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ABSTRACT

The purpose of this paper is to present an OCF
the OR
AS332L1 helicopter in the frame of the OPTIMAINT PCA
OPTIMAINT is a partnership PLS

application of Condition Based Maintenance to

collaborative project.
involving one end user, the Republic of SingapoireFarce
(RSAF), Eurocopter (EC) and European AeronauticcDsé

and Space Company (EADS) Innovation Works (IW).sThi TSA

project provides an unprecedented opportunity fariag a
common vision regarding the challenges of achie@iiv
[1]. The presented results aim to demonstrate Iiléyaof
HUMS (Health & Usage Monitoring System) in operatio
for maintenance alleviation of dynamic componentsthe
means of anomaly detection and diagnosis technigsieg
statistics and pattern classification. The resegmadgram
has been jointly funded by the partners of thequ®;j

Keywords: health monitoring, vibrations, anomaly
detection, diagnosis, maintenance alleviation, tail drive
shaft, bearing.

NOTATION
AEI associated energy index
APS  asynchronous power spectrum

BE band energy

BKv band kurtosis

CBM  condition based maintenance
DP degradation process

EB energy of base

Ed Euclidean distance

EPS  enveloped power spectrum
ET energy of tones

FA falsealarm

GS ground station

H/C helicopter

HUMS health and usage monitoring system
ips inch per second

LVQ learning vector quantization

MD missed detection

Md Mahalanobis distance

Mt Mahalanobis transform

NN neural network

oil cooler fan

outer race spalling

principal component analysis
partial least squares

SOM  sdf organizing maps

TDS  tail drive shaft

time synchronous average

1. INTRODUCTION

Health monitoring of dynamic components was
implemented by EC on heavy helicopters in the eb®§0s.
The objective was to advise the user of the presesfc

mechanical degradation before periodic maintenance
inspections.
/ g 8 [EC[EQ wi["a » \
vibration maintenance
acquisitions or flight

GROUND STATION

Figure 1. Health monitoring process

The monitoring is based on indicator analysis
computed in the ground station with vibration signa
automatically acquired in operation. The evolutamfneach
indicator is individually compared to the thresig)df they
are implemented to trigger alarm(s). Alarms asdediavith
each dynamic component are interpreted by the wgér
helicopter documentation to locate the problem
(troubleshooting). This kind of approach for anoyal
detection can be categorized as univariate teckniqu
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indicators Three kind of information shall be analyzed to
tho'ds validate an automated process for anomaly deteciimh
diagnosis: the acquisitions to validate the sysseafility to
Alarm/ observe defects, the maintenance actions to explsn
Health report indicator statistic changes and the physical eigeedf the
component to link with the on-board acquired data.

vibrations

thresholds
@,

thresholds
O

2.1. VIBRATION DATA

The vibration database initially contains a vibwati
data history of thirteen H/Cs dated from 2000, Ma2®th

Recently, research on HUMS has as doubleto 2009, March 29th, with an estimated average iaitipn
objective: to increase the coverage of detectiod &m rate per H/C close to twenty two per week. The BlWbIS
optimize the maintenance through topics as costatesh manages three levels of vibration data [11] [12Z]{1

Figure 2: Univariate technique

and helicopters availability [3] [4]. One not onms to « raw data from vibration acquisitions,

reduce the FA and the MD rates, but also to altewiad to « signals computed from raw data acquisitions,

schedule_ the maintenance tasks by estimating tll_uqzenand « indicators computed from signals.

progression of an observed degradation (i.e. disignand ) ) )
prognosis). These techniques are based on condition Three kinds of raw data can be acquired for a given
indicators fusion and are categorized as multivaria CcOmponent: the shaft's acquisitions and two sdrisearing
technique. acquisitions. The acquired signals are not syndheoh

_ ~ because the EuroHUMS don’t execute parallel adipisi
In this paper, we propose to assess the multieariat gng acquisitions are specified in configuration be

approach for anomaly detection and diagnosis appiighe  triggered in different flight regimes (ground, gralieffect,
double bearing module on the AS332mk1 tail drivafsh  cpyise, etc.).

The first section deals with the analysis of théabase o ) )
which contains 10 years of vibration measuremecusiaed Specific signals are calculated with each kind of
by EuroHUMS (General Electric Aviation system) o8AE raw data, therefore the EuroHUMS delivers thred sbr
AS332mk1 H/Cs to be correlated to the maintenantiera  Signals for gears/shafts and bearings monitorirtge Taw
reports. The second section explains the seled¢sistzal ~ data are erased in flight after on-board primariysis. The
method for anomaly detection justified by takingtoin ~ Signals are stored in on-board memory and downtbade
account the correlation existing between variabldee ~ GS after each flight. Then indicators are compuced
vibration indicators. The third section of the emi  9round by the GS with downloaded signal to be caehio
addresses the diagnosis based on neural netwdmhigees: ~ thresholds.

the aim consists of associating each identifiectcteo one In the first step of the study, only the EuroHUMS

or more maintenance tasks to be applied. Finalg t jngicators are used for anomaly detection and disigp
application to maintenance alleviation into RSARtext is those who are selected and described in [12] [&8] a

pre_sented and the pqssible actions to remove from |, chafts harmonics indicators computed with TSA
Maintenance Program with OPTIMAINT results aredist signals:

The system architecture is also proposed for the " phamonic 1 to detect shaft unbalancing,
maintenance alleviation application, stressingonatusion o harmonic 2 to detect shaft misalignment,

the difficulties, results and evolutions to be ddased. - bearing indicators computed with EPS signals:

o BE to detect gross faults by energy signature
observation in a specified frequency band,

2. DATABASE ANALYSIS o BKv to detect localized damage or debris on the
bearing by impulsive character observation of the
time signature,

o EB to detect general wear and non-localized
damage by energy observation of the signature with
tones removed,

o ET to detect localized damages as spalling by
energy of the tones observation of the signature
with tones removed,

o AEI to detect localized damages or debris on the
bearing component and general wear.

The database delivered includes a 10 years history
of vibration data acquired by EuroHUMS with mairdaene
actions reported by the RSAF. The OPTIMAINT scapéoi
experiment the maintenance alleviation on OCF aB& T
double bearing module. In this paper, only the T3S
described:

On the other hand, bearing indicators computed
with APS signals are not selected due to theirfleguency
resolution and the difficulty to separate beariaglts and
noise/faults from other sources as engines or gedls
wide band indicators.

The EuroHUMS signals and indicators impose
32 constraints for an aggregate analysis: data fromA TS
mes analysis, EPS analysis and APS analysis have posdme
acquisition date what involves a synchronizatiore-pr

Figure 3: TDS double bearing module



processing if the complete component
indicators & bearing indicators) shall be analyzieda
multivariate mode. The bearings samples are filteséth
common local date criteria to be synchronized ® ghaft
samples by interpolation, based on the both hygathe

» EuroHUMS generates 50% more shaft/gear acquisition

compared to bearing acquisition
 bearing defects are low energized and analysisoi® m
sensitive regarding history dates

The result of the interpolation phase is a locaéda
reference vectal and a data matriX :

XNg ]

X=[% % (1)

(shafts/gears

ring dislodged (1/19),

cage dislodged (1/19),

bearing with audio noise (1/19),

harmonic 1 with noisy trend in HUMS GS (1/19).

2.3. DATA ANALYSIS

As no expertise was done on removed bearings, the
mechanical states shall be estimated by data asaiys
order to evaluate the ability of the proposed athors to
detect and diagnose anomalies. After indicator $ EFFSA
signal analysis, the Sammon algorithm [2] has hesad to
visualize the whitened database and observe tha dat
initially structured in a dimension higher than eér By
means of this representation, it is possible tedeif the
different identified mechanical states of the comga

with X the observations (or patterns) acquired at thel locarepresented by clusters can be separated or nahelf

dates indexed :

x=[H, H, BE BK, EB ET I, O RAH]T

(2)

The Figure 4 shows the result obtained after accubi
interpolation applied on harmonic 1 indicatoH,

synchronized to the selected bearing indicators BK,,
EB, ET, | 55, Opg and Ry :

Signal Synchronization

16-Jan-2002 GRO5:43
.

=1
@

T T
+  original
+  synchronized

®
S
2
206 08-Dec-2008 02:37.48 )
E |t . .
So4rt T F 3
o L R : "
202 5 L ) s »

.

.
. Gueslie . we

7.328
temps UNIX

Figure 4: Synchronization of shaft indicator with bearing
local time acquisition dates

We observe that interpolation has for effect to
reduce the number of outliers and the quantity athdut
generates synchronized indicators which can be wased
patterns for multivariate techniques as statistialysis,
pattern classification, etc.

2.2. MAINTENANCE REPORTS

clusters are not superposed, the anomaly detectimh
diagnosis will have high level performances. If tlesters
are superposed, the border (or “decision surfadestiveen
clusters is more complex to compute for decisiorking
the anomaly detection and the diagnosis will hawe |
performances.

Then, the system doesn't allow distinguishing the
both states and the following solutions shall bestdered:

» the EuroHUMS indicators don't allow to observe the
defect and new one(s) shall be created from auailab
signals,
the sensor cannot observe the defect: new kind of
acquisition or sensor shall be implemented (expensi
solution: configuration update, hardware modificati
etc.).

2.3.1. Bearing creep and shaft imbalance

The bearing creep state is not considered as atdefe
since EC design modifications was done to avoid rwea
caused by the outer races rotation into the bedringing.
The bearing mounting definition provides a mountivith a
play and fixed by Loctite. Once the Loctite is wothe
outer ring can probably turn in its housing. Toedetif a
bearing is creeped, the RSAF add paint marks on
housing and outer race. If a shift occurs, the ihgars
considered by RSAF as damaged and removed
exchange. This mechanical state is due to the mpresef a
play which can be detected by vibration analyslghs
increase of vibration levels on shaft harmonic @w(l
contribution of harmonic 2). This is a low energizstate
which can be considered on the border between libé& s

the

for

The scheduled maintenance are servicing after lastoalancing (and / or misalignment) and its normatest

flight, T servicing every 500 FH, 3T servicing eyer
1500FH, etc. The unscheduled maintenance is géneral
triggered after HUMS alarms (threshold overrunnamal

indicator progress on GS (noise, etc.) or abnormalyimentionnal

observation during after last flight servicing oispection.
The RSAF reports show 58% of defects found during
unscheduled maintenance and 36% found during stdedu
maintenance, 6% undefined. The nineteen mechastiatds
that could be considered as abnormal and reported o
thirteen H/C are:

 unbalancing vibration level (2/19),

 bearing and flange found with play (2/19),

 bearing creep (9/19),

 grease leak (2/19),

The different component states (normal state,
bearing creep and shaft unbalancing) can be disgldy
using the Sammon algorithm. The Figure 5 showkérntwo
mapping, the location of bearing creep
patterns (red cluster) between the “no defect’quatt (black
cluster) and the shaft imbalance patterns (blustety The
mapping shows that the bearing creep state careteetdd
but the border between the three states cannotidaelyc
traced and a priori seems to be complex for a abercis
making. The superposition of red and clusters corsfithat
the bearing creep defect is mainly due to a lowtrdmution
of shaft harmonic 1.



700 ' ' ' ' ' ' ' ' vibration data. An additional temperature probefisn used
B even if the increasing temperature is the last atigion
BO0 - LR 1 mode before damage.
500 ) ] 2.3.5. Unidentified mechanical states
e After a full analysis of the database, we can oleser
400r be s I some unidentified divergences in indicator treraitween
b spectrums that represent a healthy bearing statpa@d to
Har -, 1 other. For example, we can observe a simultaneous
P increasing of levels located to the frequenciest tha
aor R ] correspond to multiples defects on the bearing. Gther
W . example can be mentioned: the defect is mainly rebsein
on- ¢ 1 EPS signals (cage and roller defect frequencies) lam
R .. confirmed with roller AEI indicator (no cage AEIl mputed
or ’{‘ . 1 by EuroHUMS). This defect seems to be a general \vet
* . ’ .' . . . . . . cannot be physically explained due to lack of infation.
o Moo A S04 S0 e 7o The Sammon mapping Figure 6 shows that the
Figure 5: Superposition of bearing creep defect (red) and corresponding cluster isn't superposed to the previbnes.
shaft with imbalance (blue), normal state (black) This result demonstrates that one complex defeth wai

contribution of several indicators (superposed dsfe
) defects based on contribution of several indicjtaran be
2.3.2. Outer Race spalling recognized if the mechanical state was previousbpiified

This defect is identified as spalling damage on and learnt.

outer race (OR spalling) and can be observed in st@&ls

in data of two H/C. The high level energy locatedtie ' ' ' ' ' ' ' '
. 1200+ B
corresponding outer race damage frequency (~45@iHd)
its harmonics is typical of a bearing outer racéede This 1000} 8
kind of defect is generally never observed on TR8rings,
because all bearings are removed after servicditifié or sor |
HUMS alarms and are never appraised. The obtained ol -
mapping on Figure 6 shows the OR spalling cluster
(magenta) not superposed to the previous studiatbsst amr Uﬂk”_owlntt . I
(normal state, shaft with imbalance and bearingemye a0l mechanical state ]
which gives a good confidence in the ability toeattthis
. . . . 0r 3 B
defect due to th€,, indicator contribution. 4‘;" N LN
2o} . T . ,
2.3.3. Shaft misalignment P T .
e ok T %” i
Shaft misalignment was not described in N %2
. . . -600 - + e B
maintenance reports but it was observed in the &ztmp - ..;*’
fleet database. Only one example was found withftsha -B00 L LS. ]
second harmonic level close to the amber learning s s \ s s s L
-1400 -1200 -1000 -800 -600 -400 -200 0

maximum limit (0.7ips, SB 45.00.20 rev 5, November
2009). This “defect” case is a single case and agaked in
the database to verify if algorithms can detectiantite the
shaft misalignment. The mapping (see Figure 6) shthe
shaft misalignment cluster (orange) not superpdsethe
previous studied states (normal state, shaft inmoala
bearing creep and OR spalling): shaft misalignnuamt be
easily isolated. 2.3.5. Results of the analysis

Figure 6: Mapping of bearing creep defect (red), shaft
imbalance (blue), normal state (black), shaft with
misalignment (orange), OR spalling defect (magenta) and
unidentified defect (green)

2.3.4. Defects not yet identified The analysis demonstrates that new kinds of defects
i . . were identified by signal analysis, some defectsnoa be
_ The observed defects not yet identified with getected with indicators and some unidentified raeital
vibration data analysis and described in repods ar states may be isolated. The following table costaine
* retaining ring or bearing flange, found dislodged:  yefect we propose to use as database for anomegytide
case,H, H, BK, O, contributions, and diagnosis:

» cage dislodged during re-greasing: 1 case, main
contribution of H,,

 play on bearing flange: 2 cases,

» grease leak: 2 cases.

The grease leak detection requires a further data
exploration but seems to be difficult to be solweith
-4 -



H/C | class
defect ID comment
1D 1D
1 3
2 4
creep 3 5 c2
4 1
5 8
6 1
7 8
shaft with 8 24 3
unbalance €3 [case added to initial
9 27
database

10 28 case added to initial
database
initially identified as creep

11 2
outer race defect

. c4 —
spalling case added to initial

12 20

database
cage dislodged 13 6 c5
ring dislodged 14 7 c6

15 9 uncertain start date
grease leak c7 -

16 7 uncertain start date
sh_aft_ 17 29 cg |case added to initial
misalignment database

. . 18 25 uncertain start date
play in bearing c9 -

19 26 uncertain start date
unknown 20 5 c10 |case added to initial

database

Table 7: TDS double bearing module defects validated
after vibration analysis

This database can now be used to implement new -

algorithms for maintenance alleviation: the anomaly
detection to alert if any change appears in indisaénd the
fault isolation to diagnose a specific defect irdesr to
replace periodic maintenance actions by on-conditio
actions.

3. ANOMALY DETECTION

There are a huge number of anomaly detection and

diagnosis application in a various multivariate doms. A
review of fault detection and diagnosis processe® tbeen
proposed by V. Venkatasubramanian in 2003, divickd
three parts: quantitative model-based methods,itgtia¢
models and search strategies, process history Inastabds.
In [14], the quantitative feature extraction for Itiuariate
approaches exposed the main statistical based itgee
PCA / PLS and classification-based methods assttati
classifiers. These algorithms are based on orthalgon
decomposition of the covariance matrix of the Jaea
history. The Md, Mt, Hotelling’'s T2 test, PLS areligions
for data fusion of available variables. So the rtaritg
procedure is based on trend analysis of only odeator,
including normal state estimation in order to pegedind to
detect any changes in the current variables.

Data analysis based on historical data is apprgpria
for HUMS if raw data are not available: indicatosse
sensitive to maintenance actions which generatagdsin
mean and variance in their trends, the system amlegbt to
reference changes. That's why HUMS integrate |earni
functions to be individually triggered for each icator
(univariate system) by the user after each huméoraon
dynamic components. The multivariate approach sego
in OPTIMAINT follows the same process but applies t

-5-

only one health indicator obtained after EuroHUMS

indicators fusion:
» generate the matriX after any maintenance action
(learning phase; normal state as reference),

« compute theS, covariance matrix and th& mean

vector of X ,

e compute Mt for indicator decorrelation (whitening)
obtainz with any newX observation [6],

» compute the health indicator with the Ed betw2amd
null vector,

» compute the denoised health indicator trend [4] [5]

« compare the trend to the anomaly threshold obtaiyed
statistical distribution analysis of the health igador
during the learning phase.

The learning process is triggered after any step-
change detection in the health indicator trend.imuthe
learning phase, the same process is applied tcctdaty

anomaly usindg>, andX computed with the full normal state

history of the H/C. The Figure 8 shows an exampleaw
health indicator of the TDS bearing: 3 learning gg®
triggered by maintenances actions are observed. The
indicator singularities (or step-changes) are &etated for
maintenance action detection (red circles) to &iggew
learning phases (see begin of learning phases 3)and

0F T T T T T T T T T T —
operational phase .
> rehold learning phase — outlier detected i
threshold + health indicat
ealth Indicator
L - i n/
5 4
SRR
S
o 1 1 1 \‘ 1 1 = il 1 1 1 |
a0 100 180 250 300 /SED/ 400 480 A00 550
detected step-changes
<= < > |

learning phase 1 learning phase 2 learning phase 3

Figure 8: Health indicator, detected step-changes for
automatic learning phase triggering and removed outliers

The Figure 9 shows the denoised indicator: the
detected outliers observed Figure 8 (blue squaed)the
indicator noise are eliminated, the decision makignly
based on the mechanical trend of the component:

operati onal phase i ! i !

; ' T
learning phase .
F) threshold threshold S denoised health |
=== indicator
B R 1
4k X ’ C |
el

0 L L L L L 1 1 L L L L

50 100 150 200 20 300 /D400 450 50 550
<=1 S| |

learning phase 1

learning phase 2

learning phase 3

Figure 9: Denoised indicator for decision making

The obtained performances with the anomaly
detection algorithms using the defect database thed
identified normal states added after vibration wgsial are
presented Table 10. However, we observed two kuofds
errors after results analysis:

« errors due to non optimal learnt paramet8s and X ,

e errors made during database construction: lack of
expertise information has low impact for anomaly
detection, the main problem to define a two state



database (defect / no defect) is mainly due to the
estimation of the defect emergence (independemh fro
the nature of the defect).

class H/C MD FA DR err
ID ID % % % %

cl 10 0.0 0.0 100 100
cl 11 0.0 0.0 100 100
clc3 27 0.0 7.56 94.7 94.7
clcs 6 0.0 0.0 100 100
clc3 28 0.0 0.2 99.8 99.8
clc2 4 2.1 1.9 98.5 98.0
cl c2cl0 5 19.9 0.0 100 85.6
clc8 29 0.0 49.0 51.0 51.0
cl 16 0.0 0.0 100 100
clc2c3 1 38.8 0.5 99.8 76.4
clc6 7 0.0 0.0 100 100
clc4 2 0.0 0.0 100 100
cl 19 0.0 0.0 100 100
clc4 20 3.9 8.6 92.7 92.1
¢l c3c¢l0 24 39.1 8.4 92.9 86.3

Table 10: anomaly detection performances

The obtained results show a minimum DR of
92.7% (8.6% FA and 3.9% MD rates). We also remhek t
low performances observed on H/C labelled 29: arease
of the noise was observed and the following indicat
contributed to the anomaly detection:
» BE bearing indicator: “gross fault”, see 2.1.,
» EB bearing indicator: “general wear & non localized
damage”; increasing residual signal, see 2.1.,
» ET bearing indicator: “localized damages as spgllin
increasing of the energy of the tones, see 2.1.

This detection case is probably due to an evolution
of state considered as a normal state during tha da
analysis.

Contrary to the model-based approach, multivariate
statistical methods do not need an explicit systeatel.
They are able to handle high dimensional and catedl
variables but restricted to linear domain. Othextistical
techniques have been explored in the past [3]dnuired a
very large amount of data.

4. DIAGNOSIS

The diagnostic approach is outlined by using a
supervised NN based on competitive learning; LVQNS
and supervised SOM [9], where each NN output
corresponds to an identified mechanical state ebtmaring.

The database is “standardized” to eliminate the
variability between H/Cs by the PCA contribution
estimation of each indicator [12] [14]:

selectS, and X mean vector ofX ,

calculateS, eigenvectors and eigenvalues,
order,

calculate cumulative sum to select the first ppati
eigenvectors and eigenvalues to eliminate the noise
compute the eigenvectors contributions [7] [8],
compute the indicators contributions [7] [8],

sort of eigenvectors and eigenvalues by descendant

» standardize the indicator contributions to get an
equivalent weight for decision making and genetiage
patternsp .

The learning phase and classification phase are
based on a neuron election rule to determine dxesaf P

by the mean of the Euclidean distance, which esaeshe
degree of similarity betweefd and the NN weight$n:
c=argminf|p-m|} ©)
The database for diagnosis experimentation is the
anomaly detection database (6076 observations, /C). H
This base shall be divided in 2 parts: one for Wisg
adaptation and the other to estimate the diagnosis
performances. The learning database includes 10
observations for each mechanical state. The 10 used
observations are selected from 1 selected H/C deroto
validate the ability to diagnose a defect on acteté H/C
with data acquired from one other H/C. The geneasibn
between H/C may be possible through the use ofarfe

parametersS, and X obtained at the end of learning. The

Table 11 describes the states included in the datalkthe
corresponding class ID identified, the quantity of
observation learnt for each test, the H/C seledkdhe
observations learnt, the number of H/C represefiteda
selected class for classification test:

N
learnt
10
10
10
10
10
10
10
10

H/IC
learnt
76
79
76
96
74
92
81
98

H/IC
cases

15

states learnt

normal state
bearing creep
shaft balancing
OR spalling

cage dislodged
ring dislodged
shaft misalignment
unknown defect

cl
c2
c3
c4
c5
c6
c8
cl0

NN

Table 11: Conditions of learning and test for diagnosis

The identified mechanical states are normal state,
bearing creep, shaft balancing, OR spalling andftsha
misalignment. After first tests, we observed thaie t
obtained results are quite similar. The advantdgeQ@M is
a performance gain slightly higher if a large antooh
classes to be learnt. The advantage of LVQ is thights
optimization for fast convergence for NN trainingttw
codebook initialization based on selected patterrsarn.

The following tables (Table 12 and Table 13) show
the obtained performances for every test T. Eashwas
done with different learning conditions in orderdbserve
the impact of the number of classes learnt indepethy of
the NN topology:

LVQ
classes
learnt

clc3

Diagnosis performances per state
c2 c3 c4

%)

test
ID

T1

cl c8

99.1 X 97.6 X X

T2 clc3cd 95.4 X 97.2 93.1 X

T3 clc2c3c4

clc2c3c4
c8

88.4 50.4 80.0 93.1 X

T4 88.4 50.4 80.1 91.6 100

Table 12: Diagnosis performances with LVQ



SOM // sup. SOM Diagnosis performances per state (%) e |ubricate beal’ing,
classes

test learnt cl c2 3 c4 c8 * check for free rotation,
97.4 1/ 98.8 //
T5//T9 |clc3 97 X o0 2 X X  check torque on nuts.
92.7 /1 99.2// 98.5// . .
T6//T10| clc3cd 94.1 X 98.8 92.4 X For each action (item component — method), the
85.3// 50.4 // 80.2// 92.4 /1 1 i 13’ 1 . 1 i
TTHTIL|cle2e3oa | ooy o0 02 gl x action criteria’s are defined (ex._. cracks, §cqr|ﬁgttlng, _
T8//T12|clc2c3ca | OL7/ | 5L/ | 80.2/ | 939/ | 991/ spalling, etc.) and the associated maintenanceoracti
c8 629 | 504 | 771 | 94 | 100 working card is identified. The aim of alleviate imanance
actions is to detect and to localize a defect epwading to
Table 13: Diagnosis performances with SOM and the action criteria.
supervised SOM

The degradation analysis presents the defects
evolution of 7 DPs initially defined for EC225 TD&ach

As observed Figure 14, the c2 defect is localized o DP defines the degradation phases and the correisgpn
the boundary which separates cl1 and c3 classes, thdefect name (equivalent to the action criteria he t
diagnosis confirms that the bearing creep is altogl shaft Maintenance Program), effect on H/C (vibration, timen

imbalance: etc.), severity class (MAJOR, etc.), maintenancek ta
references and the application to health monitorinat
. 5 3% i w02% w24k T o corresponds to the defect class obtained by diégiisisaft
T ol —s imbalance, shaft misalignment, spalling, etc.).
E 60 .
s ] ex. MAINTENANCE PROGRAM DP [DIAGNOSIS[  MA
g o b . _— . defect / .
id § | component criteria id alleviation
] L class
class identifiers dual bearing i i bearing
T1 | 3A2 bloc|_< nggtkzrracesmmmthel 8 creep/ YES
Figure 14: T7 test diagnosisresults bearings_ c4
dual bearing | * grease leak 2 oak
block and « sign of overheating grease leal
Tz |3a1 singl_e- « sealing flanges 9 c7 N/A
The unidentified defects are c6, c5 and c10. These bearing block - rust run 10
defects are identified on only one H/C each: tregdosis
performances cannot take these results into accbuhtwe Table 16: Example of analysis of 10 FH visit

can also observe the NN can separate and recotireze

observations (see c10 example Figure 15): . . .
( P g ) Thirteen Maintenance Program tasks are in the

OPTIMAINT scope. Based on the results obtained with

£ = B B m — anomaly detection and diagnosis according to DP
: ZE —el description, we propose to remove first five tasks:

Zw il e T1 task in ALF visit (period = 10 flight hours oHI,

H 22 ] » 3 tasks in “T” visit (period = 500 FH): bearing rad

class idertifers play can be detected with c3 class diagnosis, hgari
free rotation (8C1) can be detected with c4 class
diagnosis, bearing free rotation (8C2) also detkwiith
c4 class diagnosis,

The developed algorithms for pattern classification * 1 task in “3T” visit (period = 1500 FH): can be eeted
have ability to localize / isolate defects and rb@ya mean with c4 class diagnosis (8D.2).
for maintenance alleviation application:

* identified mechanical states can be isolated wihdg
performances,

* unidentified mechanical states can be isolated filoen
others defect classes,

* normal state patterns are superposed and mearehat ) )
observed defect on one H/C can be learnt and eetect Five other tasks can be also removed with an
on other H/Cs, adaptation of DP analysis to AS332L1 H/C. We ediatia

« a complex defect with a contribution of several that harmonics 1 and 2 of the shaft contribute igdimthe
indicators can be learnt and diagnosed on any BIO ( described defects (to be confirmed by experimentigti
example).

Figure 15: Diagnosiswith c10 unknown defect learnt

T2 task may be also removed if a solution is
identified to detect bearing grease leak. Afterlysia of
database with RSAF reports, a hardware solutioedas
temperature probe signal acquisition seems mosbpppte
but expensive.

For maintenance alleviation, the immediate

application is the diagnosis in order to directhkldefects

to maintenance actions if the normal state is dsont.
Finally, we propose an architecture only based iagrobsis

6. MAINTENANCE ALLEVIATION as followed in Figure 17. This architecture is luhsa step-

change detection [4] [5] for adapting any new meata

state to the defect database, detecting any abhamron

optimal mechanical state during the learning phase,

proposing maintenance actions(s) if a defect isied.

The application to maintenance alleviation consists
to eliminate a maximum of actions described in the
Maintenance Program [10]. Concerning the TDS double
bearing, an action may lead to:

* visual check without removal,
 check axial / radial / angular play,
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Figure 17: Diagnosis architecture for maintenance
alleviation

6. CONCLUSION

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

(10]

This paper describes a possible way for dynamic [11]

component maintenance alleviation with HUMS vilwati
data in the OPTIMAINT research project scope. The

outlined techniques, based on anomaly detection ano[lz]

diagnosis could be applied to the maintenance iatien:
first five tasks are proposed to be removed from
maintenance program.

After vibration data and user maintenance report
feedback analysis, different multivariate technijufor
anomaly detection and diagnostic were assessedmale
difficulties were the mechanical state estimatioh tioe
bearing based on vibration data and RSAF reportisowt
mechanical component expertise and the estimaticheo
right transition between normal and abnormal bedravio
not bias the decision making. The advantage of ahpom
detection is to alarm any change observable witicators.
The benefit of NN based diagnosis is the abilityntodel
complex defects with multiple indicator contributio
Finally the simplified architecture based only daghosis is
proposed to be introduced in service if the thragabilities
are demonstrated:

* isolation of learnt defects (see §4)
« recognition of the normal behaviour (see §4)
« detection of new defect not yet learnt (to be \athd)

A full automated solution based on trend analysis i
also proposed to detect any maintenance by themresof
step-changes: the learning phase shall be autaatiatic
triggered in order to reduce the false alarm dubedack of
triggering.

(13]
(14]
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