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l. SUMMARY 

THE INFLUENCE OF HIGH TWIST ON 

THE DYNAMICS OF ROTATING BLADES 

William F. White, Jr. 

Structures Laboratory 
US Army Research and Technology Laboratories 

(AVRADCOM) 
Langley Research Center 
Hampton, Virginia, USA 

A method is presented for determining the free vibration charac
teristics of a rotating blade having high twist and nonuniform spanwise 
properties. The equations which govern the bending and torsional motion 
of such a blade are solved using a generalized integration matrix as 
the basis of the method of solution. By using this matrix as an operator 
on the equations expressed in matrix notation, the differential equations 
are numerically integrated to eliminate the spatial dependence and 
reduced to familiar matrix eigenvalue form from which the dynamics of 
the blade are determined using standard eigenvalue extraction techniques. 
The application of this technique to problems of this type offers 
several computational advantages over other methods of solution. 
Numerical results using the present method of solution are in good 
agreement with experimental results. 

2. SYMBOLS 

E 

G 

k 
a 

Blade section constants 

Young's modulus of elasticity 

Shear modulus of elasticity 

Cross-section area moments of inertia 

Torsional stiffness constant 

Polar radius of gyration of cross-sectional area effective 
in carrying tension 
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k 
m 

m 

n 

R 

T 

v,w 

v,w 

X ,y, Z 

e 

w 

Polar radius of gyration of cross-sectional mass about 
elastic axis (k 2 = k 2 + k 2) 

m m
1 

m
2 

Mass radii of gyration about major neutral axis and about 
an axis perpendicular to chord through the elastic axis, 
respectively 

Mass per unit length 

Number of blade stations 

Blade radius 

Blade tension, T ;; J: 0? mx dx 

Lateral displacements of beam, in plane of rotation and 
normal to plane, respectively 

Vibration amplitude of v and w, respectively 

Coordinate system which rotates with blade such that 
x-axis falls along initial or undeformed position of 
elastic axis 

Variable of integration 

Blade angle prior to any deformation, positive when 
leading edge is up 

Total torsional deflection, ~ = ~ + ~, or eigenvector 
0 

Elastic torsional deflection, positive when leading edge 
is up 

Steady-state twist 

Vibration amplitude of ~ 

Rotor angular velocity 

Natural frequency of vibration 

Primes denote derivatives with respect to x; dots denote derivatives with 
respect to time 

Matrix notation: 

[ l 

~ J 

Square matrix 

Diagonal matrix 
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{ } Colwnn matrix 

[ J -l Inverted matrix 

[l] Unit or identity matrix 

3. I:!TRODUCTION 

The dynal!lic behavior of flexi 'Jle rotating blades has recei 'led 
considerable attention in t::.e literat:..:.re for many years, both because 
it constitutes a fundamental problem in applied mechanics and because 
of the use of blades as parts of many rotating structures of engineering 
importance. Helicopters, propel2.ers, and turbines may have serious 
resonant vibration probl2ms when the 2xcitation frequencies are equal 
to some multiple of the rotat~onal speed. To insure that conditions 
susceptible to resonance do not exist within the range of operating 
speeds, it is necessary that the natural frequencies be determined 
accurately. Also, the natural :nodes, because of their orthogonality 
relationships, are often used .in forced response and stability 
calculations. 

This payer formulates a ~umerical solution of the natural vibration 
frequencies and ~ode shapes of a rotating blade having high twist and 
~1onuniforn: spam.,rise properties. This problem has been treated analytically 
in a very complete Qevelopment by ~oubolt and Brooks. 1 However, very 
few results are presen~ed, and they are for special cases of limited 
interest. The present analysis employs the governing equations derived 
in Reference 2 with the assumption of coincident elastic, mass and 
tension axes. The blade is allowed to have an arbitrary high pitch 
angle, r..rhich results in a nonlinear torsional elastic restoring moment. 
The governing equations are solved numerically using a generalized inte
gration matrix as an operator on the equations expressed in matrix 
notation. The equations are linearized and reduced to familiar matrix 
eigenvalue form from which the dynamics of the blade are determined 
using standard eigenvalue extraction techniques. Numerical results 
using the present method of solution are in good agreement with 
experimental results, 

4, FORMULATION 

The equations of motion which describe the bending and torsional 
free vibrations of the blade shown in Figure (1) are derived in . 
Reference 2. The local orientation of the major principal axis relative 
to the plane of rotation is composed of the geometric angles of pitch 
and pretwist. In the present analysis, the angular displacement about 
this undeformed position is the sum of the torsional elastic deformation 
and the steady-state twist. The steady-state twist may be a large angle 
and is dependent on blade characteristics (including pitch and pretwist) 

25-3 



and rotational speed. This large steady-state angular displacement 
results in a nonlinear torsional internal elastic restoring moment. 
Specializing the eQuations of motion derived in Reference 2 for the 
case of torsional motion completely uncoupled from bending, the 
equations of interest assume Lhe form 

flapwise bending: 

(EI
1 

cos 2 8 + EI 2 sin2 8)w"(x,t) + (EI2 - EI1 ) cos 8 sin 8 v"(x,t) 

2 (R (R 
+ () Jx mn[w(n,t)- w(x,t)]dn= -Jx mw(n,t)(n- x)dn 

( 1) 

inplane bending: 

(EI2- EI1 ) cos 8 sin 8 w"(x,t) + (EI
1 

sin
2 

8 + EI2 cos
2 

8)v"(x,t) 

2(R 
+ rl }x m[xv(n,t) - nv(x,t)]dn =- ~: mv(n,t)(n- x)ctn 

torsion: 

(R 2 .. 
~) dn = - )x mkm ~ dn 

where ~ is the sum of the steady-state twist, ¢ , and the torsional 
0 elastic deformation ¢ 

~(x,t) = ¢0 (x) + ¢(x,t) 

For the present analysis, fixed-free boundary conditions are assumed. 
Thus, displacements and slopes are zero at the root and shears and 
moments are zero at the tip. 

( 2) 

( 3) 

( 4) 

E~uation (3) is linearized about the steady-state angular 
position, ¢0 , by assuming that · ¢ is a perturbation ~uantity. 
Substituting e~uation (4) into e~uation (3) and setting all perturbation 
~uantities e~ual to zero yields an e~uilibrium e~uation for ¢

0 

{GJ + EB
1 

[ ( 8' ) 2 + l 8'¢' + l (¢' )2J}q,• + Tk2 ( 8' + <P') 2 0 2 0 0 a 0 

()2 

~: m(k 2 k 2) sin 2(8 + ¢ )dn 0 +- = 2 m2 ml 0 

( 5 ) 
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Substituting equation (4) into equation (3), substracting the equilibrium 
equation and discarding higher order products of perturbation quantities, 
yields the perturbation equation. 

{GJ 2 
EBl [ ( e ' l 2 + 38'¢' + 2 (¢' )2]}¢' + Tk + 

a 0 2 0 -- (6) 
+ 0,2 ~R m(k 2 k 2)¢ + ( m k2 

.. 
cos 2( e + <P ) dll <P dll = 0 

x m2 ml 0 m 
= 

The underlined terms in equation (6) are due to the nonlinear terms in 
equation (3). The steady-state twist <P is determined by iteration 
from equation (5). This value is used t8 determine the coefficients 
of equation (6) which is solved for the torsional frequencies. 

Equations (1), (2), and (6) are linear equations, but have no 
closed form solution, and recourse must be made either to approximate 
methods of solution or direct numerical integration. Here, these 
equations are solved numerically by introducing a generalized integra
tion matrix operator. By expressing these equations in matrix notation 
to isolate the fundamental derivatives3 w' 1

, v 11
, and ¢', using the 

generalized integration matrix, and applying the boundary conditions, 
the equations reduce to a linear eigenvalue problem. 

Equations (1), (2), and (6) are written at discrete points along 
the blade and the resulting sets of equations cast into matrix form. 
The integrals appearing in these matrix equations can be conveniently 
evaluated by introducing a generalized integration operator. Tbis 
operator matrix is a means of numerically integrating a function that 
is expressed in terms of values of the function at increments of the 
independent variable. The generalized integration operator is defined as 

i = 0,1,2, ... ,n (7) 

where f(x) is an arbitrary function of x and {f} is a column 
matrix which defines f(x) at a discrete number of points or stations. 
Tbe matrix [I1 ] may be viewed as a matrix operator where the pre
multiplication of a column matrix defining the function f(x) by [I1 ] 
yields the numerical integration of f(x) from x0 to xi where 
i = 0, l, 2, . . . ,n. 

Inspection of equations (1), (2), and (6) indicates integrals 
that differ from type considered in equation (7). However, these 
additional types of integrals may be evaluated as a function of the 
matrix operator [I1 ]. Using the generalized integration matrix as an 
operator in this manner, the solution of the differential equations can 
be developed entirely in matrix notation. However, to isolate the 
column of values of the fundamental derivatives as the dependent 
variables in the matrix equations, the relationships 
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v'(x,t) = v'(o,t) + ~x v"(x,t)dx 
0 

v(x,t) = v(o,t) + ( v' (x,t)dx 

w'(x,t) = w'(o,t) + ~: w"(x,t)dx 

w(x,t) = w( o, t) + ~: w'(x,t) 

<P(x,t) = <jl(o,t) + ~: <P'(x,t)dx 

are needed. Writing equation (8) at discrete points along the blade 
applying equation (7), and imposing the boundary conditions yields 

{v'} = [I ] {v"} 
l 

( 8) 

{w'} = [I ] {w"} (9) 
l 

Thus, all lower derivatives of the dependent variables (including the 
dependent variables themselves) which appear in the equations may be 
expressed as integrals of the fundamental derivatives w", v", and <P'. 
Using equations (7) and (9) equations (l), (2), and (6) may be expressed 
as a single matrix equation with respect to a column matrix having the 
fundamental derivatives for its elements. Assuming solutions of the 
form 

{v(x,t)} = Fi(x) }eiwt 

{w(x,t)} = {w(x)}eiwt 

{<j>(:x:,t)} = {~(x) }eiwt 
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and expressing the resulting equations of motion in matrix form yields 

where 

[ Gll] [Gl2] [ 0 l {w"} 

[ G2l] [022] [0] { v"} 2 = w 

[ 0 l [0] [033] {¢•} 

[Hll] = [H22 J = [ r
3 

HmJ [ I 1 ](I1 ] 

[H
33

J = [I4 ]~mk!J(I1 ] 

or in condensed notation 

[Hll] [ 0 l [0] {w"} 

[0] [H22] [ 0 l {v"} 

[0] [ 0 l [H33] {~'} 

The submatrices of [0] and [H] are (n + 1) x (n + l) SQuare 
matrices which are functions of blade properties, rotational speed, 
and the matrix operators [I1 ], [I2 ], and [I

3
]. The last element in 

(10) 

( ll) 

the submatrices {w"}, {v"}, and {~'} comprising the column matrix 
{~} corresponds to the free end of the blade. To satisfy the boundary 
conditions at the free end of the blade, the n + l, 2(n + 1), and 
3(n + 1) rows and columns of [0] and [H] in eQuation (ll) must be 
deleted. After performing these deletions, the resulting matrix 
eQuations can be cast into the standard eigenvalue form 
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where 

L {<l>} = [D]{<l>} 
2 w 

and is of order 3n x 3n. The general form of 
equation (7) with [I2 ] and [I3] related to 

and 

[D] = 

0 

0 

0 

0 0 

0 

1 

1 

l 

l 

1 

is given by 
by 

(12) 

The form of the generalized integration operator is dependent upon the 
numerical procedure chosen to evaluate the integrals. The present 
analysis employs the integrating matrix method as derived by Hunter.4 
This method expresses the integrand as a polynomial in the form of 
Newton's forward-difference interpolation formula. In Hunter's 
development, all functions are in effect represented by polynomials 
at the boundaries as well as elsewhere on the beam. Since the 
polynomials approximate the functions very accurately, the integration 
of these polynomial representations yield extremely small errors. It 
should be noted that other numerical methods may be used to evaluate 
the matrix [ I1 ]. 

5. NUMERICAL RESULTS 

The blade selected for analysis is the WADC S-5 scale model of 
Reference 5. This blade was chosen since this reference gives a 
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structural description sufficient for numerical solution as well as 
experimental data for the natural vibration frequencies. The blade 
is in effect cantilevered at 0.1016 meters from the center of rotation 
and the tip of the blade is at a radius of 0.6096 meters. In the 
experimental program, tests were conducted for various pitch angles, 
defined by the values of 6 as measured at x = 0.75R where R is 
the radius from the center of rotation to the tip of the blade. 

In order to compare numerical results with test data, solutions 
were computed for cases corresponding to the pitch settings and 
rotational speeds of the experimental investigation. Physical properties 
of the WADC S-5 blade, as given in Reference 5, are presented in Table 1. 
Additional sectional properties needed for this analysis were estimated 
by assuming an elliptical cross section. These estimated physical 
properties are presented in Table 2. Numerical results were obtained 
by using 11 stations, which correspond to ten 0.0508 meter intervals, 
and employing the integrating matrix given by Hunter4 for a seventh
degree polynomial approximation. The steady-state twist ~0 is 
determined by iteration from equation (5). This value is used to 
determine the coefficients of equation (12) which is solved using the 
double shift QR algorithm.6 

The experimentally and analytically determined free vibration 
frequencies are given in Figures 2 and 3. Figure 2 illustrates the 
comparison for the first and second bending frequencies. Figure 3 
shows the comparison for the first torsion frequency. Figure 4 
illustrates the effect of steady-state twist on the first torsion 
natural frequency. The dashed curves were obtained by neglecting the 
underlined terms in equation (6). The per cent error associated with 
neglecting these terms is shown in Table 3. The influence of steady
state twist is to reduce the torsional frequencies. Figure 4 illustrates 
that ~0 can result in a decreasing torsional frequency with increasing 
rotational speed. 

6. CONCLUDING REMARKS 

A numerical method for determining the free vibration character
istics of a rotating blade having high twist and nonuniform spanwise 
properties is presented. The equations which govern the bending and 
torsional motion of such a blade are solved using a generalized 
integration matrix. By using this matrix as an operator on the equations 
expressed in matrix notation, the differential equations are numerically 
integrated to eliminate the spatial dependence and reduce to familiar 
matrix eigenvalue form from which the dynamics of the blade are deter
mined using standard eigenvalue extraction techniques. A comparison of 
analytical results and experimental data indicates that the method 
of solution yields very accurate natural frequencies. Steady-state 
twist was found to have a significant influence on the torsional 
frequency. 
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TABLE l. Physical properties of propeller blade 
(Cantilevered at 0.1016 m; station length 0.0508 m). 

m, Ell' E 12. e. THICKNESS, CHORD. XIR N~sec2 1m2 N·m2 N-m2 
deg m m 

l.D ,495 X 10-3 .024 X 106 56. X 106 -1QO .1438 6.656 

.9 .495 .025 51.4 -1.4 .1412 6.542 

.8 .517 .026 47.2 -4.1 .1430 6.369 

.1 .528 .027 44.4 0.0 .1480 6.196 

.6 .550 .032 43.8 4.8 .1600 6.052 

.5 .572 .042 43.8 9.9 .l710 5.864 

.4 .616 .057 44.4 14.7 .1970 5.666 

.3 .631 .082 45.8 20.0 .2260 5.533 

.2 .715 .ll5 47.9 25.4 .2590 5.331 

.l 1.034 .347 63.9 30.9 .3320 5.148 

.0 13.200 3.50 250.0 36.0 5.0000 4.899 
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TABLE 2. Estimated physical properties of propeller 
blade assuming ellipticalcross section. 

GJ. k • k k m' km . 81 . 82, X/R 2 
m a' 1 2 

m6 m5 N-m m m m 

1.0 4.27 X 10
4 

1.66 .0359 1.66 5.76 0.0 

.9 3,97 1.63 .0353 !.63 5.19 0.0 

.8 4.02 !.59 .0357 !.59 4.60 0.0 

.7 4.32 1. 55 .0370 !.55 4.14 0,0 

.6 5.36 !.51 .0400 !.51 3.97 0,0 

.5 6.34 1.47 .0427 1.47 3,63 0,0 

.4 9.33 1.42 .0493 1.41 3.52 0.0 

.3 13.79 1.38 .0565 l.37 3,59 0.0 

,2 19.75 1.33 ,0648 U3 3.41 0.0 

.1 40.51 1.29 .0830 1.28 3.68 0.0 

0. 20Xl.OO 1.75 1.2500 1.23 60.00 0.0 

TABLE 3. Comparison of experimental and analytical 
torsion frequency. 

w, Hz PERCENT ERROR 
e@ .75R Q COMPUlJD C~~P~lJD $0 = 0 $0. 0 

OEG rom EXPERIMENTAl $" = 
·20 

i~ ~~:: ~:; '";·' 4.1 !.2 
199.8 8.4 .8 

3587 192.7 222.9 194.4 15.7 .9 
4449 188.2 231.7 190.0 23.1 !.0 
5134 186.8 239.9 187.6 28.4 .4 

0 i: ~;:; ;:~; ":".! 3.1 1.1 
206.0 6.0 !.0 

3585 204.5 224.3 206.5 10.0 !.0 
5886 214.1 251.5 215.7 17.5 .7 

20 i~i /ZQ~-8 ~:: 207.7 !.9 .9 
207.5 209.8 3.5 1.1 

4476 216.3 23!.0 218.1 6.8 .8 
6016 226.1 248.4 229.8 9.9 !.6 

40 i: ~;:: ~~ 
tJJ/.6 1.6' 1.1 
209.9 2.4 1.1 

5975 223.4 236.7 226.7 5.9 1.5 
60 1491 204.6 207.6 206.4 1.5 .9 

2682 204.1 210.0 206.2 2.9 l.O 
4523 204.8 215.9 205.8 5.4 .5 
5945 202.4 221.8 205.6 9.6 !.6 
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Figure 1.- Blade coordinate systems and deflections. 
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Figure 2.- Variation of bending frequencies 

with rotational speed. 
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Figure 3.- Variation of torsion frequency 
with rotational speed. 
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Figure 4.- Torsional frequency versus rotational speed. 
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Figure 4.- Continued. 
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Figure 4.- Concluded. 
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