Effects of Nonlinearities on Ground Resonance Instability
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Abstract

This paper presents a bifurcation analysis of the
ground resonance phenomenon in order to investi-
gate the effects of nonlinearities in the instability
experienced by a simplified helicopter model. Us-
ing a numerical continuation method, the stability
boundaries of the system and the characteristics
of the periodic motion are determined, to demon-
strate the advantages and potential of the method-
ology when dealing with critical situations featuring
a sudden loss of stability as well as in those situa-
tions where a quantitative determination of post—
critical behavior is of relevant interest.

Nomenclature

e blade lag hinge eccentricity

I blade moment of inertia around hinge axis
m = mg + nm, total vehicle mass

my, blade mass

my fuselage mass

n  number of blades

np blade lag damping coefficient

ng fuselage damping coefficient

po fuselage undamped natural frequency
s Laplace variable

S blade static moment w.r.t. lag hinge
t time

x fuselage lateral displacement

y = (z,n,0)T, system state vector

Greek symbols
02 fuselage cubic stiffening term coefficient
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~ fuselage nonlinear damping coefficient

e =nS?/(2mI), hinged mass inertial parameter
n rotor c.g. lateral displacement parameter

vo = (eS/I)*?, blade inertial parameter

&, k—th blade lag angle

7 nondimensional time

¢ rotor c.g. longitudinal displacement parameter
k—th blade anomaly

w rotor angular speed

Subscripts and superscripts

() differentiation with respect to time ¢

() differentiation with respect to nondimensional
time 7

(') generalized (state variable or parameter)

1 Introduction

In this paper an analysis approach based on the use
of numerical continuation methods [1, 2] and bifur-
cation analysis [3] is proposed as a means for inves-
tigating the ground resonance phenomenon and, in
particular, the effects of nonlinearities on the post—
critical behaviour, once the loss of stability of the
equilibrium condition triggers wide amplitude oscil-
lations of the rotor—fuselage—undercarriage system.

The well known ground resonance instability de-
velops as a result of the interaction between rotor
blade lag motion and elasticity of the undercar-
riage, and may cause serious damage to the he-
licopter, up to catastrophic break—down of rotor
or structure, during either the landing or take-off
phases. The principal objective of the study is to
devise and demonstrate a design tool which high-
lights possible critical features of a specified rotor-
craft configuration when certain system parameters
are varied. Accordingly, the stability boundaries
and the features of the periodic motion are charac-
terized for a simplified helicopter model [4], which
retains all the features necessary for describing the
ground resonance phenomenon.



Position of
rotor CG:

& &
Position of - P K
fuselage CGy// X % 0 W
H < = T

actual

: displaclent, x
= P

Figure 1: Origin of the ground resonance phe-
nomenon (a) and simplified model (b).

Several studies were devoted in the past to an-
alyze this problem and determine stability bound-
aries for blade and undercarriage parameters. Cole-
man and Feingold [5] first provided the correct
physical interpretation of ground resonance as a
self-excited mechanical oscillation, related to a
coupling between rotor centre of mass displacement
with respect to the shaft axis, induced by different
values of the lag angle for the rotor blades, and
the elasticity of the undercarriage. Aerodynamic
forces play little role (if any) in the loss of stabil-
ity of the coupled rotor—fuselage system. Based
on these findings, Mil and his co—workers [4] de-
rived a simple mathematical model for the analysis
of fuselage and blade lag motion, which features
only those characteristics crucial for the onset of
ground resonance oscillations. In particular, n ro-
tor blades are connected through lead-lag hinges to
a hub rotating at an angular speed w, and the rotor
shaft is mounted on a fuselage of mass mg, with a
lateral translational degree of freedom which is rep-
resentative of lateral motion of the helicopter on its
landing gear. Elasticity and damping of the under-
carriage are described by means of a spring and a
damper, respectively (Fig. 1). No displacements
in either the longitudinal and vertical directions are
considered in the model, nor aerodynamic forces on
the rotor blades.

When linear stiffness and damping terms are con-
sidered, motion of the helicopter is described by a
system of n + 1 second order, linear ordinary dif-
ferential equations with periodic coefficients. A
reduced order system represented by a set of 3
second—order linear ordinary differential equations

with constant coefficients can be derived for sta-
bility analysis, where individual blade motion is not
dealt with and the only states are fuselage lateral
displacement and longitudinal and lateral rotor c.g.
coordinates, that depend on blade lag angles and
anomaly. Starting from this model, Mil et al. [4]
provide conditions for the onset of ground reso-
nance oscillations for the small perturbation lin-
ear case. The study was later extended by Tongue
[6], dealing with the effects of nonlinearities in the
damping term of the undercarriage on the onset of
limit cycle behaviour when the stability threshold is
crossed. The analysis was carried out by means of
an approximation of the nonlinear term based on
the describing function approach [7], also known as
“quasi—linearization”. Post—critical behaviour was
determined by tracing plots of limit cycle amplitude
as a function of system parameters.

In this paper, the numerical continuation method
is used to trace branches of periodic solutions [2] so
as to perform a similar study for the original non-
linear model, that is, without approximating the
effects of nonlinear terms by the describing func-
tion. As a major advantage, this approach can
deal with more complex scenarios, e.g. where non-
linearities in the stiffness term of the undercarriage
model are also included. As an example, a cu-
bic stiffening term in the undercarriage response
is introduced that can be hardly approximated by
quasi—linearization.

The capabilities of bifurcation analysis [3] and
continuation methods [1, 2] to efficiently assess sta-
bility properties as a function of system parameters
has been widely exploited in the past in order to
investigate critical flight regimes of fixed wing air-
craft in the presence of nonlinear phenomena (see
[8] and references therein). In spite of the con-
siderable success of this approach in investigating
instabilities related to variations of flight condition
or design parameters, the methodology has been
seldom considered for analyzing critical behavior
for rotary—wing aircraft. To the best of the au-
thors' knowledge, the first application of catastro-
phe theory to a problem related with helicopter ro-
tor instabilities is due to Afolabi [9], but only more
recently continuation methods were employed for
detecting bifurcations along equilibrium branches
of rotor models in a way similar to that proposed
for fixed wing aircraft. This was done in [10] on
a relatively simple model, featuring an averaged
description of rotor force and moments. Instabili-
ties and jump phenomena determined by means of
bifurcation theory were then verified by direct sim-



ulation for a more complex, individual blade rotor
model.

Investigation of the ground resonance phe-
nomenon allows for outlining the main features
of the proposed approach, while demonstrating its
potential for investigating critical situations where
sudden loss of stability are expected, together with
a quantitative description of the expected post—
critical behaviour. After tracing bifurcation di-
agrams by means of the continuation method,
ground resonance instability is investigated in the
framework of catastrophe theory, as proposed in [6]
and [9], for a wider set of model nonlinearities.

The model used for the analysis [4, 6] is briefly
recalled in the next section. Some details on the
application of continuation methods to the consid-
ered system are also given. Nonlinear terms are
included in the model and a comparison between
the findings obtained from the proposed approach
with the simple analytical derivations discussed in
[6] is presented in the Section of Results. A para-
graph of Conclusions ends the paper.

2 Analysis
2.1 Rotorcraft Model

A simple yet effective model for the study of ground
resonance was derived from first principles by Mil
et al. [4]. Taking into account Fig. 1 and the
Nomenclature section, the equations of the coupled
blade—lag and fuselage motion is given by

E+ (2n0 +|#)E + ppr = (1)
= % > [(ék — wEk)Sin + 2w8Costhe
k=1

&k + 2nplp + Wiy, = (2)

S
FESinge , k=1,2..,n

where w? = v3w? is the centrifugal restoring

moment, no hinge spring torque being assumed
throughout the paper, while for v # 0 a nonlin-
earity is introduced in the damping term [6].

It is possible to analyze system stability for a re-
duced order model upon definition of two auxiliary
variables

n=Y &Sin(ty); 6= &Cos(yy) (3)
k=1 k=1

where 17 and ¢ are proportional to rotor centre of
mass shift in the lateral and longitudinal direc-
tion, respectively. By summing up Egs. (2) for

k = 1,2,...,n, multiplied by Cos(¢y) first, and
then repeating the sum operation for the same
equations multiplied by Sin(v), it is possible to
replace Egs. (1) and (2) with the reduced order
system

i+ (2no + y|2))E + pia = (S/M)ij (4)

i+ 2np1) + win — 2w(¢ + nyg) = (5)
= (n/2)(S/1)i

b+ 2npd + w2 + 2w(n) + npn) = 0 (6)

where w? = w?(v3—1). Note that for most modern

helicopters, 1§ ~ 0.1, so that w? is expected to be
negative.

The set given by Eqgs. (4)-(5) can be writ-

ten in term of generalized variables, z = zv,
i = ny(S/M), and ¢ = ¢y(S/M),
7+ (219 + |§:'|)§:' +x= 77" (7)
"+ 27 + @2 — 20(8 + fg) = e’ (8)
¢+ 2md + D20+ 20(7 + i) =0 (9)

where the prime symbol (-)" indicates differentia-
tion with respect to the nondimensional time 7 =
pot, while all the system parameters are divided by
po, thatis, (-) = (-)/po (see [6] for more details
on the derivation). The nondimensional coefficient
¢ =nS?/(2IM) depends on the inertial properties
of the system (blade number, moment of inertia
and static moment, and fuselage mass). Note that
the same set [Eqgs. (7)—(9)] is valid for any value of
~, provided that « does not appear explicitly in the
equations [6], and that it also holds for the linear
case (v = 0), simply removing ~ from the defini-
tion of the generalized state variables. This system
will be referred to as Model 1 in the Section of
Results.

In this work, together with the hydraulic non-
linearity in the damping term, a second nonlinear-
ity is introduced, that represents a nonlinear (cu-
bic) stiffening term in the undercarriage elastic re-
sponse. The lateral translation equation is thus
re—written in the form

&+ (2no +|E])E + pj(1 £ 6°a?)w = (S/M)ij

where the plus and the minus sign hold for a stiffen-
ing and a softening cubic nonlinearity, respectively.
This last equation can be recast in terms of gener-

alized variables as
i+ (200 + |F)F + (1 £6%5DE=7"  (10)

where § = 0/~ provides a measure of the relative
size of the nonlinear terms included in the model.



Note that, if v = 0 and & # 0, it is possible to
define a new set of generalized variables, replacing
~ with § in their definition, so that the resulting
system becomes

&+ 2007 + (1 + 3%z =7 (11)
¢ +mpp) = ei”  (12)
i+ i) =0 (13)

7+ 207 + &2 — 20
@'+ 2mp¢ + 02+ 20

This latter system will be referred to as Model
2. It can be observed that the describing function
approach [7] adopted by Tongue for successfully
dealing with the nonlinear damping term is hardly
applicable to the cubic nonlinearity in the elastic re-
sponse of the undercarriage structure. The describ-
ing function approach is based upon the definition
of an equivalent first harmonic term which repro-
duces the fundamental features of the nonlinearity
introduced in the system. The amplitude of the ad-
ditional term depends nonlinearly on the frequency
of the forcing term and the amplitude of the result-
ing motion, so that the system is no longer truly
linear. At the same time the system response fre-
quency exactly matches that of the forcing term,
as for standard linear systems. Hence the term
“quasi—linearization” adopted for this procedure.

Cubic nonlinearities, on the converse, always
cause a system response with content over two dif-
ferent frequencies, w (the frequency of the forc-
ing term) and 3w . This can be easily under-
stood by considering the trigonometric equivalence
Cos?(x) = 0.75Cos(z) + 0.25Cos(3x). By retain-
ing the fundamental frequency only, a sizable error
would result inasmuch as 25% of the signal due to
the nonlinear term is neglected. On the converse,
the collocation method adopted in the discretiza-
tion of the limit cycle during the continuation pro-
cess allows for a more accurate approximation of
the periodic solutions for the nonlinear model in its
original formulation, so that a better understanding
of the actual features of the post—critical behaviour
of the system is achieved.

2.2 Continuation method and bifurcation
analysis

A continuation algorithm [1] is a numerical tech-
nique that allows one to trace branches of solutions

for a set of nonlinear algebraic equations in the form
fl®,AN) =0, zeR" NeR (14)

as the continuation parameter A is smoothly var-
ied. If the vector field f : R” x R — R" is at

least Lipschitz continuous, the branch of solutions
() is also (locally) smooth, with the exception of
singular points where several branches of solutions
may intersect [3].

In order to follow locally vertical branches, con-
tinuation is not performed with respect to the ac-
tual continuation parameter, A, but by use of an
auxiliary variable, the pseudo—-arc—length s, so that
the Jacobian matrix of the augmented system

f(z(s),A(s)) = 0
(d)? + (d))? (ds)?

is not singular when the function f(x,\) is not
invertible with respect to \.

A prediction—correction method is employed,
where a first approximation of the solution ()
for a perturbed value A 4+ dA is obtained from
the knowledge of previous solutions (prediction
step). The approximation is then refined (correc-
tion step) by a numerical technique such as New-
ton or Newton—chord iterative schemes until a pre-
scribed tolerance is reached, ||f(x®),\ + 0))|| <
e and ||z — 21| < ,. If no convergence
is achieved, a new iteration is attempted reducing
the continuation step dA. The method requires
the knowledge of at least one initial solution of Eq.
(14) for A = Xo.

If f represents the vector field of a dynamic sys-
tem described by the set of n nonlinear ordinary
differential equations (ODE) in the form

T = f(iU,)\),

those points (x,\) € R™ x R where f = 0 are
equilibria for the system and singular points where
the Jacobian V f becomes singular are accompa-
nied by changes of stability of steady states along
the branch, that is, bifurcations.

In the present case, Hopf bifurcations [3] are ex-
pected along the branch of equilibria where x =
n = ¢ = 0, inasmuch as loss of stability is in-
duced by a pair of complex conjugate eigenvalues
crossing the imaginary axis. Hopf bifurcations are
accompanied by the presence of a branch of limit
cycles, that is, periodic solutions &(t) of the set
of ODEs, such that () = @(t + T'), where T is
the period of the solution [11]. A branch of sta-
ble periodic solutions may surround the unstable
equilibrium branch (supercritical case) or a branch
of unstable limit cycles circles around the stable
branch of steady states (subcritical case).

Continuation of periodic solutions is dealt with
by defining a two—point boundary value problem,

(15)



where a non—dimensional time 7 = t/T is intro-
duced and the limit cycle &(7) satisfies the condi-
tions

& =T N, #0)=21)  (16)

where &’ = dz/d7 = T'da/dt = T@. The periodic
solution is discretized using orthogonal collocation.
The limit cycle is divided into N intervals, inside
which the solution is represented by an expansion
in terms of Lagrange polynomials of order 0 up to
m, where m is the number of Gauss collocation
points per interval [2]. In this way the problem of
finding a periodic solution for Eq. (15) is trans-
formed into standard form, Eq. (14), as the result-
ing discretized orbit must satisfy a set of Nm + 1
equations (Nm collocation points plus the period-
icity condition) in Nm + 1 unknowns, where the
unknowns are the Nm coefficients of the piecewise
Lagrange polynomial expansion of the periodic so-
lution plus the limit cycle period. A further integral
condition is needed in order to solve for the phase
indeterminacy, as if &(7) is a solution of Eq. (15),
also &(7 + o) satisfies the same equation. Details
on this last issue can be found in [2].

Stability of limit cycles is investigated using an
approximation of the linear part M of the Poincaré
map [2, 3], which is obtained as a by—product of the
numerical technique for continuation of periodic so-
lutions. The eigenvalues of M, namely the Floquet
multipliers, provide the desired information on cy-
cle stability. Floquet multipliers can be either very
large or very small. In both cases their determi-
nation based on an approximation of M becomes
critical and sudden variations may lead to sizable
errors in the determination of the bifurcation point
along the branch of limit cycles. Nonetheless, they
are used to determine the presence of secondary pe-
riodic bifurcations (branch point and bifurcations
to torii), and direct numerical simulation will be
used in those cases when the approximation is con-
sidered not reliable.

Several implementations of the numerical con-
tinuation algorithm are available, with the capa-
bility of detecting bifurcations, performing branch
switching when pitchfork bifurcations are encoun-
tered, or finding branches of periodic solutions bi-
furcating from Hopf points. Among many oth-
ers, one of the most widely used was developed
by Doedel and his co—workers [12], which runs on
Unix and Linux platforms. In this paper, branches
of equilibria and periodic solutions were traced by
means of the freely available continuation software
MatCont [13], that exploits similar numerical tech-
niques and runs in Matlab™ environment

3 Results

The stability boundaries that mark the onset of
ground resonance oscillations are independent of
the type of nonlinearity introduced in the model.
As a first application of continuation methods, the
determination of these boundaries for the linear
constant coefficient case as a function of system
parameters was performed. In order to trace these
plots, Egs. (7)—(9) (without the nonlinear term |Z/|
in the damping coefficient) were recast into matrix
form and transformed into the Laplace variable do-
main, that is

(Ms?+Cs+K)g(s) =0

where y = (i,7,$)”. The eigenvalues of the sys-
tem are determined from the equation

det(MMN+CA+ K) =0

and the equilibrium condition y, = (0,0,0)” be-
comes unstable as soon as the real part of one of
the 3 pairs of conjugate eigenvalues that character-
ize the eigenstructure of the system becomes pos-
itive.

The eigenvalues depend on system parameters,
namely €, vy, Ng, Ny, and ©. Two of the parame-
ters, € and 7y, are determined by the inertial prop-
erties of rotor blades, and they will be assumed as
prescribed. On the converse, rotor spin rate @ will
vary during rotor engagement and disengagement
operations, and it must be left free to vary during
the analysis. At this point it is possible to investi-
gate rotor—fuselage stability as a function of & and
fuselage and rotor blade damping parameters, ng
and ny. The equation for the stability boundary
can be written in the form

F(Fi0, 7, @) = max[\] =0 (17)
which is solved for different, prescribed values of
ng. The resulting plots in the n;—& plane, re-
ported in Fig. 2, were obtained by means of the
continuation method. For every value of ng, the
point (1, w) = (0,0) satisfies Eq. (17). This can
be used as the starting point for the continuation,
where @ is the continuation parameter and 7 is de-
termined by the continuation software as @ is var-
ied. The resulting approach is considerably more
efficient than the numerical procedure outlined in
[6] for obtaining the same plot.

The plots in Fig. 2 show that for ng > ng ¢ ~
0.72, the stability boundary in the ny—w plane is
a continuous line featuring a maximum 7, ., with
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Figure 2: Stability boundaries for the linear system
as a function of 1, and @ (e = 0.04, vy = 0.25, ng
indicated on the curves).

respect to the blade damping parameter, ny. This
means that, if 7, is higher than this critical value,
no ground resonance instability occurs for any value
of rotor spin rate. On the converse, as already
described in [6], if either 7y < 7g ¢y OF Tig > Tig cr
and 7y, < 7o, there exist two critical values, wq
and @9, where Hopf bifurcations are encountered.
These values bound an interval on the @ axis, where
the equilibrium is unstable and ground resonance
oscillations are expected to take over.

Three configuration for the post—critical be-
haviour are possible, which are reported qualita-
tively in Fig. 3.a—c, where thick lines indicate the
amplitude of the oscillations, while thin lines are as-
sociated to branches of equilibria. Continuous lines
are used for stable steady states, while dashed ones
indicate unstable solutions. When both Hopf bifur-
cations are supercritical (Case a) bounded oscilla-
tions are present for 7 < @ < W9, which disap-
pears as soon as the value of & leaves the unstable
interval. Provided that the amplitude of the os-
cillations at steady—state between the two critical
values remains limited and/or the critical interval
is crossed in a sufficiently short time so that the os-
cillations cannot fully develop, the instability may
not lead to a catastrophic behaviour.

A more serious instability is present if the con-
figuration depicted in Fig. 3.b is dealt with. In
this case (Case b), the Hopf bifurcation in @ is
subcritical. This means that there exists a fold on
the branch of limit cycles, and the portion of the
stable equilibrium branch for &y < & < W is sur-
rounded by unstable periodic solutions. In such a

HB ! HB !
0, ®, O, O
(c)
A
X
0“‘
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Figure 3: Types of post—critical behaviour.

case, a jump is present so that the ground reso-
nance oscillations are likely to fully develop while
w increases beyond @y, suddenly disappearing as
soon as @ > . In this scenario the amplitude
reached by either blade or fuselage oscillations is
likely to exceed structural limits.

An even more catastrophic situation is encoun-
tered for those values of 7, and 7 that lead to
a configuration of limit cycles like that depicted in
Fig. 3.c. In this latter case (Case c) no fold is
present on the stable branch of limit cycles, with
oscillations of increasing amplitude as & grows.
Moreover, the whole stable branch of equilibria for
W > oy is surrounded by unstable limit cycles,
which means that its stability is only local. During
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Figure 4: Model 1: Limit cycles as a function of w
(e =0.04, vop = 0.25, ng = 0.02, ny = 0.04).

rotor spin—up, the oscillations induced by the insta-
bility for & > &1 will not disappear when & grows
beyond @o, in spite of the stability of the underlying
equilibrium. This behaviour, confirmed by direct
numerical simulation not reported in the figures, is
due to the fact that the oscillations grow in am-
plitude as @ is increased, moving along the stable
periodic solution branch that surrounds the unsta-
ble one. This prevents the system from achieving
a new stable equilibrium when & > @o.

A Case b configuration is reported in Figs. 4.a
and b, where a continuation with respect to @ is
performed for the hydraulic nonlinearity (Model 1).
The shape of the limit cycles clearly presents a fold
which would induce an histeretic behaviour, as al-
ready outlined by Tongue [6].

When a cubic nonlinearity in the stiffness term
is considered (Model 2), a Case c configuration is
encountered for the same values of the damping pa-
rameters (Fig. 5). This fact clearly shows that the
stiffening term has dramatic consequences on the
configuration of the limit cycles. Only when higher
values of the damping parameters are considered,
the structure of the limit cycles become less catas-
trophic. This clearly indicates that the presence
of stiffening terms can be detrimental, if not prop-

Figure 5: Model 2: Limit cycles as a function of w
(6 = 0.04, vy = 0.25, nog = 0.02, ny = 0.04).

erly taken into account in the design phase. Note
also that the shape of the limit cycles on the stale
branch in the -2’ plane is quite different from the
elliptical one that would have been obtained from
the application of the describing function approxi-
mation.

4 Conclusions

The analysis of postcritical behaviour of a simple
helicopter model aimed at representing basic fea-
tures of the ground resonance phenomenon was
dealt with by means of continuation software and
bifurcation analysis. The analysis demonstrates
that, in presence of cubic stiffening terms in the
elastic response of the undecarriage structure, a
catastrophic scenario is encountered, where the
presence of a subcritical Hopf bifurcation prevents
the oscillations from stopping even if the rotor is
accelerated beyond the critical threshold where sta-
ble equilibria for the rotor—fuselage system do ex-
ist. As an advantage with respect to previous ap-
proaches, the proposed method allows for a more
accurate determination of the features of the os-
cillations (shape and amplitude) sparked by the in-
stability.

Future work will be aimed at extending the study
to more complex models where hydraulic and cubic
stiffening terms are simultaneously present. Also,
a detailed analysis of an individual blade model,
where a full order dynamical system featuring lag
dynamics of every single blade will be considered,
rather than the reduced order one used in the
present work. In this more complete model, lag
stops will also be modeled as sudden increases of



blade lag spring stiffness, a feature that is expected
to introduce further variations on the topology of
the system solutions after the onset of ground res-
onance.
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