of
the tetrahedron are used for the trilinear interpolation
of flow data with the interpolation
coefficients 321 ,, γγγ .

A Chimera grid system often consists of more than
two overlapping grids. In this case, FLOWer
searches all grids for donor cells without preferring
one grid to another. If more than one cell including
the interpolation point is found, the cell with the
smallest volume is chosen to be the donor cell. This
choice is based on the assumption, that the
discretization error of the Navier-Stokes equations is
smallest on the finest grid and thus the interpolated
flow data will be most accurate.

In many applications the ADT search algorithm and
the interpolation method have been proven to be
very robust even for grids of bad quality.

Background grids for Chimera computations are
often Cartesian with an equidistant or non

equidistant distribution of grid points. For these types
of meshes FLOWer offers a specialized search
procedure which is much faster than the ADT
method. While for equidistant meshes the i,j,k-
indices of the donor cell can be directly computed
based on the cell spacing, for non equidistant grids
the indices are determined by applying a bisection
method in one index-direction after the other.

Sometimes the computation of interpolation
coefficients is not possible, since the grid overlap is
not sufficient or because parts of the overlapping
grids are blanked. This situation requires to improve
the grids. But for large grid systems with many
overlapping grids around a complicated
configuration the optimization of the grids may be
very time consuming. Therefore a method is
available in FLOWer to enable a flow computation
even if a non sufficient overlap exists: After the
computation of interpolation coefficients has failed
for a cell, all overlapping grids are searched for the
cell with the smallest distance to the interpolation
point. The flow data of this cell are subsequently
used to update the interpolation cell data during the
flow simulation. The described method reduces the
accuracy of the flow solution locally. Thus the
number of cells which requires its application should
be kept to a minimum.

For unsteady flow simulations including rigid body
motion an extension of the hole cutting procedure is
required to avoid an invalid update of flow data close
to holes, see section “Grids in relative motion”.

Flow simulation

Little extension to the flow solver is necessary to
enable computations on overlapping grids. In the
case of a purely explicit solver, any spatial or
temporal discretization operator remains unchanged.
Only the update of the conservative variables W

r
in

the blanked regions must be suppressed by
multiplying the change of the conservative variables
per time step W

r
Δ with the tag array IBLANK

WIBLANKWW tt rrr

Δ∗+=+1 .

The adaptation of the implicit residual smoothing is
accomplished by multiplying the residual before and
after the smoothing with IBLANK. The implicit
treatment of the turbulence equation with the DDADI
algorithm is adjusted accordingly by multiplying the
intermediate and final results with IBLANK.

For the modifications of the multigrid method the
following approach has been chosen. During the
hole cutting procedure, all cells of coarse meshes
are flagged, if the restriction or prolongation
operators access cells inside the holes on the next
finer grid. Interpolation of flow data from an
overlapping grid is only performed on the finest grid,
whereas for coarser grids the data at hole fringes
and outer grid boundaries are interpolated from the
next finer level of the same grid. The IBLANK values
are set analogous to the finest grid, where
IBLANK=0 indicates hole cells or interpolated cells.
During the flow simulation the forcing function and
the residuals computed on the coarse grid levels are
multiplied with IBLANK in order to avoid an update of
the coarse grid data. A modification of the fine grid
data is prevented by multiplying the coarse grid
corrections before and after the prolongation with the
IBLANK values of the coarse and fine grid
respectively.

Other possibilities to adapt the multigrid technique
for Chimera computations have been published in
ref. [9]. The method implemented in FLOWer has
been chosen, because the author believes it to be
the most robust one.

Grid overlap on body surfaces

In many cases the Chimera grids overlap on body
surfaces. One example is presented in Figure 6
showing the junction of a wing and a body, where
the wing and the body are discretized with different
grids.

Figure 6: Grids with overlap on body surface

A grid overlap on body surfaces requires a
modification in the computation of interpolation
coefficients, since the standard interpolation
described in section “Search and interpolation” may
yield inaccurate results. The reason is sketched in

 86.4

Figure 7. Due to the different discretization of a
curved analytic surface in the two overlapping grids,
the distance of a point P to the discrete surface
representations is unequal, 21 δδ ≠ . Therefore all
interpolation points close to a curved surface will
interpolate flow data from locations with different wall
distance than expected. This may for example cause
problems when transferring data within boundary
layers. Sometimes an interpolation point may even
be outside of the overlapping grid making an
interpolation impossible.

Figure 7: Non unique wall distance in overlap region
for point P

In order to circumvent the described problem a
correction method was developed. The procedure
starts by searching the grid containing the
interpolation point P for the point PS on the surface,
which is closest to point P, see Figure 8, top. The
point PS is projected onto the discrete surface
representation of the overlapping grid. The
projection vector is denoted with ε

r
.

Figure 8: Correction of computation of interpolation
coefficients, top: projection of wall point Pw on
surface of other grid, bottom: introduction of virtual
interpolation point P*

The projection vector is now multiplied with a scaling
function and added to the coordinates of the

interpolation point Px
r giving the coordinates *Px

r of
a virtual interpolation point P*

PP xwx
rrr

+⋅= ε* ,
see Figure 8, bottom. The weighting function is used
to apply a full correction close to the surface and to
reduce the correction with increasing distance from
the surface

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−≤

<−≤
−

−−
<−≤

=

*2

2*1
12

*2

1*

0

01

PP

PP
PP

PP

xxdif

dxxdif
dd

xxd
dxxif

w
rr

rr
rr

rr

 ,

where

εε
rr

⋅=⋅= 30,10 21 dd

gives good results. The coordinates of the virtual
interpolation point are now used to search a donor
cell and to compute the interpolation coefficients.
The presented algorithm ensures an identical wall
distance of the interpolation point and the
interpolated data, , see *

21 δδ = Figure 8, bottom.

If the interpolation point P is overlapped by more
than one grid, the correction method is to be applied
for each donor grid, since in general the projection
vector ε

r
will be different.

Slightly different correction methods are known from
literature, see ref. [19] and ref. [6]. But instead of
introducing virtual interpolation points, the algorithms
temporarily modify the grid coordinates before the
computation of interpolation coefficients. As a
consequence, a correct calculation of the
interpolation coefficients is not possible if more than
two grids overlap on the body surface, because the
coordinates can only be adjusted to match with one
overlapping grid. This difficulty is avoided by the
introduction of the virtual target point, since its
coordinates are computed for each donor grid
independently.

Grids in relative motion

The overlapping grid technique allows to move the
grids relatively to each other without affecting the
grid’s quality. It is therefore an appropriate method
for the simulation of bodies in relative motion. This
requires to update the intergrid communication each
time the grids have been shifted to a new position.
Therefore, the hole cutting procedure and the

 86.5

calculation of interpolation coefficients must be
executed repeatedly.

Unsteady flow simulations require an extension of
the method used to identify interpolation points.
Whereas in section “Search and interpolation” only
the spatial discretization operator was checked if it
accesses hole cells, for unsteady flow computations
also the temporal discretization operator must be
taken into account. Otherwise the correct
calculation of the flow data cannot be guaranteed in
case of holes with varying positions. Such a situation
is depicted in Figure 9, top, showing a one
dimensional grid with a hole moving two cells to the
right at each time step. The spatial discretization
operator is assumed to have a width of five cells.
Thus two layers of interpolation cells are necessary
at the hole fringe. If now a time discretization
operator is used, which requires valid data on two
previous time steps, a valid update of some cells in
the ‘wake’ of the hole is not possible.

 86.6

Figure 9: One dimensional grid with a moving hole,
top: invalid update of flow data, bottom: extension of
hole fringe enables correct flow simulation,

 : cell with IBLANK = 1, : interpolated cell,
 : hole cell

In order to solve this problem, all cells whose time
discretization operator accesses hole cells are
added to the list of interpolation cells. This results in
an extended hole fringe in the wake of the hole, see
Figure 9, bottom.

The motion of a rigid body is either defined based on
the inertial frame of reference or relatively to another
moving geometry. For example, the fuselage of a
helicopter moves relatively to the inertial frame,
whereas the rotational velocity of the rotor shaft is
constant relative to the fuselage while the flapping of

a blade can best be defined relatively to the rotor
hub. According to these relations, a tree like data
structure is used in FLOWer to specify rigid body
motions, see Figure 10. This allows to define a
complex body movement by a series of simple
transformations. In FLOWer each transformation
may include a translation in any direction and a
rotation around an arbitrary axis. The time
dependent translation and rotation are specified by
polynomial and Fourier series.

inertial frame

Figure 10: Tree like data structure for the definition
of rigid body motions for helicopter

After the user has defined the motion relations each
of the overlapping grids is linked to any of the
specified transformations. During a subsequent flow
computation the transformations are used to position
the grids in space and to transform vectorial
quantities when they are transferred between the
grids.

Calculation of global forces

The standard procedure to calculate global forces
like lift and drag is to sum up the pressure and
friction forces of all cells on the body surface. This
approach fails in case of a grid overlap on body
surfaces, since the forces in the area of the grid
overlap are counted twice. Therefore a method is to
be used, which generates a unique surface before
integrating the forces. In FLOWer this is
accomplished by a postprocessing tool which
removes the overlap and fills the resulting gap with
triangles, see Figure 11.

The procedure can be subdivided into the following
steps. At first, a criterion has to be defined which
one of two overlapping cells has to be removed. To
this end, each cell is assigned a priority. Cells at
Chimera grid boundaries and at hole fringes are set
to priority one. This is the lowest priority. All other

hinge pitch

hinge flap

blade 2

tail rotor

hinge
lead/lag

blade 1 blade 1

main rotor

blade 2blade n

fuselage
motion specification

cells get a priority, that is increased by one
compared to their neighboring cells. Therefore the
priority of the cells is increasing with increasing
distance to Chimera boundaries. In the next step,
each cell of the surface grid is checked on overlaps
with another cell. If this is true, the cell with the lower
priority is removed. After the execution of this step
for all cells, the overlap of the surface grid is
removed. Due to the priority tagging, the resulting
gap is placed approximately in the middle between
the Chimera grid and hole boundaries.

Figure 11: Generation of a unique surface for the
calculation of global forces

 86.7

In the last step the gap is filled with triangles by
using a Delauny triangulation method. In contrast to
other triangulation methods (e.g. ref. [4]), that always
connect points of one side of the gap with points of
the other side, the Delauny triangulation can build a
triangle with any points at the gap border. Thus a
special treatment at branches of the gap is not
required. Additionally, the quality of the triangulation
with respect to triangle distorsion and stretching is
better.

Cartesian background grids

The component grids around a configuration extend
often only a short distance into the computational
domain. They must therefore be embedded into a
background grid. While its manual creation is time
consuming, it may instead be created automatically.
The approach followed with FLOWer is to place one
layer of fine Cartesian grids around the component

grids and to iteratively wrap them with coarser
Cartesian meshes. This procedure is repeated until
the complete computational domain is covered by
the background grid, see Figure 12.

The different cell size of neighboring blocks results
in patched grid interfaces with hanging grid nodes.
This type of background grid has already been
presented in ref. [12]. Instead of using grids with
patched interfaces, the Cartesian grid blocks may
also overlap each other, see ref. [3]. But this
approach does not ensure the flux conservation
inside the background grid, which may result in
higher numerical errors in the computed flow.
Therefore the first-mentioned approach is used.

Figure 12: Cartesian background grid

In addition to the methods known from literature, the
Cartesian grid generator used in this work does not
only allow to create grids with cubic cells but also
with anisotropic cells, see Figure 13. This increases
the similarity of the cell geometries of the component
and background grids. Hence interpolation errors are
reduced. In addition, anisotropic cells may also help
to ensure a sufficient overlap between the grids if the
component grid extends only little into the far field
direction.

 86.8

Figure 13: Cartesian background grid with
anisotropic cells

A description of the numerical treatment of the
hanging grid nodes in FLOWer can be found in ref.
[20].

Generation of Cartesian grids

The creation of the Cartesian grid starts with a very
coarse mesh of cells, which covers the
entire computational domain. n is usually taken to be
4, 8 or 12. The initial grid is iteratively refined and
subdivided into subblocks of size , until the
grid blocks have approximately the same cell
spacing as the overlapped cells of the component
grid. As long as a grid is partitioned into eight finer
grids, the grid cells are cubic. A subdivision of a grid
into one or two index directions yields a grid with
anisotropic cells. The number of refinements and the
refinement directions are calculated with a sensor
function that analyses the geometry of every cell of
the component grid. Details of the sensor function
will be reported in the subsequent paragraph
“Adaptation sensor”.

nnn ××

nnn ××

During the first adaptation cycle, the grids are
refined without considering the cell spacing of
neighboring blocks. Therefore the grids are refined
further until the refinement is not larger than by a
factor of two. In order to limit the use of grid blocks
with anisotropic cells, the index direction with the
largest spacing is coarsened only, if the cell is
already cubic.

Some blocks of the background grid may be entirely
inside the auxiliary grids used for the hole cutting.
For these grids all cells would be blanked in a

subsequent flow computation. They can therefore be
removed from the grid without affecting the flow
solution. This minimizes the number of grid cells.

After the adaptation process is finished the grid
consists of a large number of grid blocks of size

nnn ×× cells. The number of grid blocks is now
reduced by merging grid blocks with the same cell
spacing. To this end the method of the weakest
descent (ref. [18]) is used. The algorithm tries to
maximize the number of merging steps in order to
minimize the number of the resulting grid blocks. At
the end of this step, the grid coordinates and the
information on the patched grid interfaces are written
to disk.

During the grid generation procedure the grid data
are stored in an Alternating Digital Tree (ADT) data
structure (ref. [2]). This method allows to keep grid
blocks with an arbitrary number of cells where the
cells can be either cubic or anisotropic. In the tree,
the minimum coordinates of the grid blocks, the
number of cells in each index direction and the
refinement level in each index direction are saved.
Therefore only nine variables are stored per grid
block resulting in small memory consumption. The
actual grid coordinates and the information on the
grid boundary conditions are only computed during
the final data output.

Adaptation sensor

The adaptation of the background grid to the
component grids requires to use a sensor function
which calculates for each of the arbitrarily shaped
cells the dimensions of a similar Cartesian grid cell.
The sensor used here requires three steps. At first
each cell is transformed into a parallelepiped, where
the edges of the parallelepiped are set identical to
the length and direction of the lines, which connect
the mid points of opposite faces of the cell, see
Figure 14a, b. The parallelepiped is next
transformed into a cuboid. This is accomplished by
shifting the longest edges parallel to each other, until
they are perpendicular to the second longest edges.
The largest cell faces are now shifted parallel to
each other until all edges are perpendicular to each
other, see Figure 14c. Both operations do not
change the volume of the parallelepiped (Cavalieri’s
principle).

 a) b) c)

Figure 14: Transformation of a hexahedral (a) to a
parallelepiped (b) and to a cuboid (c)

For the third transformation, a local coordinate
system (a,b,c) is introduced, which is aligned with
three edges of the cuboid. The length of the edges
will be denoted by Δa, Δb, Δc. The origin of the
coordinate system is now shifted to the origin of the
inertial coordinate system (x,y,z). Then, the axis
directions of the inertial frame are calculated in
spherical coordinates of the local frame. This gives
the angles (ϕx,Θx), (ϕy,Θy), (ϕz,Θz), see Figure 15.

Figure 15: Transformation relations

The angles are used to compute the sensor function:

 () () xxxxx cbax ββαβα Δ⋅Δ⋅Δ=Δ −−− 1)1(1

 with , , ()xx ϕα 2cos= ()xx Θ= 2cosβ

 () () yyyyy cbay ββαβα Δ⋅Δ⋅Δ=Δ −−− 1)1(1

 with , , ()yy ϕα 2cos= ()yy Θ= 2cosβ

 () () zzzzz cbaz ββαβα Δ⋅Δ⋅Δ=Δ −−− 1)1(1

 with , , ()zz ϕα 2cos= ()zz Θ= 2cosβ

where Δx, Δy, Δz are the spacings of the Cartesian
cell in x-, y-, z-coordinate direction.

The sensor function has been chosen for three
reasons: 1) the volume of the original cuboid is
preserved, 2) the spacings of the Cartesian cell are
identical to those of the cuboid, if the inertial and the
local frame are identical, 3) if one axis of the local

and the inertial frame is identical, the spacing in this
direction is unchanged.

By using the adaptation sensor outlined above, the
Cartesian background grid will have the same grid
resolution as the underlying component grid and a
similar cell stretching. In Figure 1, the shape of the
computed Cartesian cell is plotted for a rotated
cuboid.

Figure 16: Shape of Cartesian cell (grey) for rotated
cuboidal cell with stretching 1:4

Examples of applications

In the framework of the CHANCE project, the
Chimera technique has been validated for various
types of helicopter applications. Three test cases will
be exemplified in the following.

Isolated rotor in forward flight

In ref. [15] the aerodynamics of the ONERA 7A rotor
in forward flight including elastic blade deformation
and trim has been investigated by embedding
individual meshes for the blades into a background
grid (3.2 million grid points in the whole grid system),
see Figure 17. In Figure 18 the distribution of the
normal force and the pitching moment close to the
blade tip computed with two different methods is
shown in comparison with experimental data. The
first calculation (S4 no coupl.) was performed with
the DLR rotor simulation code S4. In S4 the
aerodynamics of the rotor is calculated by using the
blade element theory based on measured airfoil
tables including unsteady and Mach effects, a
dynamic stall model, varying velocity effects and a
prescribed wake model. For the second simulation
(FLOWer/S4) the FLOWer code was applied. In both
calculations the elastic blade deformation is
simulated with the structural dynamics module of the
S4 code. The comparison of the trimmed simulations
presented in Figure 18 shows the significantly
improved results when using the Navier-Stokes
solver.

 86.9

Figure 17: Overlapping grids for isolated rotor in
forward flight including elastic blade deformation
(ref. [15], with permission)

Figure 18: Normal forces (top) and pitching moment
(bottom) for one revolution of 7A main rotor
(ref. [15], with permission)

Actuator disc modelling

The time averaged effects of the main and tail rotor
on the fuselage of an EC 145 helicopter have been
analyzed in ref. [12]. This was achieved by
embedding grids for the actuator discs of main and
tail rotor into an existing mesh for a helicopter
fuselage, see Figure 19. In Figure 20 the computed

surface pressure distribution and the surface friction
lines are shown. The large flow separation at the
boot of the fuselage is clearly captured.

Figure 19: Chimera grid for EC 145 helicopter
fuselage with actuator discs for main and tail rotor,
every fourth grid line plotted (ref. [12], with
permission)

Figure 20: Surface pressure distribution and surface
friction lines on fuselage of EC 145 helicopter
(ref. [12], with permission)

Complete helicopter

The simulation of an almost complete helicopter
configuration is reported in ref. [10], where the
unsteady flow around a BO 105 wind tunnel model
including main and tail rotor, skids and wind tunnel
support strut was computed. The authors generated
twelve overlapping grids for the components of the
configuration and embedded the component grids
into an automatically created Cartesian background
grid, see Figure 21. One result obtained during the
simulation is the pressure distribution at the
symmetry plane of the fuselage, see Figure 22. The
agreement between experimental and computational
results is good. Unsteady pressure distributions on
the fin for a half revolution of the main rotor or 2.5

 86.10

revolutions of the tail rotor, respectively, are plotted
in Figure 23. Although some offset can be observed
in the cp-values, the unsteady variations of the
pressure are well captured.

 86.11

Figure 21: Chimera grid system for the time
accurate simulation of the flow around a BO 105
wind tunnel model, every second grid line plotted,
top: component grids without mesh for fuselage,
bottom: cut at symmetry plane (ref. [10])

Figure 22: computed pressure distribution
compared to experimental data in symmetry plane
for unsteady simulation of BO 105 (ref. [10])

Figure 23: unsteady pressure distribution on tail fin
at 50% radius (top) and at the outer radius (bottom)
of the tail rotor of BO 105 helicopter, red: CFD,
black: experiment (ref. [10])

Applications by industry

The Chimera technique in FLOWer has also been
successfully applied by industrial customers.

Eurocopter Germany (ECD) has investigated the
fuselage aerodynamics of the EC145 helicopter
including the time averaged influence of the main
rotor by embedding a separate grid for the actuator
disc into the fuselage grid (ref. 13). The grid system
was used to compute polars for the helicopter.

Airbus Germany has used the Chimera technique to
embed individual grids for ailerons and spoilers into
an existing grid for a wing-body airplane
configuration (ref. [14]). The computational results

showed good agreement with wind tunnel
experiments.

Performance

Unsteady flow simulations are often very time
consuming. Therefore efficient solution algorithms
and their parallelized and vectorized implementation
are required to minimize the execution time.

In order to demonstrate the performance of FLOWer,
the time needed for one physical time step of a flow
simulation was measured. The test case chosen was
the configuration presented in section “Complete
helicopter”. This test case consists of 11.8 million
grid cells and 480 grid blocks. The time integration
was performed with the dual time stepping method
which required 50 iterations of the flow solver to
converge the flow equations at each physical time
step. Convergence was accelerated by implicit
residual smoothing and three levels multigrid.
Turbulence was modeled with the kω-turbulence
model. The time consumption of the FLOWer flow
solver on a NEC SX8 vector computer and for a PC-
Cluster with INTEL Xeon Processors with 3.06 GHz
is presented in the following table:

 86.12

 No. of

procs
execution time
hole cutting &

search

execution
time

flow solver
1 176.7 s 50 * 30.98 s
2 100.7 s 50 * 16.44 s
4 66.9 s 50 * 9.03 s

NEC
SX8

 8 47.6 s 50 * 5.47 s
PC 8 55.0 s 50 * 72.6 s

A flow simulation with less then eight processors on
the PC Cluster was not possible due to memory
limitations. The total time consumption for one
physical time step is the sum of the time needed for
the hole cutting and search procedures at the
beginning of a physical time step and the time
required for 50 iterations of the flow solver to
converge the flow equations. According to the table
the Chimera algorithms require on the vector
computer less then 15% of the total CPU time and
on the scalar computer less than 2%. This shows
that the Chimera routines have only a minor impact
on the total CPU time. The relatively high time
consumption of the Chimera algorithms on the NEC
SX8 is due to the ADT search method, which is not
vectorized because of its recursive algorithm.

The speed up

processorsn n consumptio time
processor onen consumptio time up speed =

for the NEC SX8 is shown in the following table:

 No. of

procs
speed up

hole cutting &
search

speed up
flow solver

1 1 1
2 1.8 1.9
4 2.6 3.4

NEC
SX8

 8 3.7 5.7

The theoretical speed up of 8.0 for a computation on
eight processors is not reached by the Chimera
algorithms. This is due to the load balancing
algorithm which is optimized for the flow solver and
does not take into account the time consumption of
the hole cutting and search procedures.
A good speed up is obtained for the flow solver up to
four processors. With increasing number of
processors, the time needed to solve the flow
equations is reduced whereas the time needed for
interprocessor communication is almost constant.
This explains the non optimum speed up when using
eight processors of the NEC SX8.

Summary

In this paper the implementation of the Chimera
technique in DLR’s structured flow solver FLOWer is
presented. The hole cutting algorithm uses auxiliary
grids to blank all cells which are in its interior. An
ADT-search algorithm or a specialized method for
Cartesian grids is used to find appropriate donor
cells for the trilinear interpolation of flow data. If the
grids overlap on a body surface, virtual interpolation
points are introduced. They enable an accurate
calculation of interpolation coefficients near surfaces
despite the different surface discretizations. No grid
hierarchy is used during hole cutting and data
interpolation. Instead any solid body can cut holes in
any grid and all meshes are searched for donor
cells. For unsteady flow simulations the motion of
grids are defined with a hierarchical data structure.
This allows to define complex motions by a
sequence of simple transformations. A valid update
of flow data on moving grids is ensured by
interpolating data for all cells, for which the
discretization operator accesses hole cells either in
spatial or in temporal direction.

Chimera flow simulations in general do not require a
specialized postprocessing. One exception is the
calculation of forces and moments which must be

 86.13

adapted if a grid overlap exists on body surfaces. In
order to create a unique surface for the integration of
forces and moments a tool was developed which
removes the grid overlap and fills the resulting gap
with triangles.

The decomposition of the computational domain into
several independently created grids offers the
possibility to create the background mesh
automatically. To this end a Cartesian mesh
generator is used which adapts an initially very
coarse mesh to the cell size of the component grids.
The resulting mesh has cubic and anisotropic cells
which minimizes interpolation errors and may reduce
the required overlap width. The spacings of the
Cartesian cells are computed with a novel
adaptation sensor.

The implementation of the Chimera technique in
FLOWer has been validated for several helicopter
applications. It has been shown that overlapping
grids can be used to simplify grid generation and to
simulate the flow around bodies in relative motion.

Performance measurements on a PC-Cluster and a
parallel vector computer show that the hole cutting
and search procedures have a minor impact on the
total CPU time consumption.

References

[1] BENEK, J.; STEGER, J. L.; DOUGHERTY, F. C.: A

Flexible Grid Embedding Technique with
Application to the Euler Equations. AIAA Paper
83-1944, 1983

[2] BONET, J.; PERAIRE, J.: An Alternating Digital
Tree (ADT) Algorithm for 3D Geometric
Searching and Intersection problems. In:
International Journal for Numerical Methods in
Engineering, Vol. 31, 1991, pp. 1-17

[3] BLAYLOCK, T. A.; ONSLOW, S. H.; ALBONE, C. M.:
Mesh Generation and Flow Solution for Complex
Configurations using the FAME System. In:
Proceedings of the 1993 European Forum on
Recent Developments and Applications in
Aeronautical CFD, Royal Aeronautical Sosiety,
Bristol, England, 1. - 3. September, 1993, pp. 8.1
– 8.14

[4] CHAN, W. M.; BUNING, P. G.: Zipper grids for
Force and Moment Computation on Overset
Grids. AIAA Paper 95-1681, 1995

[5] CHAN, W. M.; MEAKIN, R. L.; POTSDAM, M. A.:
CHSSI Software for Geometrically Complex

Unsteady Aerodynamic Applications. AIAA
Paper 2001-0593, 2001

[6] CHAN, W.; GOMEZ III, R. J.; ROGERS, S. E.;
BUNING, P. G.: Best Practices in Overset Grid
Generation. AIAA Paper 2002-3191, 2001

[7] D’ALASCIO, A.; BERTHE, A.; LE CHUITON, F.:
Application of CFD to the Fuselage
Aerodynamics of the EC145 Helicopter.
Prediction of Unsteady Phenomena and of the
Time Averaged Influence of the Main Rotor. In:
Proceedings of the 29th European Rotorcraft
Forum, Paper 39, Friedrichshafen, Germany,
September 16-18, 2003

[8] JEANFAVRE, G.; BENOIT, C.; LE PAPE, M.-C.:
Improvement of the Robustness of the Chimera
Method. AIAA Paper 2002-3290, 2002

[9] JUVIGNY, X.; CANNONE, E.; BENOIT, C.: Multigrid
Algorithms for the Chimera Method. AHS Paper
2004-0758, 2004

[10] KHIER,W.; SCHWARZ, T.: Time-accurate
simulation of the flow around the complete BO
105 wind tunnel model. In: Proceedings of the
31st European Rotorcraft Forum, Paper 87,
Florence, Italy, September 13 – 15, 2005

[11] KROLL, N.; ROSSOW, C.-C.; BECKER, K.; THIELE,
F.: The MEGAFLOW Project. In: Aerospace
Science and Technology, Vol. 4, 2002, pp. 223-
237

[12] LE CHUITON, F.: Chimera Simulation of a
complete helicopter with rotors as actuator discs.
14th Symposium of STAB, Bremen, Germany,
November 16. – 18., 2004, to appear in: Notes in
Numerical Fluid Mechanics and Multidisciplinary
Design, Springer, 2005

[13] MEAKIN, R. L.: An efficient means of Adaptive
Refinement within Systems of Overset Grids.
AIAA Paper 95-1722, 1995

[14] MERTINS, R.; ELSHOLZ, E.; COLAK, B.; BARAKAT,
S.: 3D Viscous Flow Analysis on Wing-Body-
Aileron-Spoiler Configurations. In: Proceedings
of the Deutscher Luft- und Raumfahrtkongress
2003, Paper DGLR-2003-125, Munich,
Germany, November 17-20, 2003

[15] PAHLKE, K.; VAN DER WALL, B.: Chimera
Simulations of Multibladed Rotors in High-Speed
Forward Flight with weak fluid-structure
coupling. In: Aerospace Science and
Technology, Vol. 9, No. 5, 2005, pp. 377-389

[16] PAHLKE,K.; COSTES, M.; D’ALASCIO, A.;
CASTELLIN, C.; ALTMIKUS, A.: The 6-year French-
German CHANCE Project. In: Proceedings of

 86.14

the 31st European Rotorcraft Forum, Paper 69,
Florence, Italy, Spetember 15-17, 2005

[17] PREWITT, N. C.; BELK, D. M.; MAPLE, R. C.:
Multiple Body Trajectory Calculations Using the
Beggar Code. In: Journal of Aircraft, Vol. 36, No.
5, 1999, pp. 802-808

[18] RIGBY, D. L.: Method of the Weakest Descent for
Automatic Block Merging. In: Proceedings of the
15th International Conference on Numerical
Methods in Fluid Dynamics, Monterey,
California, USA, June 1996

[19] SCHWARZ, T.: Development of a Wall Treatment
for Navier-Stokes Computations using the
Overset-Grid Technique. In: Proceedings of the
26th European Rotorcraft Forum, The Hague,
The Netherlands

[20] SCHWARZ, T.: Enhancement of a Navier-Stokes
Flow Solver for Patched Grids with Non-
Coincident Grid Nodes. In: Notes on Numerical
Fluid Mechanics, Vol. 77, Springer, 2002, pp.
312-319

[21] WANG, Z. J.; PARTHASARATHY, V.: A Fully
Automated Chimera Methodology for Multiple
Moving Body Problems. In: International Journal
for Numerical Methods in Fluids, Vol. 33, 2000,
pp. 919-938

