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ABSTRACT 

A system of differential equations relating the aerodynamic forces and the variables defining 

the velocity of the airfoil section is employed to simulate the time delay effects of the flow. The 

model involves a number of identifications of the test results of the 2-D airfoil in static and in 

small amplitude harmonic oscillation or random vibration configurations. Tests at high amplitude 

motions then permits a verification of the validity of the model. 

INTRODUCTION 

Boundary layer separations have predominant effects on the unsteady aerodynamics of airfoil 

sections operating at high incidence, notably on fixed-wing aircraft manreuvring at high lift, on 

jet-turbine blades and on helicopter blades at high advance ratio. 

There is presently no theoretical approach capable to predict the unsteady aerodynamic 

forces acting on airfoils working in the vicinity or beyond the dynamic stall angle of attack. But 

the existing numerous wind-tunnel tests on oscillating airfoils do provide a valuable experimental 

basis for establishing phenomenological models through which certain semi-empirical prediction 

can be made. Some such models had been elaborated both in the United States and in Great 

Britain to synthesize, with relatively simple equations, the lift and moments measured on heli­

copter profiles executing harmonic oscillations, for various values of the parameters defining the 

motion and the fluid flow (Mach & Reynolds numbers, frequency and amplitude of oscillation, 

mean incidence, location of pitch axis, etc.) [1 ], [2], [3]. 

In the case of helicopters, dynamic stall occurs on the retreating blade (which operates at 

high incidence in order to compensate its relatively low velocity with respect to the fluid). Such 

local stall can aggravate the blade stress and can even induce phanomena analogous to instability 

(stall-flutter). 
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The complexity of the blade motion (which results from the composition of forward and 

rotational velocities, variation of cyclic pitch, blade flap and lead-lag and elastic deflexions), added 

to the presence of flow separation, render the aeroelastic analysis particularly difficult. 

For several years, ONERA in collaboration with the SNIAS have made considerable efforts 

in this field. Methods of calculation had been developed in the linear domain, in which the eva­

luation of the aerodynamic forces is based on the linear three-dimensional lifting surface theory. 

The effects of high incidence are accounted for in a semi-empirical manner by introducing the 

induced incidence, thus allowing to dissociate, for each airfoil section, the effect of two-dimen­

sional separated flow, which can be evaluated by a phenomenological model, from the effect of 

three-dimensional interaction, which is deduced by a linear calculation (4). (5). Some encouraging 

results, yet insufficient, had been obtained by the model of the reference 6. 

In order to achieve further improvement, ONERA has undertaken to establish a model (7) 

more suited than the preceding ones and which makes use of the properties of differential equa­

tions to simulate the effects of time history (or memory) of the flows. The model is formulated 

in the time domain and may therefore be applied to all arbitrary motions of the airfoil. The 

identification of the coefficients of the model's equations requires only the wind-tunnel tests on 

airfoils in static and in small amplitude harmonic oscillations or random vibration-

1. MODEL FORMULATION 

Consider an airfoil of span L , and of constant cross section and chord C in two dimen­

sional flow. Reference velocities and aerodynamic forces will be referred to the fore-quarter chord 

line (fig.1). 

The aerodynamic forces are to be expressed 

as functions of the velocity V of the airfoil 

with respect to the still air. This velocity can be 

decomposed into a constant velocity \io and a -velocity V1 which .may be unsteady. If the 

airfoil represents a helicopter blade section, for -

N 

instance, V., is the constant rotational speed Fig. 1 - Conventions_ -around the shaft, while v; results from the 
composition of the forward translational velocity, blade flap, its in-plane oscillation and elastic 

vibration. 

--The angle o< between the velocity V and the plane ( P) tangent to the airfoil section is 

the instantaneous aerodynamic incidence at the fore-quarter chord-

Assuming rigid body motion of the airfoil, one can deduce the speed at all points of the 

chord knowing the velocity v and the oscillating pitch velocity de /dt ' e being the angu­

lar coordinate in pitch, that is, the angle made between the plane ( P) and the constant velocity --vector V., 

The aerodynamic forces resulting from the motion of the airfoil can be defined by the nor­

mal lift component N , the tangential force component T and the pitching moment M . 

48-2 



These components will be written m non-dimensional form with reference to the quantities 1 V"j , 
C and L 

= 

C) ::: 

c. = 

N 

__I ---!.1-
1/:Jf IVoiCL 

M 

%2. f I vl c 2 
L 

I vi 
!VoJ 

lvlt 
c 

normal I ift coefficient 

tangential force coefficient 

pitching moment coefficient 

velocity ratio 

reduced time 

The symbol ( • ) will designate the differentiation with respect to G . 

The motion of the airfoil with respect to the still fluid is defined by the three functions·: 

() ( C 1, o( ( G l and e ( G ) . The velocity ratio IJ is directly proportional to the Mach number 

and as such plays the same role in describing the compressibility effect. The values of the func­

tions ¢K at the reduced time <::;. depend on the time history (since the time u = - "" up to 

.(.L =C. ) of o- , <X , 0 and their successive derivatives. The time history effect of the flow is 

due to the wake interaction and the delays in the evolution of flow separation and the propaga­

tion of acoustic waves. 

To create a semi-empirical model implies the formulation of a system of equations of which 

the solutions cpK depend, in the same manner, On the time-history of the Variables (') , o< , e 
and their successive derivatives. The model will involve a certain number of coefficients which are 

to be determined by identification through experiments. A classical way of introducing the his­

tory effect consists of writing a set of differential equations. Since there are three unknowns 

( cpK , k = 1, 2, 3). the system can be reduced to three interdependont equations 

•=1,2,3 

The system (1.1) is non linear, since it is designed to simulate the effects of large incidence 

which are highly non linear. 

It will be assumed that the derivatives to be considered may be restricted to a finite order. 

Remarks 

For practical reasons, the unsteady movements of an airfoil are unfailingly limited in either 

amplitude or in frequency ; large amplitude motions can only be performed at low frequency and 

motions at high frequency can only be at small amplitude. It then results that 6- , 0<, e, ¢;_ 
and their derivatives of higher order are small compared to unity. 

This can be illustrated, for example, by evaluating the variation of 6" resulting from the 
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compos1t1on of the rotational and advancing flight velocities of a helicopter blade. The resolved 

velocity at a blade section located at the radial distance r is given by V =Jlr+ U sin.O.( !2 
being the angular velocity and U the advancing flight speed. The constant part fl..r may be 

assimulated to the vector V: of figure (1) and the periodic term U sin .n.-t to the vector\!;'. 

The reduced quantities 1:: and CJ in this case are : 

then 

G ~ J2rt 
c 

:: dCJ 
de. 

where ;U is the ratio u 
.ar 

1 0 :: flr+Us/,cJ2t 
flr 

- ;uc cos .f.c, r r 

Excepting the inboard blade sections, both /-( and C I r are less than unity. It can then 

be deduced that 5- < < 1. 

Regarding the variation of the aerodynamic forces, one observes in most cases that the un· 

steady aerodynamic forces cpK arising from the oscillatory motion of an airfoil deviate only .. 

slightly from their static characteristics cpKo . It will therefore be assumed, at least provisionally, 

that the difference between the unsteady and the static aerodynamic forces ( ¢. - <j>" ) are 
. K ~o 

small quantities. 

Under such conditions, and admitting that the equations A r are differentiable("), equation 

( 1.1) can be written as : 

A r ( R,) + {. Ar.p,/ <PK-4t<o) + Arcj,K ~" + ••.. +Are e + Arec 0(-+ 

+A ris- 6- + • · · · · · = o 
(1.2) 

/7, being the n-tuple. Po( .. ¢Ko - . , () , rx, o , ... ), with cf>Ko the static value of </>K, 
where & , & , i; , cpl( , _ - - = o, and A rtf.< A r4>_ _ . _ Are _ .. the partial derivatives depen-

dent on A.. , () and ex - K 't"Ko 

A r (Po ) is the system of equations defining the cpK as functions of () and o< in sta­

tionary configurations. Classically, the aerodynamic forces are determined by the coefficients 

defined by : 

Nc 
Tc 
M 

The coefficients C r are functions of incidence 0< and Mach number, but the latter is pro­

portional to () , one thus has : 

cpro :: C r ( o<, ()) (2.1) 

The coefficients Cr { o<, ()) are deduced from wind-tunnel static tests for various inci­

dences and flow speeds. 

(*) Wind·tunnel experiments on oscillating airfoils have confirmed that the principle of superposition applies sufficiently 
well to small amplitude oscillations, even in the case of high incidence. This result justifies the hypothesis on the 
differentiability of the A r . 48-4 



(2.1) allows the writing of the stationary limit of the equations A r 

and the equation ( 1.2) become : 

. . . ~ ': "" A C Co< u J -A · e -A · «- · ·· · (3) ..:::;.. rA-. /( ' re ro< 
I< 'K 

The system (3) constitutes a set of linear differential equations with respect to"'"' ck, ~, 
with variable coefficients, since all partial derivatives are functions of 0( and 15" . The right 

hand sides are functions of time dependent on the airfoil motion through the functions e ( c; ), 
o<.( c.) and ()(C.). 

The resolution of this system of equations is facilitated by the linearity of the left hand sides. 

However, the hypothesis on the evolution of the forces cpK , which has enabled the present line· 

arisation, is not perfectly verified in circumstances where the airfoil executes motions with large 

variation in incidence in the stall regime. In such events, it is probable that the unsteady aero· 

· dynamic forces may deviate much from their stationary values. Ultimately, it can only be through 

the comparison with experiments that will justify the Jinearisation of the equations with respect 

to cpK . 

1.1. Form of the Solutions, Time History Effect 

. 
If the motion of the airfoil is imposed, the functions 9 , 0( and o- are given functions of 

c;, and the right hand sides of equations (3) can equally be written as functions of G. , thus of 

Sru:.).One then has: 

2. A r--'- cf:: + A r.J. -h + · · · · · - 5 ( £:: ) t< '-t'K I( ol( YK - r 
(4) 

Let us neglect, for the moment, the variations of the coefficients Arch ... with o( and 

() . This being legitimate while ex and 15" differ only slightly from their mean values, that is 

the unsteady motion is of small amplitude. 

In this case, the solutions of the equations (4) are formulated by an integral of superposition 

of impulsive responses : (;_ 

icc;) =fc;(z;-.u)s"ru)du.. 
rk 

(5.1) 

-00 

where G (C.) is the matrix of impulsive responses determined from the left hand side of equation 

(4). 

The solution (5.1) then depends on the evolution of the functions in elapsed time ( .U.;;;;G). 

which therefore expresses well an effect of time-history. 

The effect of history subsists if the coefficients are dependent on C.:.(C.) and()( G). In this 

case the solution may be written as : 
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~(G.)=!~ .(c.)GJuJSk(uJdu.. 
r r! JK 

-DO 

(5.2) 

With Gr~) now the transition matrix of the left h~nd side of equations (4). 

The matrix G appearing in (5.1) is a superposition of the eigen-solutions of the homoge-

neous set of equations (4). One has : 
P,t::. 

G (G. ) = 2. 7TK e 
/( 

where the exponents ~ are the roots of the characteristic equation 

and TTl< are constant matrices. 

Remarks 

The Px are also the poles of the transfer function matrix of the homogeneous set of 

equations (4). The character of the transient responses following the variations of the right hand 

side of (4) depends on the nature of these poles. The stability of the flow requires that they . 

should be real and negative or complex-conjugates with negative reel parts. 

The harmonic responses, that is the modulus and phase of the aerodynamic forces resulting 

from a harmonic oscillation of the airfoil, depend also fundamentally on the nature of the poles 

Fk . A real and negative pole leads to continuous and monotonous evolutions of the responses 

in terms of the frequency of the motion. Whereas, two complex-conjugate poles give rise to solu· 

tions that are similar to a structural vibrating system, with rapid evolutions of the modulus and 

phase in the vicinity of the « resonance frequency ». 

These remarks facilitate the identification of the coefficients in the left hand side of equa­

tions (3). 

1.2. Simplification and Identification of the Model 

Equations (3) define the mathematical form of the model apt to simulate the. evolution of 

the aerodynamic forces on an airfoil executing arbitrary unsteady motions. Prior to setting up the 

model, one must specify the order of the derivatives to be retained, and eventually, bring in some 

simplification by neglecting certain coefficients or in assuming them to be constant. A series of 

wind-tunnel identification tests are then performed to determine the numerical values of the re­

maining coefficients. 

The possible simplifications should be founded on experimental comparisons and on physical 

considerations. The model should correctly interpret the tendencies observed in wind-tunnel tests, 

and chiefly those that have an influence on aeroelastic couplings. Nevertheless, it would be illusive 

to attempt to restitute with great precision the whole of the wind-tunnel test results by means of 

the model. 
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The experience recently acquired at ONERA (7). justifies the following simplifications : 

a) the derivatives of O<·, o and 19 of order higher than two may be neglected in the right 

hand side ; 

b) the coefficients in the left hand side whicn ensure the coupling between the forces ¢>K may 

be neglected ( A rcp~ , A ,.j,K , ... ~ 0 for r * k ) ; 

c) in general one single real pole and two complex-conjugate poles suffice to restitute correctly 

the evolution of harmonic responses in terms of frequencies. 

One then admits that the equations (3) can be decoupled (according to b), and that each 

component cpK can be described by a differential equation of the 3rd order, with a right hand 

side : 

Ar<t>/Pr + Anj'r4>r +Art,*+ Ar4>~;p; = Cr(o<, cr-)-Aree­
(6) 

Equations (5.1) which gave the solutions for small amplitude motions become in this case : 

c:f:>r(e:,)::: j~/C.-.u),Sr(uJdu. (without summatior]) 

-Oo 

The measurements of static lift, dray and moment, at different incidences, give the numerical 

values of C r . A least square curve fitting procedure then supplies approximate analytical formu­

lae of the C r which are more convenient to handle than numerically tabulated values. These 

formulae in general involve two domains of definition : the linear domain and the stall domain. 

At the boundary between the two, continuity of the functions and of their derivatives must be 

insured. 

Identification of the other coefficients of equations (6) necessitates unsteady flow testing. 

Since the coefficients are partial derivatives, they can be determined by measurements at small 

amplitude motions. It is particularly convenient to make the airfoil perform random or simple 

harmonic oscillation _according to the various, degrees of freedom of pitch, plunge or in-plane 

motions. The in-plane oscillations are particularly useful in the case of helicopter blades where 

the derivatives with respect to 6- can play a significant role. With regard to the plunging motion, 

Ref. (8) showed, apart from extreme cases of high amp I itude and frequency, the equivalence bet­

ween plunge and pitch oscillations. The unsteady effects of the two motions may therefore be 

superimposed. 

For identification purpose, tests in pitch oscillation are conducted in the range of the reduced 

frequency corresponding to the domain of application, for example, 0 < ~ < 1. 

Variations of the coefficients due to the poles have the tendency to be attenuated as the 

oscillating frequency increases. Tests at high frequency can be exploited to determine the deriva­

tives with respect to e ' ex. ' cr- ' ... and tests at low frequency allow identification of the 

poles. 
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The measurements conducted on airfoils with large amplitude oscillations are not used for 

identification, but serve to check the validity of the model after identification. 

2. APPLICATION TO THE LINEAR DOMAIN 

The model, applied to the case of an infinitely thin airfoil oscillating at small incidence, 

leads to the synthesis of the results derived from the linear theory of the two-dimensional, unsteady, 

inviscid flow in harmonic motion, which are published in the form of tables of coefficients by 

different authors (ref. 9, for example). 

Figure 2 specifies the classical notation used 

to define these coefficients. The position of the 

airfoil is defined by the pitch angle e ' and the 

plunge motion ~ . There is no in-plane mouve­

ment. 

->" 
Vc is the upstream velocity. The deflections 

r:J:M h:z/b 
{tr f9 

2b 

Fig. 2 - Notations used in the thin 
airfoil linear theory. 

,A and & being considered as infinitely small, it is deduced that () is equal to 1 up to the 

2nd order. 

The unsteady harmonic motion is defined by 

lire: J " i ezlzc.. 
~ 

ecc:J e 
(the real part Rei . .. I being implied) 

with -h the reduced angular frequency. 

The lift and moment are equally harmonic functions of C . 

bF(C.J 

M(C.) 
:: 

~ 

bF 

M 
and the linear relation ship between forces and motion is defined by a complex matrix K ( i./t.): 

bF 
M 

The complex coefficients of the matrix are designated by the notation 

with 

k ' " a.=ka+ika ' 

' 

K k ' 'K" b= b+l.- b 

The model should be a system of differential equations analogous to equations (6). but linear 

with respect to all its variables, since the problem to which the model applies is itself linear. 
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The following points will be used to reduce the number of coefficients to be identified : 

a} The evolution of the matrix ]{; as a function of Je is smooth and continuous, and can 

therefore be restored with a single negative pole. As a result the equations in <P,.. will be limited 

to the 1st order. 

b) Provided that the reduced frequency is low enough, one has K: ~ K~f ~ and M~ ~ M:;./ ~ 
In the present model, one will assume their strict equalities. Moreover this is true at the limit 

-k= 0. 

c) Identification and checking of the model will be carried out in the range of the reduced 

frequency 0 < !<_ < 1. 

The system of equations relating the lift force and ·moment to the variables of position is 

denoted by : 

. 
bF +A • 
M 

bF 
M . 

e 

• 

To determine the coefficients of the matrixk , it suffices to proceed by identification after 

having replaced .A.' f)' F and M respectively by le <fu:., ee{./lu:.., Fe iRe. and Me'~~­
One has : 

• 

' 

To identify the coefficients, one notes that : 

IF and fM are the stationary values of K[, and M b , 
- K(,' and M /,' tend respectively towards -lz4F and fk -dMat high f<. • 

The 2nd remark leads to determine 4F and 41'1 in terms of K~' and M~' at high frequen-
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des ( Ji of the order 1 ). Whereas the pole - A will be deduced from the variations at law 

frequency. 

Finally, the Mach number is taken as a parameter. In considering the aerodynamic coefficients 

of the reference 9 at Mach 0.7, identification has led to the following numerical values : 

A= 0.1 ; If.= 2.801 ; 4;:.= 1.65 ; fP;- dp = 1.25 ; IM = 0 ; 

The results are presented in figures 3.1 to 3.4. Figures 3.1 to 3.3 show the coefficients Ka.. 
M0 and the sum K6 + Ma., which determine the aerodynamic effects of stiffness and dissipation 

for an airfoil oscillating about an arbitrary axis. 

• Model, lm(Ka), lm(m!J} 

• Model, R(KoJ, R(mb} 
2 - Linear theory, V de Vooren 

• 

• 

I Fig. 3.2 

k 

Fig. 3 - Thin airfoil aerodynamic coefficients 
at Mach 0.7 

Fig. 3.1 : K0 • Lift due to heave oscillation. 
Fig. 3.2: mb ·Moment due to pitch oscillulicm. 

Fig. 3.3: Kf> + ma • 

Fig. 3.4- Moment aboul the axis or UJ.dl/ation, 

imaglmrypart :m0'=mi) + UKi) +m0) + ~1 K(j. 

• 

• 

• 

• 

• 

• Model, jm ( ... } 

• Model, R( ••• ) 
- Linear theory, V de Vooren 

K'b+m; 
~---_,L- KIJ+m~ 

Fig. 3.3 

k 

Fig. 3.4 

• 2 -k.0.2 

I 

I 2 
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Figure 3.4 represents the imaginary part of the aerodynamic moment about the axis of oscil­

lation, as a function of the location of this axis and of the reduced frequency of oscillation. The 

coefficient M~' determines the dissipated aerodynamic power. 

These results shoW that the model interprets well the principal tendencies revealed by the 

linear theory. The discrepancies observed on the coefficients Kef_ and M 6' concern the effects of 

pseudo-elastic and pseudo-inertial forces, which, being small compared with the structural elastic 

and inertial forces, thus have no significant consequence on the aeroelastic behaviour of the 

structure. 

3. HELICOPTER AIRFOIL SECTION AT HIGH INCIDENCE 

The measurements of lift and pitching moment on a helicopter airfoil section oscillating at 

different amplitudes and frequencies about various mean incidences have been used to validate 

the model. 

The axis of oscillation in pitch is located at the fore-quarter chord line, and the movemet).t 
~ -is defined by the pitch angle 0. The vector V is constant and is confounded with V0 , and '?ne 

has : 

c<::.G 

Tests at small amplitude oscillations are used to identify the model which is then confirmed 

by tests at high amplitude motions. 

The model describing either lift or moment involves a single equation of the 3rd order with 

a right hand side dependent on the single variable e . 
The measurements of lift and moment have led to the following remarks : 

a) For harmonic oscillations at low incidence, that is in the linear regime, evolutions of the 

measured coefficients in terms of the frequency are smooth and continuous, as shown in the 

example of paragraph 2. 

b) On the contrary, when the mean incidence is higher than the flow separation incidence, 

rapid variations appear which can only be simulated by two complex poles. 

From these remarks, one deduces that the model should possess a real negative pole and 

two complex conjugate poles. However, the difficulty in this case consists in bringing into play 

the two complex poles only in the stall regime. This problem has been solved by simply intro­

ducing two auxiliary unknowns, which results then in an equation admitting a real pole and an 

equation giving two complex-conjugate poles. 

Let F(c.) be the lift or moment function for an unsteady motion defined as a function 

of C. . 

In stationary flow, F depends only on e . One has : F = F;, (e) 

The static characteristic ~ ( 6) is composed of two domains : the linear domain, for 8 < Be• 
where fo($) =Fe,£(()) and the stall domain (fig. 4). Let Ll.fo be the difference between the 

linear characteristic Fo;z (8) extended up to the maximum incidence, and the true characteristic 
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f,(8)· 

One has 
6. Fo ::; Fa;_{ e)- Fo (()) 

= 0 for B ~Be 

Let us write : . . .. 
F1 + -t\ r; = ~ Fa.e + ( ,.1 /.J + J J e + A e (8.1) 

.. • 2 2 2 :2( d~) /7;.+2c<.oG.+o(1+o<)F; = -oCf+o<.) t.fo+c_tl o 
dG. 

(8.2) 

(8.3) 

The left hand side of (8.1) determines the real and negative pole ( - A ) , and the left hand 

side of (8.2) determines the two complex-conjugate poles ( - o(. 0 ± i.. o). 
By eliminating Fj and Fz , equations (8) can be reduced to a single 3rd order equation in 

conformity with (6). Nevertheless, it is preferable to preserve the equations in the form (8.1) to 

(8.3). 

In assuming all time derivatives vanish, one recovers the static limit : F =F.. -£:,F. = C-( e) 
o.e o 'o 

Finally, if the airfoil 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

:ac 

remains at low incidence, () < ec , (fig. 4,"-F;,~ 0) one retains equation 

/ (8.1 ), consistent with equations (7) (for It ~ 0) 

/,/ which determine the lift and moment in the linear 

f0(9) 

9 

domain of the preceding paragraph. In this domain, 

it was seen that only a single real pole was needed. 

In what follows one will find a description of 

the airfoil testing configurations, the details of the 

identification of the model based on small ampli­

tude harmonic and random oscillations, and the 

confrontation of the model with experiments at 

high amplitude motions. 

Fig. 4 - Static characteristic of lift. 

3.1. Test Configurations 

Three sets of experiments on two different airfoils had been performed in view of identifi­

cation of the model. 

a) The 1st two sets of experiments were conducted by the Centre d'Essais Aeronautiques de 

Toulouse (CEAT) on two helicopter airfoil sections, OA212 and OA209, ref. 10, designed by 

the Aerodynamic Department of ONE RA in collaboration with the SNIAS. The airfoils, driven 

by a linkage mechanism, executed forced simple harmonic oscillations in pitch about the fore­

quarter chord. Differential pressure transducers were installed at the central chord section of the 

airfoils. The overall lift and moment coefficients were obtained by integration of the chordwise 

pressures, averaged over about six cycles. 
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The tests configurations were defined by the various combinations of the following different 

data : 

- Oscillation frequencies ~ = 4, 8, 12 Hz for large amplitude motions. 

= 10, 15, 20, 25, 30, 35, 40 Hz for small amplitude motions. 

-Free stream Mach numbers M = 0.12, 0.2, 0.3. 

-Airfoil mean incidences 19a = 0°, 6°, 9°, 10°, 11°, 12°, ... 19°, 20°, 21°. 
~ 

- Oscillation amplitudes () = 1°, 3°, 6°. 

The reduced f~equency Ji and the reduced time G. for a sinusoidal movement 

B ; eo+ ~cos 2rr/t 
= 8a+()cos~6. 

are defined by 

' C.= Vtjb 

where b is the half chord, -f:. the time, V =a..M the flow velocity of the free stream, and a.. 
the speed of sound. 

Figures 5.1 to 5.4 illustrate, for small amplitude ( 8 = 1°) harmonic oscillations in both the 

linear and stall regimes, typical experimental evolutions of the real part (in phase with the motion), 

and the imaginary part (in quadrature with the motion) of the normal lift CN and pitching mo­

ment coefficients c/'1 ' as a functions of the reduced frequency ~ . 

Consistent with a convention more commonly used, figures 5 and all those that follow have 

the airfoil nose-up direction, for positive incidence and pitching moment. 

Re{CN) 

020 

I 
I 

\ I 
I \ 

010 I \ 
I \ 
I \ 
I 
I 

0 
.J 

Linear domain 

eo<ec 

\ Stall domam 
"- 60~16° '-, __ 

k 

05 10 -=--

" I \ 
oo5 I \ 

I \ 
I \ 
I \ 
I I 
I 1 

Linear 

/ 
./ 

//stall 

/ k 
0+---~~-+---r~--+---~ 

05 / 1.0 

\ // 
\..../ 

Fig. 5. I - Real part of the lift ·coefficient. Fig. 5.2 - Imaginary part of the lift coefficient. 

Fig. 5 - Typical evolutions of the normal lift and moment coefficients 
as functions of reduced frequency. 
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Fig. 5.3 - Real part of the moment coefficient. Fig. 5.4 - lrmglnary part of the moment coefficient. 
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Fig. 6 - Model identification procedure. 

Aerodynamic 
transfer 
function 

Curve 
fitting 
procedure 

Model 
coefficients 

b) The third set of experiments was undertaken by ON ERA (11) at the S3 Modane wind-tunnel 

on a 5/8 scale helicopter profile OA209. 

The drive mechanism is a hydraulic actuator which (fig. 6) is piloted by an input signal and 

imposes an arbitrary motion to the airfoil. Tests at small amplitude harmonic and random oscil· 

lations in pitch were performed, and the aerodynamic transfer function was obtained by spectral 

analysis of the input and output signals. For a stationary random process, the aerodynamic transfer 

function or admittance A ( iW') is defined as the ratio of the cross power spectral density P(!e(W) 
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of the output 

Thus 

{r t) - input 13{ t ) , to the power spectral density </?, rw) of the input 
88 

A ( .~:w) = Pt/w> 
<Pee(W) 

with cite and p
88 

respectively the Fourier transforms of the cross correlation function Yjj i) 
of the output-input, and of the autocorrelation function ~ rt) of the input : 

J = _ (urt. 
08 j""" -;we. 

c}.P, r w-> = Cf.tf r t > e d t , <p ( ~ J:: <;:, r -t > e dt .,e e es as 
and - oa - oo 

T 

~8 {-t) = L·-m. '-! ()(u.+t) ()({ .. L)d.u.. 
- 2t /_.DO -T 

The output fc t) , as a function of time, is then given by the convolution integral 

j{tJ = j 7ua.> e(t-u)da 
- O<J 

where a (t l is the impulsive response function, defined as the inverse Fourier transform of the 

transfer function of the system : 

1 /0<0 iwt 
att> = - A (i.wle dw 

Qlf 
-""' Tests at small amplitude random oscillations about given mean incidences are particularly 

useful since, for a given mean incidence, the transfer function A (iw) can be obtained through one 

single experiment in the whole range of reduced frequency of interest. 

Figures 7.1 to 7.4 show comparisons between the experimental transfer functions measured 

by a random oscillation process (ONERA) and by harmonic oscillations at discrete frequencies 

(ONERA and CEAT) on the OA209 airfoil. The harmonic oscillation results are fairly consistent. 

Further more, the relatively good agreement of the results obtained through random and 

oscillations confirms the validity of the principle of superposition in the case illustrated. 

harmonic 

0.1 

0.05 

0 

Re(CN) 

~a---,--0 ~0 ~--- 0 
-----'0"-

0.4 
Fig. 7.1 -Real part of the lift coefficient. 

k 

0.0 

random oscillations 

o x harmonic oscillations 

~~~~~~~o~~o~k 
0 04 

Fig. 7.2- Imaginary part of the lift coefficient. 

Fig. 7- Comparison of lift and moment coefficients resulting from small amplitude harmonic 
and random oscillations in the wind-tunnel 53 of Modane. 

48·15 



Fig. 7.3- Real part of the moment coefficient. 

0~--~~----~------~-----T•* 
0.+ 

• 0 

002 

Fig. 7.4 -Imaginary part of the moment coefficient. 

3.2. Identification of the Model through Tests at Small Amplitude Motions 

For small amplitude ( e <:;;; 1 °) sinusoidal pitch oscillations of the airfoil, the aerodynamic 

coefficients CN and c,., are also practically sinusoidal in shape. Indeed, the relative amplitudes 

of the higher harmonics are negligible - of the order of 1/10 of the fundamentals.- in the 

whole range of mean incidences 6)
0 

and reduced frequencies !?_ of the tests. This property is 

important in the identification process since it gives a formal solution corresponding to a sinus<?idal 

motion. 
,.... ~/(·i-h:. 

Thus, for small amplitude oscillations of the airfoil : e = Bo f- e cos lu:;. : e + {} e 
~ 0 • 

with e .:;;; 1°. 

The coefficients eN or eM ' denoted by F ' are written in the form : 

~ 

with F , ~ and~ complex. 

The real and imaginary parts of equations (8) then read : 

(9.1) 

and 

(9.2) 
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In the following remarks, the physical significance of the notations employed in equations 

8 and 9 are indicated : 

- f;, (e) denotes the static characteristic of either the lift or the moment coefficient as a 

function of incidence 8 . The equations in the present model make no distinction between the 

static characteristics and the constant parts of lift or moment coefficients resulting from small 

amplitude oscillations. Experimental results, however, show that vibration does have a non linear 

effect which tends to increase the mean values of the outputs with respect to the corresponding 

static values. This effect can not be taken into account except by introducing the appropriate 

non-linearities in the model. Here, F;, (e) is as a matter of fact, an allowable compromise between 

the « true» static characteristics, and the measured mean values in small amplitude oscillations. 

- (d Fo.e l/( de l is the slope of the static characteristic in the linear domain : e <Be. 
where e~ is the static stall incidence. 

- ..1 F;, (e) represents the difference between the extented linear static characteristic and the 

real static characteristic : 4 F;, ( e l = f--1 ( 6- Be) ( f=o (e)- F;, ( e i) 
H being the unit step function. 'f! 

The parameters : 

,..\ , real negative pole, or time delay parameter; 

-A e slope of the imaginary part at high frequency h . 
~ ' - ()a asymptote of the real part at high frequency .{?_ ; 

o( reduced damping coefficient associated with the complex pole, 

a reduced circular frequency of « resonance >> associated with the complex pole . • 
C variable which causes a phase shift of the output in the regime beyond the stall incidence 

are a priori, functions of the mean incidence eo and of the Mach number M . 

In examining the set of families of curves generated by each term of equations (9). and by 

comparing with the experimental results in both the linear and stall regimes, one sees that the 

experimental transfer functions in the whole range of mean incidence can be described by super­

position of the two solutions (9.1) et (9.2) of the present model. 

The procedure of identification is handled differently in the linear domain and in the stall 

regime. 

Linear Domain 8o <Be 

The mean incidence is below the static stall angle : 4 Fa = 0. The periodic solution ~ of 

equation (8.2) is identically zero, and the outputs of lift and moment are given by (8.1) alone. 

In this domain, the evolution of the experimental transfer functions, figures 5, are smooth and 

continuous, resembling those given by the classical linear theories of Kussner, V. de Vooren, 

Theodorsen, etc. The numerical values of (d fo.f )f(dr3 ), A . 4 and () can be identified 

with no difficulty in this case. 

Stall Domain : eo> ()c. 

The mean incidence is higher than the static stall angle : tJ Fo * 0, and (d tJ Fo )!(dC..) * 0. 

The experimental results show the apparition of a complex pole, whose imaginary part, or « reso­

nant frequency » is a function of eo (figures 5). The buffeting, characterised by a continuous 
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spectrum caused by the random fluctuation of the flow, can evidently not be simulated by a 

single pole. On the contrary, a continuous spectrum suggests a continuous distribution of poles 

in the frequency domain, which can only be treated with the use of statistical mechanics. It is 

admitted that there is only one single complex pole, whose imaginary part is 0 ( 6)0 , 1'1 ), 
and whose real part is the aerodynamic reduced damping-c<o( (]0 , M ). These two parameters, 

together with the coefficient C , determine the response F2 in the stall regime. 

The identification procedure in the stall regime is somewhat more delicate. By the character 

of the differential equations, the transfer function or admittance, equations (9) written in the 

complex form A (i~) ~ P(i./4 ) I Q (l~) is a rational fraction, with P and Q both 

polynomials in -<-k , and the poles are given by the zeros of the denominator Q( Z k). ldenti· 

cation of the coefficients by a classical least square curve fitting procedure leads inevitably to a 

set of non linear equations. However, the optimisation process can be made linear by adopting a 

method analogous to that given in ref. 12, which, in defining a special error norm, is particularly 

suited for optimising transfer functions in the form of rational fractions, as those occuring in most 

structural problems. 

The present identification process can be applied to all Mach numbers, provided that no new 

phenomenon, such as transonic effects, arises and comes to alter profoundly the behaviour of the 

response as a function of the reduced frequency. 

Two identifications have been accomplished so far on the OA212 airfoil at Mach number 

M ~ 0.12 et 0.3. By interpolation and extrapolation of the coefficients so obtained, the model 

can be extended from the incompressible case to Mach ~ 0.4. 

3.3. Large Amplitude Harmonic Oscillations 

The model identified in the manner indicated in the paragraph 3.2 has been applied to large 

amplitude harmonic oscillations. 

Consider the system of differential equations (8) with variable coefficients dependent on an 

input of sinusoidal motion. At small amplitude oscillations, equations (B) can be linearized about 

the mean incidence, which leads to a system of equations with constant coefficients. The solution 

can be obtained with no difficulty in this case. At high amplitude oscillations, the periodic varia­

tion of the coefficients in terms of the instantaneous incidence must be taken into account. The 

situation results then in a system of equations with periodic coefficients dependent on a periodic 

input, and the solution in such cases is obtained through the Floquet theory. 

In each application, the asymptotic stability of the system must be ensured. 

In applying the periodicity condition, the periodic solutions for lift and moment are evaluated 

by integration over one single period of oscillation. 

The model has been applied to the whole set of test configurations on the OA212 airfoil at 

large amplitude harmonic oscillations in pitch. The various test cases, 141 in all, comprise the 

variations of Mach number, mean incidence, amplitude and reduced frequency of oscillation. 
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Figures 8 and 9 present the comparisons calculation - experiment on the evolution of lift vs. 

incidence and moment vs. incidence hysteresis loops, as a function of mean incidence eo varying 
~ 

between 0° and 17° all other parameters being kept fixed : amplitude of oscillation e = 6°, 

reduced frequency -k = 0.05 and Mach number M = 0.3. 

At low incidence (figs 8.1 and 9.1), the unsteady flow remains attached in the linear domain, 

the lift and moment hysteresis loops both take the form of an ellipse. The ellipses have their 

respective centres located on the static characteristics. Their eccentricities, and in the case of lift, 

the sense of gyration, are function of the reduced frequency~ . From the evolution of the real 

and imaginary parts of lift and moment as a function of -k , (figures 5), one can deduce that 

as ~ progressively increases from· the static value zero, the lift-incidence ellipse, whose eccentri­

city begins with the value 1, gradually fills out, then flattens again when the imaginary part (j(CN) 

crosses the -k axis. From there on the ellipse fills out once more, and takes on an opposite sense 

of gyration. However, the moment- incidence ellipse conserves the same sense of gyration through­

out the whole range of frequency, due to the constant sign of its imaginary part. 

At relatively larger mean angles of attack, the instantaneous incidences overlap both the linear 

and stall regimes, the lift and moment hysteresis loops tend to take on respectively the form of 

an 8 (figs 8.3 to 8.6), and of an~ (figs 9.3 to 9.6). These characteristics, similar to those des­

cribed in reference 13 as the stall onset and light dynamic stall, imply that the responses are made 

up of a number of non negligible higher harmonics. One notices that the lower branch of the lift 

hysteresis corresponding to incidences lower than the static stall angle, conserves a more or less 

+030 

-020 
Fig. 8.1 .-o. =a". 

e 
-070'~'-:-::-----<:---:r=--~ 

-50 0 +50 +10 

Fig. 8.3: 00 = 9'. 
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+7.0 +12 +17 

+2.00 

+050. 
e 
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Fig. 8.2:0 0 = 6'. Fig. 8.4:00 =to'. Fig. 8.6:0 0 = 12'. 
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Fig. 8 - Large amplitude harmonic oscil!atiom ; influence of lhe mean incidence 
on lhe lift-incidence hysteresis loop. Mach 0.3 ; reduced frequency : 0.05; 
oscillation amplitude : 6°. 
- Experiment ; - - - model ; > sense of gyration. 

e 
+20 
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Fig. 8.7:0 0 ~ 13'. 
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' I ' I ' 
'- "' e 

+090 +-
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Fig. 8.11:00 = 77'. 

deformed elliptical form, with the same sense of gyration as in the linear case. These deformations 

originate from the participation in the total response, of the transient damped solution of the 

homogeneous periodic coefficient equation (8.2). The same remark applies equally to the moment 

hysteresis, and the curvature in the central part of the moment loops is due to the static moment 

characteristic, which curves up at still moderate incidence before its abrupt break. 

As the instantaneous incidence increases ( e > 0), and passes beyond the static stall angle, 

dynamic stall takes place only after a certain delay such that the unsteady lift attains much greater 

values than the corresponding static lift. Mean while, the pitching moment magnitude remains 

moderate. Similarly, as the instantaneous incidence, starting from the static stall angle, decreases . . 
( e < 0) down to the linear range, flow reattachment does not take place instantaneously, so 

that the unsteady lift takes on values lower than the corresponding static lift. Such phenomena 

are well known (14). and are due essentially to the effects of delay and the acceleration and 

deceleration of the flow in a pitching motion. 

At much higher incidence (figures 8.7 to 8.11 and 9.7 to 9.11) the lower branch of the lift 

hysteresis disappears progressively, and one observes the onset of the pitching moment break. In 

tha last 3 cases (figures 8.9 to 8.11 and 9.9 to 9.11), the boundary layer being totally separated, 

the I ift hysteresis loops take on the form of a two pointed cocked hat, with a sense of gyration 

opposite to that of the linear case, and the pitching moment hysteresis loops resemble deformed 

rectangles enclosing the static moment curve. 
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CONCLUSION 

The use of a system of differential equations enables the introduction of the effects of time 

history of the flow in a logical manner, and to interpret the principal tendancies revealed both 

by the exact theory, in the linear domain, and by the wind-tunnel experiments in the regime of 

high incidences. In spite of the simplifications brought to the model in order to facilitate its 

identification and its use, the comparisons between model and experiment, and model and exact 

linear theory are satisfactory. 

Furthermore, the formulation in the form of differential equations presents the following 

advantages : 

-The model can be applied to all arbitrary motions of the airfoil, defined as a function of 

time. 

- The model can be incorporated with no difficulty in the set of equations governing the aero­

elasticitY of a rotor. 

The only hypothesis that needs to be postulated in order to justify the general form of the 

model (equation 3) consists in admitting the differentiability of the operator determing the aero­

dynamic forces as a function of the variables defining the motion of the airfoil. One can then 

deduce that the model should be valid over a wide range of conditions, notably at high Mach 

numbers, excepting the extremely critical situation where an infinitesimal variation of incidence 

can induce a finite variation of lift or moment 

1. R.E. Gormont 

2. D.W. Gross, F.D. Harris 

REFERENCES 

A Mathematical Model of Unsteady Aerodynamics and Radial Flow for 
Application to Helicopter Rotors. 
Boeing Vertol Company. A.D. 767240. Prepared for AAMRDL. May 1963. 

Prediction of lnflight Stall Airloads from Oscillating Airfoil Oata. 
25th Annual National Forum of the American Helicopter Society. 
Washington. May 1969. 

3. T.S. Beddoes A Synthesis of Unsteady Aerodynamic Effects Including Stall Hysterisis. 
1st European Rotorcraft and Powered Lift Aircraft Forum. Southampton. 
September 1975. 

4. J.J. Castes Ca/cu/ des forces aerodynamiques instationnaires des pales d'hti/icoptiJre. 

Rech. Aerosp., n° 1972-2. 

5. R. Dat Atirodynamique instationnaire des pales d'helicoptere. Table ronde sur 
I' Aerodynamique instationnaire de I' AGARD, Gottingen. 30 mai 1975. 

6. J.J. Castes Introduction du decollement instationnaire dans Ia theorie du potentiel 
d'acce!eration. Application a /'he/icoptere. 
Rech. Aerosp., n° 1975-3. 

7. R. Oat, C.T. Tran, D. Petot Modele phenomenologique de decrochage dynamique sur profil de pale 
d' he/icop tiJre. 
XVI" Colloque d'Aerodynamique Appliquee (AAAF). Lille, novembre 1979. 

8. D. Favier, J. Repent, Profil d'aile a grande incidence anime d'un mouvement de pilonnement. 
C. Maresca XVI• Colloque d'Aerodynamique Applique (AAAF). Lille, novembre 1979. 

48-22 



9. A.l. Van de Vooren 

10. J. Coulomb 

11. E. Szechenyi 

12. R. Dat, J.L. Meurzec 

13. W.J. McCroskey et al. 

14. E. Lars, Ericson et al. 

Collected Tables and Graphes of Theoretical Two-dimensionnal, Linearized 
Aerodynamic Coefficients for Oscmating Airfoils. 
NLR Report F 235. 

Moyen d'essais pour retude d'ticoulements instationnaires autour de profils 
en oscillation d'incidence. 
XIV• Colloque d'Aerodynamique Appliquee (AAAF). Toulouse, novembre 
1977. 

ONE RA Report to be published. 

Exploitation par lissage mathtimatique des mesures d'admittance d'un systeme 
lim§aire. 
Rech. Aerosp., n• 1972·4. 

Dynamic Stall on Advanced Airfoil Sections. 
36th Annual Forum of the American Helicopter Society. Washington, D.C. 
May 1980. 

Unsteady Airfoil Stall. 
Lockheed Missiles and Space Company, Sunyvale, California, July 1969 
(NASA CR 66787). 

48-23 



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 24 to page 24
     Mask co-ordinates: Left bottom (515.20 463.28) Right top (566.12 527.18) points
      

        
     0
     515.1982 463.282 566.1189 527.1826 
            
                
         24
         SubDoc
         24
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     23
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 23 to page 23
     Mask co-ordinates: Left bottom (554.30 1.00) Right top (619.87 550.33) points
      

        
     0
     554.3038 0.9962 619.8667 550.3332 
            
                
         23
         SubDoc
         23
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     22
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 22 to page 22
     Mask co-ordinates: Left bottom (524.61 471.05) Right top (538.50 512.70) points
      

        
     0
     524.6132 471.0452 538.4971 512.6969 
            
                
         22
         SubDoc
         22
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     21
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 21 to page 21
     Mask co-ordinates: Left bottom (517.66 472.86) Right top (532.59 517.65) points
      

        
     0
     517.6619 472.855 532.5945 517.6526 
            
                
         21
         SubDoc
         21
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     20
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 21 to page 21
     Mask co-ordinates: Left bottom (553.50 516.66) Right top (584.36 552.50) points
      

        
     0
     553.5001 516.6572 584.3607 552.4953 
            
                
         21
         SubDoc
         21
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     20
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 19 to page 19
     Mask co-ordinates: Left bottom (555.44 515.54) Right top (576.38 555.43) points
      

        
     0
     555.4406 515.537 576.3818 555.4251 
            
                
         19
         SubDoc
         19
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     18
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 18 to page 18
     Mask co-ordinates: Left bottom (517.00 478.37) Right top (535.82 515.02) points
      

        
     0
     516.9985 478.3745 535.8165 515.02 
            
                
         18
         SubDoc
         18
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 17 to page 17
     Mask co-ordinates: Left bottom (-1.97 342.80) Right top (19.76 837.74) points
      

        
     0
     -1.9693 342.7998 19.7644 837.7355 
            
                
         17
         SubDoc
         17
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     16
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 17 to page 17
     Mask co-ordinates: Left bottom (4.95 295.38) Right top (46.44 331.93) points
      

        
     0
     4.946 295.3808 46.4376 331.9329 
            
                
         17
         SubDoc
         17
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     16
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 16 to page 16
     Mask co-ordinates: Left bottom (519.21 479.42) Right top (546.07 517.21) points
      

        
     0
     519.2113 479.416 546.067 517.213 
            
                
         16
         SubDoc
         16
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     15
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 15 to page 15
     Mask co-ordinates: Left bottom (573.16 6.97) Right top (600.02 433.85) points
      

        
     0
     573.1577 6.9694 600.0244 433.8524 
            
                
         15
         SubDoc
         15
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     14
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 15 to page 15
     Mask co-ordinates: Left bottom (518.43 485.60) Right top (575.15 562.22) points
      

        
     0
     518.4291 485.5958 575.1478 562.2159 
            
                
         15
         SubDoc
         15
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     14
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 14 to page 14
     Mask co-ordinates: Left bottom (514.43 507.42) Right top (546.39 522.41) points
      

        
     0
     514.427 507.4222 546.3914 522.4055 
            
                
         14
         SubDoc
         14
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     13
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 13 to page 13
     Mask co-ordinates: Left bottom (575.66 0.99) Right top (613.44 308.20) points
      

        
     0
     575.6621 0.9859 613.4431 308.2046 
            
                
         13
         SubDoc
         13
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     12
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 13 to page 13
     Mask co-ordinates: Left bottom (551.80 520.97) Right top (575.66 551.79) points
      

        
     0
     551.8005 520.9709 575.6621 551.7922 
            
                
         13
         SubDoc
         13
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     12
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 11 to page 11
     Mask co-ordinates: Left bottom (582.62 -3.99) Right top (614.49 415.29) points
      

        
     0
     582.6175 -3.9946 614.4872 415.2908 
            
                
         11
         SubDoc
         11
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     10
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 11 to page 11
     Mask co-ordinates: Left bottom (551.74 527.83) Right top (580.63 560.70) points
      

        
     0
     551.7437 527.8306 580.6256 560.6962 
            
                
         11
         SubDoc
         11
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     10
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 9 to page 9
     Mask co-ordinates: Left bottom (548.34 522.52) Right top (577.15 568.21) points
      

        
     0
     548.3436 522.5187 577.1515 568.2139 
            
                
         9
         SubDoc
         9
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     8
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 7 to page 7
     Mask co-ordinates: Left bottom (555.02 517.21) Right top (585.85 559.98) points
      

        
     0
     555.019 517.213 585.8533 559.9832 
            
                
         7
         SubDoc
         7
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     6
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 5 to page 5
     Mask co-ordinates: Left bottom (559.00 513.23) Right top (574.91 557.99) points
      

        
     0
     558.9976 513.2343 574.9121 557.9939 
            
                
         5
         SubDoc
         5
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     4
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 4 to page 4
     Mask co-ordinates: Left bottom (525.41 505.42) Right top (539.40 520.41) points
      

        
     0
     525.4147 505.4244 539.3992 520.4077 
            
                
         4
         SubDoc
         4
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     3
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 3 to page 3
     Mask co-ordinates: Left bottom (556.06 516.33) Right top (575.92 557.05) points
      

        
     0
     556.063 516.3341 575.9225 557.0458 
            
                
         3
         SubDoc
         3
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 3 to page 3
     Mask co-ordinates: Left bottom (518.33 472.64) Right top (538.19 506.40) points
      

        
     0
     518.3302 472.6434 538.1896 506.4044 
            
                
         3
         SubDoc
         3
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 2 to page 2
     Mask co-ordinates: Left bottom (517.67 477.00) Right top (538.50 517.66) points
      

        
     0
     517.6713 476.9954 538.4971 517.6555 
            
                
         2
         SubDoc
         2
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     1
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 1 to page 1
     Mask co-ordinates: Left bottom (521.95 476.39) Right top (532.85 514.03) points
      

        
     0
     521.9506 476.3937 532.8453 514.0295 
            
                
         1
         SubDoc
         1
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     23
     24
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





