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Abstract

Complementary multi-objective strategies adapted to the aerodynamic optimization of helicopter
rotor blades in hover and in forward flight are developed. A first competitive strategy is based on Nash
Games from game theory, where the objective functions are minimized by virtual players involved in a
non-cooperative game. A method is presented to split the design vector into two sub-spaces, defined
to be the strategies of the players in charge of the minimization of the primary and the secondary
objective functions respectively. This split of territory allows the optimization of the secondary function
while causing the least possible degradation of the first one. Alternatively, a cooperative approach
based on a generalization of the steepest-descent method to multiple objectives is presented. These
methodologies are applied to the optimization of the twist distribution of the model rotor ERATO,
with the aim to maximize the Figure of Merit in hover while minimizing the rotor torque coefficient in
forward flight. The optimizations are performed in a framework based on high-fidelity evaluations.
A multi-fidelity model is proposed and tested, creating a bridge function between the low and high
fidelity models. The results demonstrate the potential of these techniques to obtain rotor designs
realizing interesting trade-offs.

NOMENCLATURE

c Mean chord [m]
C̄ = 100C

1
2ρ∞SσR(RΩ)2

Rotor torque coefficient

FM = Z̄3/2

20C̄

√
σ Figure of Merit

Nb Number of blades
R Rotor radius [m]
S = πR2 Rotor disk surface [m2]
Z̄ = 100Fz

1
2ρ∞Sσ(RΩ)2

Rotor thrust coefficient
µ = V∞/(ΩR) Advance ratio
Ω Rotor rotational speed [rad/s]
σ = Nbc

πR Rotor solidity

1 INTRODUCTION

The design and aerodynamic optimization of heli-
copter rotor blades involves multiple objectives which
are often antagonistic in nature. Such is the case for
maximizing the rotor efficiency in hover and minimiz-
ing the rotor shaft torque in forward flight. In addition,
the rotor flow field is complex, featuring strong Fluid-
Structure Interaction (FSI) which must be taken into

account to correctly predict the blade aerodynamic
loads. Accurately modeling the rotor flow field implies
the use of Computational Fluid Dynamics (CFD) and
Computational Structural Dynamics (CSD), which re-
main still computationally intensive. In this context, the
use of high fidelity information in rotor blades optimiza-
tion process is a topic of active interest in the engi-
neering community. The use of the adjoint formulation
has successfully been applied in steady and unsteady
cases in single objective optimizations making an ef-
ficient use of gradient based algorithms (Dumont [1]
and Choi [2]). Alternatively, the use of surrogate mod-
els based on CFD simulations has been used in vari-
ous works by Allen [3], Glaz [4], Leusink [5], Johnson
[6] and Massaro [7]. However, the building of such sur-
rogate models remains computationally costly when
using high fidelity CFD-CSD evaluations. In order to
alleviate this problem, multi-fidelity strategies combine
information of multiple models of varying accuracy in
order to approximate the high fidelity model using less
samples. Such is the case in the work presented by
Collins [8], which uses a correction metamodel to cre-
ate a bridge function between a comprehensive code
and CFD-CSD, and also in the works of Imiela and



Wilke [9, 10], which make use of the so-called Hierar-
chical Kriging (proposed by Han [11]), where the low
fidelity model is used as a trend for the high-fidelity
kriging surrogate.

Moreover, multiple optimization strategies are used
to solve the multi-objective problem. An usual ap-
proach is to use some form of weighted function ag-
glomerating the functionals into a single one (Refs. [6]
and [12]) as to optimize a single point, or instead to
search for the complete Pareto front using stochastic
algorithms (Refs. [5] and [7]). Alternatively, two com-
plementary optimization algorithms are presented in
this article. The paper is structured as follows: first
an introduction to the proposed multi-objective algo-
rithms is given. Next, the numerical framework used
in the optimization applications is described, including
comparisons of the results of different fidelity models
in forward flight. The multi-fidelity approach is then
presented and validated. Finally, the application of the
proposed multi-objective algorithms are applied to the
twist optimization of the ERATO rotor, and the results
are discussed and analyzed.

2 MULTI-OBJECTIVE OPTIMIZA-
TION STRATEGIES

In this section we introduce a brief theoretical basis
on the proposed alternative algorithms for the treat-
ment of multi-objective problems, focusing on the bi-
objective case. Two complementary approaches are
presented, namely competitive and cooperative op-
timizations. The competitive phase is adapted to
those cases where the treated objective functions are
strongly antagonistic, that is when improvements in
one criterion lead to degradation of the other function.
This problem can be treated using Nash Games, intro-
duced in the next section. On the other hand, a coop-
erative optimization phase is possible whenever all the
criteria can be optimized at the same time. The Multi-
Gradient Descent Method (MGDA), a generalization
of the steepest-descent method, is adapted to an effi-
cient resolution of this kind of problem.

2.1 Nash Games With Territory Splitting

Nash games where first introduced by Nash in the
1950s [13] in the framework of game theory. In this
approach, the system is modeled as a game in which
each optimization objective is adjusted by a virtual
player trying to improve its value. All the players si-
multaneously try to improve their objectives taking into
account the other players’ strategies, which are con-
sidered fixed. Let us consider a game with 2 virtual
players or disciplines, namely JA and JB (as such is
the case for the rotor optimization in hover and for-

ward flight). Both disciplines share the design vec-
tor Y = (YA, YB), that can be split in two subvectors.
During the game, each subvector Yi is assigned to its
respective player Ji, who tries to improve its objec-
tive using its portion of the design territory while tak-
ing into account the actions of their opponent (i.e. the
other discipline’s subvector). A Nash equilibrium Ŷ is
reached when no further improvements are obtained
for each player if their opponent keeps its strategy un-
changed, verifying:

(1)


Ŷ = (ŶA, ŶB)

ŶA = arg minYA
JA(YA, ŶB)

ŶB = arg minYB
JA(ŶA, YB)

Where arg minYi
stands for argument of the minimum,

meaning the point Yi for which Ji attains its minimum
value. How the design variable vector is split is the
crucial step, as this determines the solution. Rather
than splitting directly the original design vector, which
introduces some arbitrariness, Désidéri [14] proposed
a method to split the variables territory based on sen-
sitivity analysis. In this framework a hierarchy of two
disciplines is considered with one of them being re-
garded as principal or fragile (JA). In our work the
hover efficiency (Figure of Merit, or FM) is considered
the principal discipline JA, whereas in forward flight
JB is the rotor torque coefficient C̄. The main idea
is that, after a successful single objective optimization
in hover (maximizing FM), a multi-objective competi-
tive optimization is conducted to optimize C̄ in forward
flight, assuring that the gains obtained on the first op-
timization are not degraded in excess. The proposed
split of the design vector (of length N ) assures the
sub-optimality of the principal criterion and is defined
as follows:

Y = Y (U, V ) = Y ?A + S

(
U
V

)
(2)

U =

 u1

...
uN−p

 V =

 v1

...
vp

(3)

In which Y ?A corresponds to the previously found
optimum of the principal discipline alone and S is
an invertible NxN matrix henceforth referred to as
splitting matrix. The U and V subvectors correspond
to the design vectors of the principal and secondary
functionals respectively. The splitting matrix is defined
such as small perturbations of the parameters about
Y ?A that affect the secondary criterion cause the least
possible degradation to JA. The intended approach
consists in conducting the optimization of the sec-
ondary discipline (i.e. JB) as a small perturbation from
the original optimum Y ?A. The solution corresponds to
a Nash equilibrium between the two disciplines.



At the end of the first optimization, access to J?A,
its gradient ∇J?A and the Hessian matrix H?

A via direct
evaluation or surrogate models is supposed. Assum-
ing that Y ?A is a local or global unconstrained minimum
of the functional JA, then ∇J?A =

−→
0 and the Hes-

sian matrix H?
A is real, symmetric and positive definite

(hence all its eigenvalues hi are real and positive). In
this case, the Hessian can be diagonalized obtaining
the matrix ΩH formed by the eigenvectors ωi of the
Hessian.

H?
A = ΩHΛHΩTH(4)

ΛH = Diag(hi)(5)
ΩH = {−→ωi}(6)

The territory of the secondary functional should be
taken to be the span of p eigenvectors of the Hessian
matrix associated with the smaller eigenvalues hi.
The eigenvalues are thus ordered as a monotone
decreasing sequence verifying Eq. 7 and the splitting
matrix S is obtained reordering the eigenvectors
according to the sorted eigenvalues (Eq. 8).

h1 ≥ h2 ≥ . . . ≥ hN(7)
S = (−→ω 1

−→ω 2 . . . −→ω N )(8)

The search of the Nash equilibrium could be applied
directly to the problem as defined in Eq. 1, but a more
convenient redefinition of the multi-objective problem
is proposed by Désidéri [14]:


min

U∈RN−p
JA[Y (U, V̂ )]

min
V ∈Rp

JAB [Y (Û , V )] = JA
J?
A

+ ε
(
θ JBJ?

B
− JA

J?
A

)(9)

Fixed subvectors are represented by Û and V̂ , ε is a
continuation parameter comprised between 0 and 1
that allows a gradual introduction of the antagonism
between disciplines and θ represents a relaxation
factor which in practice is set to 1.

Three main theoretical results are obtained using
this formulation. First, the optimality of the chosen
S matrix to reflect the hierarchical sensitivities of JA.
Secondly, a Nash equilibria exists at the optimum of
the principal discipline Y ?A (ε = 0), which is consistent
with the single-optimization results. Moreover, by con-
tinuity a smooth continuum of Nash equilibria exists
starting from ε = 0 throughout ε = 1 (which corre-
sponds to a pure minimization of JB). Finally, given a
Nash equilibrium for a certain ε (Ŷε), the principal cri-
terion JA is 2nd order insensitive with respect to varia-
tions of ε. This is due to the fact the the Hessian-based
split is developed considering the Taylor’s expansion

of JA about Y ?A in the direction of a unit vector w:
(10)

JA(Y ?A + εw) = JA(Y ?A) + ε∇J?Aw +
ε2

2
wH?

Aw +O(ε3)

And in consequence, provided that Y ?A is an optimum,
the gradient at this point is null, thus verifying:

(11) JA(Ŷε) = J?A +O(ε2)

The Nash equilibrium at each given ε can be obtained
via an iterative process in which each discipline runs a
small number of optimizing iterations before exchang-
ing information with the other discipline, until conver-
gence (or a relaxed convergence) is obtained. In
pseudo-code, this process can be described as:

1. Initialize the design vector: Y := Y (U0, V 0)

2. Loop while Y (U i+1, V i) 6= Y (U i, V i+1) :

(a) Player A: Y = Y (U, V i)
Perform KA iterations for the optimization
problem min JA(U, V i) to obtain U i+1.

(b) Player B: Y = Y (U i, V )
Perform KB iterations for the optimization
problem min JB(U i, V ) to obtain V i+1.

(c) Update the design vector: Y :=
Y (U i+1, V i+1)

The convergence of such an algorithm for an ar-
bitrary split is not assured. However, the formula-
tion proposed by Désidéri guarantees the existence
of Nash Equilibria in the neighborhood of the optimum
of the principal objective. Hence in practice additional
measures to accelerate the algorithm’s convergence
ratio are not needed, at least in the author’s experi-
ence (if necessary, Attouch et al. [15] note that the
convergence rate can be improved by using damping
mechanisms in the criteria). In practice, the conver-
gence termination criterion is relaxed. Numerically,
convergence is assumed attained when either the L-2
norm of the squared difference of the scaled design
vectors is smaller than a certain positive δ or when a
maximum number of exchanges between disciplines
is reached (Eq. 12). Scaling of the design vectors for
the test is necessary in order to account for the differ-
ence of magnitudes between the design variables.
(12){

‖ Y (U i+1, V i)− Y (U i, V i+1) ‖2 ≤ δ
i ≥ Nmax

The described formulation in this section is valid
for unconstrained problems, but constrained problems
can also be treated, in which case additional steps are
needed in the computation of the splitting matrix (see
Desideri [14] for further details).



2.2 Multi-Gradient Descent Algorithm

In contrast with the Nash Game competitive approach,
the general problem of unconstrained minimization
can be treated so that all the criteria are simul-
taneously minimized. In other words, consider a
cooperative strategy beneficial to all the objectives. In
the case where the gradients can be computed at an
initial design point, it can be shown that a direction
along which all the criteria are minimized can be found
in the convex hull of the gradients. This is the basis
of the Multi Gradient Descent Algorithm (MGDA) [14],
which is, as noted above, a generalization of the
classical steepest-descent method to multi-objective
optimization. The principles and formulation of MGDA
are presented in this section, based on the devel-
opments of Désidéri presented in detail in [16, 14].
The context is the simultaneous optimization of n
smooth criteria (or disciplines) Ji(Y ) (where Y is the
design vector, Y ∈ RN ). The cooperative optimization
improving all criteria is started at a initial point Y 0 that
is not Pareto optimal (i.e. not in the Pareto Front). In
practice, the functions are assumed to be of class C1

and locally convex. We note the family of the function
gradients at the initial point as {u0

i } = {∇Ji(Y 0)} for
i = 1, . . . , n.

In this setting, consider the set U formed by the strict
convex combinations of these vectors:

(13) U =

{
w ∈ RN /w =

n∑
i=1

αiu
0
i ;

αi ≥ 0 (∀i);
n∑
i=1

αi = 1

}

and Ū the convex hull of the family.
Then, there exists a unique element ω ∈ Ū of minimum
norm, and:

(14) ∀ū ∈ Ū : (ū, ω) ≥ (ω, ω) =‖ ω ‖2

Let us introduce the concept of Pareto stationarity at a
point Y 0. The point Y 0 is said to be Pareto stationary
if there exists a convex combination of the gradients
u0
i that is equal to zero:

(15)

∃α = {αi} ∈ Rn/αi > 0 ∀i;
n∑
i=1

αi = 1; and
n∑
i=1

αiu
0
i = 0

Then, two situations are possible, regarding ω :

1. Either ω = 0, and the criteria Ji(Y ) (∀i) are
Pareto-stationary;

2. Or ω 6= 0, and −ω is a descent direction common
to all the criteria. Additionally, if w ∈ U the scalar
product (ū, ω) is equal to ‖ ω ‖2 for all ū ∈ Ū .

Considering a case with just two criteria, three con-
figurations of the objective function gradients are pos-
sible, as presented in Figure 1. In this particular case,
ω can be expressed explicitly. Besides the trivial case
where u = v = ω, the convex hull is represented by the
segment ūv connecting the extremities of both vectors,
which share the same origin O (this is acceptable as
only the norm and the angle between gradients is of
importance). Consider the vector ω⊥ with origin at O
whose extremity is the orthogonal projection of O onto
the line containing the segment ūv. If the vector ω⊥ is
in the convex hull (i.e. the extremity of the vector lays
in the ūv segment) then ω = ω⊥. Otherwise, ω is equal
to the criterion gradient of smallest norm. Explicitly:

(16) ω = (1− α)u+ αv

This convex combination is orthogonal to ūv for a cer-
tain α⊥:

(17) α⊥ =
(u, u− v)

(u− v, u− v)

Thus, if α⊥ ∈ [0, 1], then α = α⊥. Otherwise, α = 0 or
1 depending on whether α⊥ < 0 or > 1.

Figure 1: Various possible configurations of the two
gradients-vectors u and v and the minimal-norm ele-
ment ω (extracted from [17]).

In the case where more than two objectives are con-
sidered, the determination of ω is done via a minimiza-
tion of the following constrained quadratic form:

(18)

Minimize: min
α∈Rn

∥∥∥∥ n∑
i=1

αiu
0
i

∥∥∥∥2

subject to: αi ≥ 0(∀i),
n∑
i=1

αi = 1

Once the common descent direction ω is found for
all the criteria, a new candidate point is searched in
this direction, that is:

(19) Y k+1 = Y k − ρω(Y k)

Where Y k+1 is the new candidate, Y k the cur-
rent point, k is the MGDA iteration number and ρ
is a positive step length. Once a new candidate
is identified, after a linesearch in this direction the
ω at this point is re-computed and the process is
repeated until a convergence criterion is met. In
single objective optimization this stopping criterion



is a sufficiently small (close to zero) gradient norm.
For multiple objectives, the optimization process is
stopped when the Pareto stationarity condition is met.
In practice, Pareto stationarity is guaranteed when
at least one of the criteria gradients is of zero norm
(which following our formulation implies that ‖ ω ‖ is
also zero, if no gradient scaling is applied). For this
reason, in practice the convergence criterion is met
when ‖ ω ‖≤ δ for a user-defined small positive δ.

The optimization process can thus be resumed in
the following pseudo-code:

• Initialize the design vector: Y := Y 0

• Loop while ‖ ω ‖≤ δ :

1. Compute Ji(Y ), (1 ≤ i ≤ n)

2. Compute ∇Ji(Y ), (1 ≤ i ≤ n)

3. Identify ω

4. Perform a line-search in the direction −ω:
determine optimal ρ

5. Update the candidate: Y := Y − ρω

3 HIGH-FIDELITY AERODY-
NAMIC MODELS: ERATO AP-
PLICATION

The high-fidelity aerodynamic models used in the
computation of the rotor performance in hover and
in forward flight along with the numerical details of
the implementation are presented in this section, with
special emphasis on the forward flight case. This nu-
merical framework was validated on the ERATO rotor.
This rotor, developed in a joint program between Eu-
rocopter, ONERA and DLR was designed to reduce
noise emissions [18]. It features a 2.1m radius, a
mean chord of 0.14m and a linear aerodynamic twist
of −10◦/R. The blade planform has forward and back-
ward sweep as well as a non-optimized straight tip.

3.1 Hovering Computations

High-fidelity evaluations solving the RANS equations
is employed in hover (assuming a rigid blade), using a
numerical framework already presented in a previous
work [19]. A brief summary of the numerical param-
eters is given, for further details refer to Roca [19].
The RANS equations were solved employing elsA
[20], the Computational Fluid Dynamics (CFD) code
developed at ONERA.

A Roe MUSCL 2nd order scheme (with a Van
Albada limiter) was used to discretize the space. The
choice of the Roe scheme was imposed in order to

assure consistency/compatibility with the available
adjoint solver formulation [21]. The turbulence is
modeled using the k − ω Kok model with a shear
stress transport (SST) correction.

The mesh (a quarter of rotor) was generated
using an in-house analytic meshing tool, which yields
structured meshes. The blade tip is simplified by a
degenerated section. The retained size is of 0.81
million points. Even if this is a relatively coarse grid
it is deemed adequate for optimization purposes.
The main objective being to accurately model the
global performances in hover at the lowest-possible
cost. The required (cumulated) CPU time for each
simulation was of approximately 9.3 hours using Xeon
5500 cores.

3.2 Forward Flight Computations

In forward flight, the blade was assumed to be elastic,
and time-marching computations were carried out
using a loose coupling approach [22]. The blade
dynamics and deformations were provided by the
rotor comprehensive code HOST [23], developed by
Airbus Helicopters. In this code, the blade dynamics
is modeled by a 1D Euler-Bernoulli beam model, cou-
pled with a simplified aerodynamics model based on
lifting-line theory. The aerodynamic coefficients are
determined via interpolation of 2D airfoil lookup tables,
using the computed rotor trim information in order to
evaluate the local Mach numbers and angles of attack.

The aerodynamic loads where computed by elsA.
In this approach, assuming a periodic solution, the
data is exchanged between HOST and elsA. An ini-
tial search for the rotor equilibrium is done by HOST,
obtaining the estimated rotor dynamics and the simpli-
fied aerodynamic loads F 0

2D. Subsequently, the rotor
blade deformations and movements are fed to the flow
solver. The mesh is deformed accordingly and elsA
recomputes the aerodynamic loads W 0 which are de-
composed in a Fourier series, obtaining F 0

3D. The dif-
ference between the aerodynamic loads of HOST and
elsA is thus computed and added to the HOST aero-
dynamic loads. At this point, the global equilibrium
is no longer verified, and thus HOST recomputes the
blade dynamics, which is then exchanged with elsA.
This process, repeated iteratively, can be expressed
in general:

(20) Fn = Fn2D + (Fn−1
3D − Fn−1

2D )

The HOST simplified aerodynamic forces and mo-
ments at the nth iteration Fn2D are corrected by the
difference between the precise elsA results Fn−1

3D and
the simplified aerodynamics loads Fn−1

2D of the previ-



ous iteration . The process converges when:

(21) Fn−1
3D − Fn−1

2D ≈ 0

In our computations, the four blades were meshed
and a Chimera approach was retained, using near-
body refined grids spinning along the rotor blade and a
non-rotating Cartesian background mesh. The back-
ground meshes were generated as an Octree. The
mesh topology (based on a O-H structure) and a sec-
tion of the background mesh are shown in Figures 2a
and 2b respectively.

(a) Near-body grid and topology.

(b) Background grid section.

Figure 2: ERATO mesh for forward flight high-fidelity
evaluations.

A relatively coarse body-grid of 766K points per
blade was used, aiming to reduce the computational
cost in view of the optimization framework, using a
background grid of approximately 10 million points.
The turbulence was modeled using k − ω Kok with
a shear stress transport (SST) correction and the
Zheng limiter. A time step of 1 degree was used along
with a Gear scheme. Finally, the Jameson scheme
was used to discretize the fluxes in space.

Precisely, the chosen design point for the ERATO
rotor was at µ = 0.344, Z̄ = 12.5 and a fuselage
drag CxS/Sσ = 0.1 for a rotational tip Mach number
MΩR = 0.617 and imposing zero flapping for rotor trim
(i.e. β1c = β1s = 0). At this design point experimental

data was available. The CPU cost of a rotor revolution
was of approximately 425 hours. Four coupling itera-
tions where necessary in order to obtain convergence
of the trim angles, thus requiring 1700 CPU hours in
total (using Xeon 5500 cores).

3.2.1 Numerical Validation

The ERATO rotor was computed using the proposed
numerical framework and the results were compared
to available experimental data and to HOST (using a
prescribed wake model). These results are presented
here in order to illustrate the need to take into account
the rotor trim and the fluid-structure interaction in
forward flight computations. The sectional loads at
the 0.97R station of the ERATO blade are shown in
Fig. 3.

The consideration of the elastic blade significantly
improves the sectional loads prediction. The negative
lift peak at the tip of the advancing blade is better cap-
tured in the elastic coupled simulation, with a better
phase accuracy than for HOST. The differences are
much more evident in the sectional pitching moment
values, which are not well predicted by simplified
aerodynamic models, especially near the blade tip.
The oscillations in the pitching moment appearing
around ψ = 0◦ are due to the interaction with the rotor
trailing wake.

4 SURROGATE-BASED OPTI-
MIZATION FRAMEWORK

The use of high-fidelity evaluations directly in the
optimization loop is expensive, specially for time-
marching computations in forward flight. For this
reason, a surrogate-based approach was used in
order to reduce the cost of the optimization runs. The
metamodel type chosen in this work is the popular
Kriging technique. Kriging (or Gaussian Process)
is an interpolation technique first developed in the
geostatistics community [24]. It interpolates the value
of a random field at an unobserved location using
the information of observations at nearby locations.
The construction of a Kriging model basically requires
the choice of a trend function and a function to
estimate the correlation parameters (i.e. correlation
function). In this work, the trend function was as-
sumed to be a constant (ordinary Kriging), along with
a Gaussian correlation function for all the applications.

In the case of the evaluation of the Figure of Merit in
hover, a standard Kriging metamodel is built. A train-
ing data set is obtained via a Design of Experiments
(specifically Latin Hypercube Sampling). The training
set is computed using the high-fidelity framework



(a) Sectional loads CzM
2.

(b) Sectional loads CmM2.

Figure 3: Blade sectional pitching moment and lift-
ing loads at the 0.97R station as computed via HOST,
loose coupling and for experimental measures.

and an initial surrogate is trained. Subsequently, the
metamodel is improved iteratively by adding points to
the database at interesting locations. The Efficient
Global Optimization [25] methodology is used to
select promising points. In this algorithm, a metric
known as Expected Improvement (EI) is used to guide
where the sampling should take place. This metric
depends on the uncertainties in the metamodel and
the potential to improve the objective in the meta-
model. The EI is high at sparsely sampled regions
where the metamodel predicts low function values.
In our particular case, the metamodel was built in
preparation of Nash Games, and thus a true optimum
of the objective function in hover was already known.

For this reason, in addition to adding points with
high EI to the database, local optimizations starting
from the known optimum were carried out in order to
ensure that the optimum of the metamodel converged
to the true hover optimum. This iterative process
improving the metamodel was terminated either when
a maximum number of iterations was reached or
when the estimated error was sufficiently small (i.e.
mean errors of 1 point of Figure of Merit or less).

In the case of forward flight, a multi-fidelity approach
was tested, using loose-coupling computations as the
top fidelity level and HOST for the low fidelity level.
The details are presented in the following section.

4.1 Multi-fidelity Approach

The main idea of multi-fidelity strategies is that coarser
models still contain valuable information that can be
used to diminish the number of evaluation calls to
higher fidelity models. Some surrogate modeling
strategies can integrate directly the hierarchy of mod-
els, such as Co-kriging [26], or Hierarchical Kriging
[11]. Alternatively, another strategy consists in the cor-
rection of global low-fidelity models with high-fidelity
samples. This technique presents the advantage that
it is independent of the number of design variables, but
the accuracy of the corrected model requires a well-
behaved low-fidelity model. The question arises as
how to choose the best correction for the low-fidelity
model to rapidly converge towards the true model. A
detailed review of possible correction methods is pre-
sented by Eldred [27]. This work is mainly concerned
with global corrections: data global fits are used to
model the relationship between the low and high lev-
els at a limited set of points. This follows the approach
adopted by Collins [8], where a correction metamodel
was used to create a bridge function between a com-
prehensive code and CFD-CSD for the purposes of
optimization.
Hence, we use a Kriging model to describe the ob-
jective function error between HOST and the loose-
coupling computations instead of modeling directly the
high-fidelity level. The hypothesis behind this reason-
ing is the assumption that the relationship between the
criterion results yielded by HOST and those yielded
by elsA/HOST is more easily modeled (i.e. less non-
linear) than the criterion itself. Two types of correction
were tested, additive (Aerr) and multiplicative (Merr),
defined for the C̄ coefficient as:

(22)

 C̄elsA/HOST = Aerr + C̄HOST

C̄elsA/HOST = Merr ∗ C̄HOST

The additive and multiplicative corrections are obvi-
ously a function of the chosen low fidelity model. In
the particular case of HOST, a parametric study was



performed in order to choose the inflow model best
reproducing the trends obtained by the high-fidelity
computations. Precisely the induced velocity models
of Meijer-Drees, METAR [28] and FiSUW [29] were
tested to compute each correction. Subsequently,
each evaluation of the torque coefficient C̄ at a design
vector was obtained by evaluating the point with the
correction metamodel and HOST and using one of
the above bridge functions.

5 OPTIMIZATION OF THE ERATO
ROTOR

As stated above, the objective of the hover optimiza-
tion is to maximize the Figure of Merit, representing
the rotor efficiency in hover. In order to treat the func-
tion as a minimization problem the equivalent criterion
is used:

(23) JA = 100(1− FM)

The FM is a function of the thrust and torque coeffi-
cients, which in turn depend on the rotor solidity. In or-
der to obtain comparable FM values between rotors,
iso-solidity must be enforced. In particular, thrust-
weighted solidity is forced to be constant throughout
the optimization run (as recommended by Bingham
[30] and Dumont [21]). This geometric requirement
is directly integrated in the blade deformation module
as an implicit constraint.
In forward flight, the required rotor torque C̄ coefficient
is the chosen function to be minimized:

(24) JB = C̄

In this case, the problem was unconstrained (except
for variable boundaries). The blade is optimized in
hover for a rotor with a tip Mach number of MΩR =
0.617 and a Reynolds tip number of 1.93 ∗ 106 (ReΩR).
In forward flight, the flight point presented in section
3.2 is used, namely µ = 0.344, Z̄ = 12.5, CxS/Sσ =
0.1 and MΩR = 0.617, imposing zero flapping.

5.1 Variables and Parametrization

The rotor blade is parametrized using only parameters
controlling geometric laws such as twist, chord and
sweep along the blade span without modifying airfoil
shape. The structural properties are assumed to be
frozen throughout the optimization. The distribution
of each geometric parameter is piloted by Bézier or
cubic Splines using a fixed control point distribution,
presented in Figure 4. For the case of the presented
multi-objective optimizations, only the twist distribution
was considered, thus using 5 optimization variables

Figure 4: Control point locations for the ERATO blade
optimization.

corresponding to the Bézier points.

New blade geometries were generated by mesh
deformation using an in-house mesh deformation tool
(whenever CFD computations were involved). In the
case of HOST computations, a Python module was
developed in order to generate deformed blade ge-
ometry files in consistency with the mesh deformation
program. In order to better condition the optimiza-
tion process all the variables were normalized with
respect to their respective bounds as to be comprised
between zero and one.

5.2 Preliminary Hover Optimization

The application of the Nash Game formulation re-
quires the starting optimization point to be an optimum
of the principal discipline (maximum of Figure of Merit
in hover). For this reason, an optimization is needed
as a previous step ensure that the starting point
is on the Pareto Front. In a previous work by the
authors [19], Nash Games were already presented
in a low-fidelity framework for the ERATO rotor. A
single-objective optimization of the Figure of Merit
was already carried out, using the adjoint formulation
to perform the gradient-based optimization. We
use this already optimized configuration in hover as
a starting point for the high-fidelity multi-objective
optimization.

For completeness, we include the geometric laws
yielded by the single-objective optimization in Figure
5. The optimized rotor increased its maximum FM by
6.1 points, as observed in Figure 6 along with its load
capacity.



Figure 5: Geometric twist, chord and sweep law vari-
ations of the hover optimum (continuous line) with re-
spect to the baseline rotor (dashed line), from [19].

Figure 6: Maximum FM gain for the optimum with re-
spect to the baseline rotor, from [19].

5.3 Validation of the Multi-Fidelity Model
in Forward Flight

A multi-fidelity model was built following the pre-
viously described approach in preparation of the
multi-objective twist optimization. In order to model
the corrections, an initial Latin Hypercube Sampling
plus the hover optimum were evaluated using the
loose coupling strategy. Multiple correction models
were subsequently built (additive/multiplicative and
depending on the chosen HOST wake model). The
best correction was chosen using the error estimator
provided by the leave-one-out method: the error
estimation for the ith individual is the result of training

the metamodel with all the points but the ith one,
and evaluating the error of the metamodel at this
location. Figure 7 shows these errors for each one
of the individuals conforming the metamodel training
database. Only the errors of the standard kriging
(without multi-fidelity) model and the results yielded by
best correction are presented. The additive correction
using the FiSUW inflow model appears to minimize
the error.
The resulting prediction error is very satisfactory for

Figure 7: Error of the multi-fidelity metamodel com-
pared to standard kriging

the FiSUW additive correction, namely lower than
0.25%. However, it should be noted that small varia-
tions of the C̄ (typically of the order of 0.01) can have
a significant impact on the consumed power. As an
example, a variation of ∆C̄ = 0.01 with respect to an
initial value of C̄ = 1.11 represents a 0.9% variation,
which is numerically small but physically significant.
Despite this fact, the precision of the metamodel was
deemed already sufficient for optimization purposes
and thus no additional points were added to the
training database in order to further improve the
metamodel precision.

5.4 Nash Game Application

An unconstrained Nash Game was carried out op-
timizing the twist distribution, using the multi-fidelity
metamodel in forward flight to compute the C̄ (that
is, combining HOST evaluations with the kriging
model of the error). The Figure of Merit in hover was
also obtained via a metamodel, as noted previously.
Precisely, a kriging metamodel of 57 points (including
10 update points) was built in hover and was used to
compute the Hessian based split (the splitting matrix).

Two variables were assigned to the primary disci-
pline (hover performance, JA) and 3 to the secondary



(C̄, JB). Up to 10 function evaluations and 5 gradient
evaluations where allowed at each search of the Nash
Equilibria, authorizing as much as two exchanges
of information between players. The optimization
algorithm for the search was CONMIN [31], included
in the DAKOTA library [32]. Results are shown in Fig.
8 for a complete run of the game, discretized in 5
Nash equilibria. In total, JA was evaluated 86 times,
∇JA 12 times, JAB 92 times and JAB 25 times.

Figure 8: High-fidelity Nash Game involving the twist
distribution.

The obtained Nash Equilibria where subsequently
evaluated using higher fidelity methods. The multi-
fidelity surrogate appears to predict with practically
zero error the forward flight performance, whereas the
kriging metamodel in hover slightly under predicts the
degradation of the the JA criterion for ε ≥ 0.6. How-
ever, the trends are well reproduced by the meta-
model. The twist delta distribution at the last equilib-
rium is presented in Figure 9, remarkably similar to
the results obtained in the analogous low-fidelity Nash
Game presented in [19]. At this point, a 3.1 points
increase of FM with respect to ERATO is obtained for
practically the same rotor shaft torque (0.05% increase
with respect to ERATO).
In this case, the use of higher-fidelity methods ap-

pears to have a relatively small impact in the opti-
mization results. This can be explained by the fact
that HOST predicts rather accurately the rotor perfor-
mance as a function of the twist (via 2D lookup ta-
bles and including a correction for the sweep effect).
Indeed, this is a relatively easy case in comparison,
for example, to sweep optimization, where the fluid-
structure-interaction is presumably of much greater
importance and the relationship between HOST and
elsA/HOST more non-linear.

Figure 9: Variations of the twist law with respect the
ERATO rotor for the initial hover optimum and the
Nash Equilibrium at ε = 1

5.5 Genetic Algorithm Comparison

Genetic algorithms are a popular strategy to treat
multi-objective problems in the literature. Desirable
properties of this approach are their global character
and the fact that they yield an array of solutions
among which the practitioner can choose (a Pareto
Front). However, these advantages come at the
cost of many function evaluations, which limits its
direct use. In order to palliate this problem objective
function evaluations are very usually carried out on
a metamodel. Given that surrogate models were
already available for both hover and forward-flight
cases, a genetic optimization was conducted on these
metamodels in order to compare the obtained results.
The Non-Sorting Genetic Algorithm II, developed by
Deb [33] was chosen as it is a good representation of
the state-of-the-art genetic algorithms. A Python im-
plementation of the algorithm (included in the PyOpt
[34] library) was used to carry out the optimization.
Therefore, the Figure of Merit was obtained with a
kriging metamodel, while the multi-fidelity approach
was used in the computation of the torque coefficient.

The optimization was run using 40 individuals per
generation while monitoring the convergence of the
solution. The determination of the Pareto Front re-
quired at least 400 evaluations for each discipline
(the final results are shown for 30 generations for in-
creased diversity of the Pareto set). The converged
Pareto Set, formed by 40 individuals, was then recom-
puted using elsA as the evaluator in hover. Due to
the good precision of the multi-fidelity metamodel, the
performances were not recomputed in forward flight.
However, 5 points were used to further test the results
of the multi-fidelity approach, obtaining a mean error
of 0.138%, which further confirmed the validity of the
model. The recomputed Pareto Front is presented in
Figure 10 along with the one obtained with the meta-
models. The performances of the baseline ERATO
rotor are presented as well in dashed line. The re-
gion where both disciplines are improved simultane-
ously is rather small (corresponding to the inferior left



quadrant) thus illustrating the antagonism between the
hover and forward flight disciplines.

Figure 10: Comparison of the Pareto Front points ob-
tained using a metamodel for JA w.r.t. their CFD eval-
uations. The ERATO baseline performances

The results of the high-fidelity Nash game car-
ried out on the metamodels is presented in Figure
11. As expected, the Nash game starts from a
non-dominated point on the Pareto Front and the
continuum of equilibria extends tangentially to the
front. In this particular case the continuum of equi-
libria remains very close to the Pareto Front, even
at ε = 1. The verification of the Nash Equilibria with
CFD computations (elsA in hover and elsA/HOST
in forward flight, even if the agreement with the
multi-fidelity model is already excellent) is presented
next in Figure 12.

The high-fidelity Nash Equilibria dominate sec-
tions of the recomputed Pareto Front yielded by
NSGA-II thus indicating that in the high-fidelity space
this front is not yet converged and would require
further iterations. Furthermore, the error between
the Nash Equilibria obtained using metamodels
and the high-fidelity values appears to be lower (at
least for ε ≤ 0.8) than in the case of the NSGA-II
Pareto Front. This can partly be explained by the
fact that the Equilibria remain in the proximity of the
initial optimum in the variable space. Indeed, by
construction, the region around the initial optimum
is better sampled and thus metamodel evaluations
near to this initial optimum tend to be more accurate.
It should be noted as well that the existence of
a continuum of Equilibria implies that sufficiently
close equilibrium points are close in the space of
the objective functions but as well in the design space.

Figure 11: Pareto Front yielded by NSGA-II and Nash
Equilibria obtained using metamodels for both disci-
plines.

Figure 12: Pareto Front yielded by NSGA-II (recom-
puting JA with CFD) and Nash Equilibria (recomputing
both JA and JB with CFD).

The Nash Game formulation is thus validated for the
high-fidelity optimization, requiring less than half func-
tion evaluations than NSGA-II for this particular case,
even if only a segment of the Pareto Front is approx-
imated and the number of evaluations on the meta-
model is not a significant issue. More importantly, so-
lutions of the Nash game remain in the vicinity of the
initial optimum. In our application, for the equilibrium
at ε = 1 the torque coefficient in forward flight is im-
proved to the level of the initial baseline ERATO ro-
tor, while at the same time conserving gains on the



Figure of Merit of about 3.1 points (out of the approxi-
mately 6.1 points improvement obtained for the single-
objective optimization in hover).

5.6 MGDA Application

Nash Games and MGDA represent complemen-
tary approaches to the multi-objective optimization
problem and can be combined in competitive and
cooperative optimization phases. In the case where
the starting point is not on the Pareto Front, MGDA
can be employed to converge to a Pareto stationary
point simultaneously improving all the criteria. Subse-
quently, a Nash game can be carried out, obtaining a
continuum of equilibria tangent to the Pareto Front that
gradually departs from this front. At the end of a Nash
game (or when a user-defined maximum degradation
of the principal criteria is reached during the Nash
Game) MGDA can be applied again, using as starting
point the last Nash Equilibria, attaining the Pareto
Front. The iterative alternation of cooperative and
competitive phases can yield a discretization of the
Pareto Front. Such an application was demonstrated
by Minelli in the aero-acoustic shape optimization of a
business jet [35].

In the case of the high-fidelity twist optimization
presented in the previous section, the continuum
of Equilibria remains very close to the Pareto Front
up to ε = 1. It could be interesting to apply MGDA
at the last equilibrium point and subsequently run
a new Nash game starting from the newly obtained
optimum. Alternatively, in our work we opted to apply
MGDA to each one of the obtained Nash Equilibria
in order to investigate whether this procedure would
produce better results than a genetic algorithm at an
efficient cost. This was motivated by the fact that the
obtained equilibria appear to be already very close to
the predicted Pareto Front. Additionally, this approach
allows us to take advantage of high-fidelity models to
compute the gradient in hover.

Precisely, all the evaluations in hover were directly
evaluated using CFD computations and the gradient
of the Figure of Merit with respect to the design
variables was obtained using the adjoint formulation
available in elsA. In forward flight the previously
presented multi-fidelity model was employed. The
optimizations were limited to a maximum of 3 MGDA
iterations (that is, to the computation of 3 gradients
for each criterion in addition to the linesearch evalua-
tions). The results of the optimization are presented
in Figure 13, along with the NSGA-II Pareto Front and
the Nash Equilibria (both recomputed with CFD).

In this case, the gradient was evaluated 11 times,
and the JA and JB functions were called 49 and 44

Figure 13: Results of the adjoint-assisted MGDA opti-
mizations starting at the Nash Equilibria.

times respectively, considering all the runs of the
algorithm at the 5 starting points. Given the fact that
the starting points are relatively close to the Pareto
Front the convergence is fast, all runs converge with
a maximum of 3 MGDA iterations. Furthermore,
significant gains are obtained almost exclusively at
the first iteration, at the end of which the candidates
are already practically converged on the Pareto Front.
For instance, considering only the first iteration, only 5
gradient evaluations were required along with 18 and
17 function evaluations for JA and JB .
Small gains in both disciplines are obtained, espe-
cially for the optimization starting at the last Nash
Equilibrium. At this last point, a gain of 3.4 points of
FM is retained with respect to ERATO along with a
reduction of the necessary rotor-shaft of 0.16%. How-
ever, the Pareto Optimal point resulting from the last
optimization appears to coincide with the Pareto Front
yielded by NSGA-II (recomputed with CFD): it ap-
pears that the hover metamodel is in fact quite precise.

These results validate our implementation of MGDA
combined with a high-fidelity approach. The MGDA
approach appears to be quite efficient, as a single it-
eration already provides near optimal solutions in this
case.

6 CONCLUSIONS

In this work, two algorithms (i.e. Nash games and
MGDA) adapted to the resolution of multi-objective
optimization problems were presented and applied
to the optimization of the ERATO model rotor. Both
algorithms are complementary in the sense that Nash



games are competitive whereas MGDA is cooperative
in nature. The treated optimization problem consisted
in maximizing the Figure of Merit (JA) in hover and
minimizing the consumed power (or equivalently
the torque coefficient value, JB) in forward flight.
Starting from an optimized configuration in hover,
the competitive algorithm allowed the optimization
of the forward flight performance without degrading
in excess the gains already obtained in hover. This
procedure has been applied to the planform shape
optimization of the ERATO rotor model employing
both low- and high-fidelity models for the evaluation of
rotor performance in forward flight. An adjoint-based
optimization in hover was thus presented in order
to prepare the Nash games. Subsequently, Nash
game multi-objective optimizations were successfully
carried out. However, the optimization results for the
cases where only sweep was considered showed that
higher-fidelity models (and possibly the introduction
of structural constraints) are needed in order to obtain
realistic solutions.

A procedure was thus built to introduce higher-
fidelity information in the optimization loop, using a
multi-fidelity approach. The presented multi-fidelity
framework, based in the modeling of error functions
mapping evaluations from the lowest to the highest
level, is able to predict very accurately the high-fidelity
evaluations in the case of twist distributions. However,
this approach needs further validation using more
challenging geometric functions (sweep variables for
instance), as the differences in the trends provided
by HOST and the loose coupling of elsA/HOST will
surely be more different. In this case, multiplicative
corrections might perform better than the retained
additive correction, as this allows for skewing (i.e.
scaling in addition to rotation and translation) more
adapted to the modeling of non-linearities.

The results of the Nash game involving twist
distributions are similar to those obtained using a
low fidelity model (HOST), which highlights the fact
that HOST is able to correctly predict the high-fidelity
trends in this particular case. Again, it would be
interesting to explore other variables in future works.
A high-fidelity optimization using a genetic algorithm
(NSGA-II) was also carried out for comparison pur-
poses. The Nash Game formulation required less
than half function evaluations than NSGA-II, even if
only a segment of the Pareto Front was approximated.
It should be noted that the number of evaluations
in this context is not an issue (as surrogate models
were employed). However, the fact that the Nash
game yields solutions in the vicinity of the original
starting point presents an additional advantage with
respect to global genetic algorithms in general, as
the metamodel needs to be only locally accurate,

whereas in the case of a global search the metamodel
should be accurate throughout the complete search
space.

A final cooperative optimization phase was finally
presented using the Nash game results. The high
fidelity application, using the adjoint formulation in
hover and the multi-fidelity approach in forward flight
demonstrates the efficiency of the algorithm, as
very few evaluations are needed to obtain significant
improvements of all the objective criteria. A final
optimum was thus obtained, retaining a gain of 3.4
points of the Figure of Merit in hover and slightly
reducing the rotor-shaft torque value in forward flight
by 0.16% with respect to the baseline ERATO rotor.
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les Rotors d’Hélicoptère, Ph.D. thesis, Université
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