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Abstract 

Further experience with an alternative procedure for computing the 
aeroelastic stability of a helicopter is described. The basic 
method has been previously presented and is aimed at generating 
the coefficients of the aeroelastic equations of motion 
automatically on the computer. A series of exercises has been 
undertaken with the objective of verifying the computer program 
and the first group of these has been previously reported. This 
paper describes the remaining exercises, and covers air resonance 
in forward flight, transmission system and fuselage flexibility, 
and non-homogeneity of the main rotor control jack stiffnesses. 

1. Introduction 

A method which allows much of the tedious algebraic manipulation 
required when formulating aeroelastic equations of motion to be 
effectively performed instead by the computer has already been 
described [1]. Experience with this alternative method, based on 
a programme of three initial verification exercises, has similarly 
also been presented [2]. 

The method is embodied in a computer program called AGEM 
(Automatic Generation of Equations of Motion). In the program, 
the position of a material point on the system under 
investigation, which in the present paper is a helicopter or part 
of a helicopter, is described in terms of mode shapes and 
transformation matrices, the latter relating one set of 
co-ordinate axes to another. The program performs numerically all 
integrations and differentiations, including those required in the 
Lagrange equations formulation. The equations of motion 
themselves are implied from the computed coefficients and apply to 
perturbation co-ordinates linearised about an equilibrium state. 
A condensed version of the relevant mathematics is reproduced in 
Appendices A.l and A.2. 

This computer based method is not designed necessarily to increase 
insight or lead to extra understanding of the factors important in 
helicopter aeroelasticity. These can be more than amply obtained 
by studying reviews such as those of Friedmann [3, 4] and the 
various papers reviewed therein. The method should be compared 
with approaches such as GRASP (see Hodges et al [5]) or those 
using symbolic computing (see for example Garrad and Quartan [6]). 

The previous verification exercises were aimed at testing specific 
parts of the program and are fully described in Ref [2]. The 
exercises presented in this paper complete the programme of 
verfication tests that were originally devised to build up 
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confidence in the use of AGEM. They are based on air resonance 
models of the Westland Lynx helicopter (in forward flight) and of 
a bearingless main rotor experimental model for which stability 
data already existed. Further studies include the incorporation 
of transmission system and flexible fuselage dynamics into the 
computer model, as well as the effects of non-homogeneity in the 
(non- rotating) rotor control jack stiffnesses. 

For verification purposes, in each case the AGEM model was set up 
exactly in the manner of previous analysis by WHL, so that the 
initial data, the order of the various transformations and general 
mathematical modelling were maintained. The results are presented 
and discussed in the following sections. 

2. Verification Exercises 

2.1 Lynx air resonance in forward flight 

A mathematical model of the WHL Lynx has previously been derived 
by dynamicists in a conventional manner, and the results of an air 
resonance stability analysis were available. These provided the 
basis for a verification exercise in which the computer program 
AGEM was used to derive the relevant equations of motion and 
produce results for comparison with those previously obtained. 
The form of the model used was therefore defined by the original 
Westland analysis. 

The air resonance model is shown diagrammatically in Fig 1. It 
comprises 16 degrees of freedom. Five of these are rigid body 
fuselage motions, namely, fore-and-aft and sideways translation, 
heave, roll and pitch. Each of the four blades has two degrees of 
freedom, being represented by previously determined mode shapes in 
"pure" flap and lag and including o

3 
and a 2 coupling. The 

remaining three degrees of freedom arise from the incorporation 
into the model of a representation of the autostabilisation 
equipment (ASE). 

The general treatment and presentation of model data remains 
largely as in Refs [1] and [2]. However, it has since been 
necessary to incorporate into AGEM some additional facilities in 
order to use it on the current problem. the introduction of the 
ASE being a case in point; another example involves fuselage 
aerodynamics. 

Some further details of these and other relevant contributory 
factors are given below, followed by a comparison of results. 

2.1.1. Rotor blade aerodynamics 

The treatment of the blade aerodynamics is as described in Ref 
[1]. Strip theory is used, the aerodynamic forces being dependent 
on section lift, drag and moment coefficients. The latter 
contains a component that is dependent on section pitching 
velocity. The induced velocity is defined normal to the tip path 
plane, which in turn is given by the steady state cyclic flapping 
inputs. These, and other steady state trim data are assumed to be 
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already provided by other computer programs. The actual induced 
velocity distribution within the rotor disc whilst in forward 
flight is based on Glauert (see Bramwell [7]), so that there is a 
cyclic component. There are also incorporated additional 
components of induced velocity that result from perturbatory rigid 
body motions of the fuselage. 

2.1.2. Fuselage aerodynamics 

The contributions to the equations of motion are formed within 
AGEM via the appropriate scalar products in equations (A.1.3) and 
(A.1.4) of Appendix 1, namely, those containing the vector F which 

~ 

is the aerodynamic force vector per unit area referred to space 
fixed axes. The manner in which I is formulated from the fuselage 

aerodynamic data is very similar to that described in Ref [1] in 
connection with rotor blade aerodynamic terms; this involves 
rotational transformations between space fixed axes and axes fixed 
in the body, which in this case is the fuselage. 

The fuselage aerodynamic data are provided at a specified steady 
flight condition and consist of a vector of steady force and 
moment components, and a(S x S) matrix of derivatives. The latter 
provides the contribution to the former resulting from ~ivet 
perturbations of the fuselage in the rigid body directions. The 
velocity perturbations (corresponding to fore-and-aft, sideways 
and heave motions) are initially resolved such that they are 
relative to the fuselage principal axes. The scalar products 
referred to above are formed in a similar way to that outlined in 
Section 4.2.1. of Ref [1]. 

2. 1. 3. Autostabilisation control system equations 

The aircraft stability is enhanced by the autostabilisation 
equipment (or ASE). The control is effected by providing 
additional blade pitch deflections that are certain functions of 
the aircraft attitude in roll and pitch, and the aircraft vertical 
acceleration. The overall contribution to the blade pitch from 
the ASE, 9AS' is given by 

9AS = 9~ cosTk + 9~ sinTk + 9z (2.1) 

l:olo.de fv~lo.S" 
where 9~ and 9~ are theLpitch contributions from~roll and pitch 

respectively, 9 is the contribution from the collective z 
acceleration control (CAC), and Tk is the azimuthal angle of the 

kth blade measured from the front of the disc. 

The three degrees of freedom introduced by the ASE are thus 
effectively 9~, 9~ and ez. and these are related to the aircraft 

attitudes and motions in roll, pitch and heave by the following 
set of equations. 

(2.2) 

t yaw excluded 
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in which suffix j= f, • or z, and some of the coefficients K .. or 
lJ 

Gij may be zero. Additionally, some parts of the contributions 

from the fuselage rigid body roll and pitch are subject 
to imposed constraints. 

These equations are presented in such a way as to indicate in a 
direct fashion the coupling between the blade pitch contributions 
and the overall aircraft motions. The actual determination of the 
various constants follows from a detailed analysis of the various 
component parts and control systems that make up the 
autostabilisation equipment, and is not presented here. 

2.1.4. Comparison of results 

The equations of motion for the air resonance model in forward 
flight have periodic coefficients, and are solved via the Floquet 
method. An efficient numerical technique is used, and use is also 
made of the symmetry of the rotor, in order to reduce computation 
time. The blade mass is modelled in a simple manner by 
concentrating its distribution along a single line within the 
blade, and this also helps to minimise the computation time. 

For a particular forward flight speed, the real and imaginary 
parts of the eigenvalues from AGEM are shown compared with those 
previously obtained by WHL in Table 1. There are small 
differences here and there but they are not really significant. 
The overall result is to provide confidence in the program. 

Another element of the verification consisted of obtaining the 
coefficient matrices at a particular instant of flight. Thus, the 
inertia, damping and stiffness matrices were obtained from the 
program at the instant when the forward pointing blade was 6 
degrees off the fore-and-aft axis, and compared with those 
obtained by WHL. This implied comparing some 300 pairs of numbers 
(excluding zeroes and symmetric elements) of greatly varying 
magnitude, and it is not considered useful to reproduce the matrix 
coefficients here. Suffice it to say that the comparison between 
the two sets was very largely excellent, and again provided 
further confidence in the computer program. 

2.2. Bearingless main rotor model 

2.2.1. Comparison with test results 

Measurement of the ground and air resonance stability of a model 
bearingless main rotor, as reported in Ref. [8] has been performed 
in order to substantiate analytical prediction methods. 
Comparisons were made with predictions from a WHL stability 
analysis which uses ''pure" components of flap and lag modes as 
degrees of freedom, together with pitch-lag and pitch-flap 
coupling coefficients, obtained from fully-coupled modes predicted 
by a WHL blade modes analysis. 

AGEM can be applied in the same manner as the WHL stability 
analysis (i.e. using ''pure'' modes), and good correlation between 
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the two analyses has been demonstrated, as reported in Ref [2] and 
the first verification exercise above. This good correlation was 
also obtained for predictions of stability for the model 
bearingless rotor. 

A further facility of the AGEM program is its application with 
fully coupled blade modes as the degrees of freedom. Inital 
comparisons were made between predictions using this facility and 
the test results for the model bearingless rotor. These 
comparisons showed a rather poor level of agreement. 

In considering the reasons for this, an important factor was 
identified as the method of modelling the torque tube used to 
apply blade pitch control. The torque tube is represented in the 
WHL blade modes analysis as a second flexural load path adjacent 
to the main hub flexure element, with an impedance model of the 
control system. This load path is fully described in terms of its 
geometry and distribution of section inertia and stiffness 
properties. The initial configuration of the AGEM program was 
written to model a single load path, with a control system 
stiffness model. In the coupled modes application of the program, 
contributions arising from motion of the torque tube might not 
therefore be adequately modelled. 

2.2.2. Investigation of modelling techniques - the torgue 
tube 

In order to investigate further the significance of the method of 
torque tube modelling, as well as effects of other modelling 
assumptions, a series of comparisons were made between calculated 
eigenvalues for a single blade hub-fixed configunttion, using a WHL 
coupled modes stability program and the AGEM program, 
incorporating the first flap, lag and torsion modes. 

The WHL analysis used the fully coupled modes from the blade modes 
program as degrees of freedom, as well as mass, stiffness and 
damping matrix terms calculated within that program due to 
inertial or structural stiffness effects, including those for the 
torque tube. In this way the very fine integration step length of 
the modes program was utilised for these terms. Additionally, a 
quasi-steady aerodynamic model was applied in the stability 
program. 

Eigenvalue results for the WHL program and the AGEM program 
are shown in Fig 2 for two standards of AGEM model. Case 1 is the 
result from the WHL program. In Case 2 the AGEM model includes no 
representation of the torque tube apart from that implicit in 
control system deflections. In Case 3 a lumped inertia 
representation of the torque tube is included, with the inertia 
value calculated as that which would give good correlation of 
torsion frequency with no aerodynamic effects present. 

The results show some large differences between Case 1 and the 
AGEM calculations. The inclusion of the torque tube inertia model 
can be seen to give some improvement in agreement of flap and 
torsion frequencies, although the lag damping agreement is 
degraded. A conclusion could be made that the level of torque 
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tube representation in cases 2 and 3 was inadequate. In order to 
support this conclusion further comparisons of fixed-hub stability 
predictions were made, for a rotor with no torque tube. 

2.2.3. Other modelling technique effects 

Comparisons between fixed-hub stability predictions for a Sea King 
tail rotor, using the AGEM program and a WHL analysis are reported 
in Ref [2]. In that case a hinged rigid blade representation was 
employed, and correlation was good. 

More recent further comparisons for fixed-hub blade stability were 
made using the AGEM program and the WHL coupled modes stability 
program, as applied in the torque tube modelling exercise, above. 
The further comparisons were made for blade data representing a 
Lynx-type semi-rigid rotor, but with smoothed section property 
distributions and assumed control system stiffness and geometry to 
give a large magnitude of pitch-flap and pitch-lag coupling. 
Calculated eigenvalues for this ''theoretical'' rotor are shown in 
Fig 3 for three different AGEM models and the WHL analysis. 

Case 1 is the calculation from the WHL program. Case 2 is an AGEM 
representaiton with few input points around the point of 
attachment of the control system load path. Cases 3 and 4 have 
more input points around this point, but in Case 3 the blade 
structural stiffness matrix is calculated within the AGEM program, 
while in Case 4 it is input from the WHL blade modes program. 

It should be noted that the AGEM calculations uses the blade modes 
and properties defined at 25 radial points, while for 
non-aerodynamic terms the WHL analysis definition is effectively 
at 900 points (the integration steps of the blade modes program). 

It can be seen that overall correlation between all cases is good. 
Case 2 exhibits a degraded correlation in flap frequency with Case 
1, while Case 3 exhibits a degraded correlation of lag damping. 
Differences between calculations from the AGEM models are often 
greater than their individual differences when compared with Case 
1 . 

The conclusion from this study is that, while correlation is good. 
care is required in using the AGEM program in the choice of input 
points in relationship to load path branches and also to 
significant discontinuities in section properties. In addition 
the structural stiffness matrix should ideally be calculated 
within the blade modes program. 

2.2.4. Twin load path representation 

Subsequent to these studies, inclusion of representation of the 
bearingless rotor torque tube as a second flexural load path in 
the AGEM program is proceeding. 
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3. Fuselage and transmission system flexibility 

The underlying analysis for AGEM is essentially modal in approach; 
if the instantaneous position in space of a point on a component 
part of a helicopter can be expressed by means of modal 
expressions, and rotational and translational transformations, 
then that component part can be incorporated into the helicopter 
model. The incorporatio~ of the transmission system dynamics 
and/or the fuselage dynamics (beyond straightforward rigid body 
motions) represents no special difficulty. 

3. 1. Transmission system 

The mechanical transmission system, comprising the gearbox, 
engines, tail rotor and other ancillary rotating equipment is 
modelled by means of a number of previously computed normal modes. 
It is connected to the rotor at the rotorhead, and thus the modal 
deflections at this end of the transmission model are used to 
provide the rotational transformation matrix 

cos"l'T -sin"l'T 0 

[T"l'T] = sin"l'T cos"l'T 0 

0 0 1 

at the rotor axis. This is inserted 
in equation (A.2.3). The angle "l'T = 

at the appropriate 
~fT. q., in which 
i 1 1 

( 3. 1) 

positions 
fTi is the 

modal angular deflection at the rotor end of the transmission in 
the ith mode. It is usually convenient to define the modal 
deflections such that a unit generalised 
mass matrix is produced, the stiffness matrix then being a 
diagonal matrix of natural frequencies squared. 

The transmission system for the Lynx had been previously analysed 
by WHL using a lumped parameter, multi-branch model comprising 48 
components reducing to a 22 d.o.f. model. Results both for the 
system including a representation of the main rotor having three 
lag modes per blade, and for the system excluding the main rotor 
were available, and these formed the basis for a verification 
ex.erc i se. 

The latter results were used to provide the six lowest frequency 
transmission modes, and these were used in AGEM with eight rotor 
blade modes, comprising the lowest two ''pure'' lag bending modes 
per blade. The rotor was running at normal operating speed and 
aerodynamic forces were absent. The eigenvalues were found and 
the lowest six of these (bar the rigid body mode zero frequency) 
are shown compared in Table 2 with the results obtained from the 
former of Westland analyses mentioned above. 

The lower frequencies compare fairly well but the poorer 
comparison at the higher frequency end is considered due to the 
smaller number of degrees of freedom used in the AGEM model. 
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3.2. Flexible fuselage 

The incorporation of a rigid fuselage into the overall model, as 
in the air resonance exercise described in Section 2.1, requires 
the input of the appropriate mass and inertia data, centre of mass 
geometry, and rotational transformation matrices, as in equation 
(A, 2, 3). When the fuselage is flexible, a point on the fuselage 
is additionally described by modal displacements, and there are 
also generalised mass and stiffness contributions to the equations 
of motion. Furthermore, the rotor axis can be considered attached 
to that part of the fuselage adjacent to the rotor head, and so 
the rotational and translational transformation matrices that 
apply to the rotor axis contain elements arising from the modal 
deformations of the fuselage in this region. 

The rotational transformation matrices are exactly similar to 
that in equation (3. 1), and there are three, corresponding to 
three rotation axes possible. The angle in the pitching sense 
transformation matrix is 2 fF~i qi, for example, in which fF~i is 

i 

the 

the modal pitch deflection at the rotor head position on the 
fuselage in the ith mode. Similar expressions appear for roll 
yaw, and indeed also for the three translational deflections. 
latter, and the rotational transformation matrices are inserted 
into the appropriate positions in equation (A.2.3.). 

and 
The 

The incorporation of flexible fuselage dynamics into the AGEM 
could not be properly verified, due to lack of results obtained by 
some other means. However, data existed for a free-free fuselage 
model of the Lynx which carried a lumped mass and inertia 
representation of the main rotor. These data allowed six normal 
modes having substantial hub motion to be selected. These modes 
were used in an AGEM model which also comprised eight rotor modes, 
that is, fundamental flap and lag modes for each of the four 
blades. The rotor ran at normal operating speed and blade 
aerodynamics were excluded. For simplicity, rigid body motions of 
the fuselage were suppressed. 

Natural frequencies for this simplistic model were obtained, and 
those that can be identified with the natural frequencies of the 
initial fuselage model are shown with the latter for comparison in 
Table 3. Five of the six fuselage modal frequencies can still be 
identified, but the change in natural frequency as a result of the 
coupling is generally not significant. 

4. Control jack flexibility 

In Ref [2] the effect of the flexibilities of the control jacks 
was introduced in a simple way by replacing each blade pitch 
control rod by a spring having one end grounded. Both flap and 
pitch motions are affected due to the geometrical offsets of the 
pitch control rod mounting point from the blade and rotation axes. 

In the present exercise this model is improved and made more 
representative by placing the (flexible) control jacks below the 
swash plate, assuming that this type of control applies, and 
making the blade pitch control rods infinitely stiff. If the 
lower (non-rotating) part of the swash plate were mounted on a 
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perfectly homogeneous stiffness, the model would in effect be no 
different dynamically from the former simpler model (leaving aside 
consideration of the mass of the various components, for the 
moment). However, the actual configuration and the ratings of the 
jacks generally give rise to a non-homogeneous stiffness, which as 
far as a rotating blade is concerned, is felt as a periodic 
structural stiffness acting in pitch and flap. 

The following analysis shows how the stiffness contributions are 
obtained. 

4. 1. Control jack stiffness contributions 

Fig. 4 shows a swashplate control arrangement in which the control 
jacks are attached at points 1, 2 and 3. When the jacks move the 
lower part 
of the swashplate away from the datum position, the cylindrical 
co-ordinates of the jack mounting points are given by 

{ri, Ti, oi}' i = 1, 2, 3, as shown in the Figure. The equation 

of the plane containing points 1, 2, and 3 is given by 

£ = E J?. ( 4. 1) 
in which 

1 r 1cosT 1 r 1sinT1 

E = 1 r 2 cosT2 r 2 sinT2 

1 r
3

cosT
3 r 3 sinT3 

and)?.= {p 1 , p 2 , p 3} is a vector of three equation coefficients. 

This describes the instantaneous position of the lower (non­
rotating) part of the swashplate. The upper (rotating) part is 
assumed to lie in the same plane, and it too may be described in a 
similar way through the deflections e. of the lower ends of the 

Ja 
pitch control rods, where j = 1, 2, ... N, and N is the number of 
blades. 

For clarity, only blade number 1 is shown in Fig. 4. Thus 

in which p 1 . p2 , and p
3 

are the equation coefficients as 

and the radius of the pitch control rods, rp' is assumed 

for each blade. This provides 

~A = ~(T)J?. 

= H-1£ 
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from equation (4.1), in which ~A =f~lA ~2A .... ·1. Thus, the pitch 

control rod deflections are given by three independent variables, 
o

1
, o2 , and o3 . 

However, these deflections can also be expressed in terms of the 
flapping and pitching deflections of each blade, via knowledge of 
the associated mode shapes and pitching moment aim geometry. This 
may be expressed as 

(4.4) 

in which 9. is 
~ 

co-ordinates. 
~B namely N , 

a vector containing all relevant blade generalised 

The number of dependent variables is the order of 
and the number of independent variables is likely to 

exceed this. Thus, to ensure compatibility of the conditions 
expressed by equations (4.3) and (4.4), the method of least 
squares is used to minimise the ''error'' between eA and ~B; i.e. 

the product [~B- ~A] [~B- ~AJT is minimised. It can be readily 

shown that this leads to 

£ = [ BT B)-1 BT~ ~ 

in -1 
which H = G f . 

~ ~ ·- The 

h 
1 liT K 1i h K =-t en 2 ~ ~ _. w ere 

stiffnesses of the three 

(4.5) 

overall strain energy in the jacks is 

diag {K 1 , K2 , K3} represents the 

control jacks. 

The contributions to the stiffness coefficients are provided by 
the last term in equation (A.1.4.) and because Q and hence B is 

periodic it is possible for these contributions to also be 
periodic. The individual blade motions are coupled together 
through the swashplate, and this is manifested by the appearance 
of coupling terms in the stiffness matrix. 

It should be noted that since ~A = ~B is identically possible, 

then the minimum value of the ''error'' product is zero. 

4.2. Stability check 

The presence of periodic coefficients in the equations of motion 
points to the possibility of parametric instability at certain 
rotor speeds (see Barr and Done [9 ]). As a preliminary check, a 
model was set up on AGEM consisting of a 4-bladed rotor having one 
fundamental flap and one fundamental pitch mode per blade. 
Aerodynamic forces were excluded, and the data relating to the 
blades and the jack and pitch control mechanism were those of the 
Lynx. The latter is of the spider-spindle type, rather than 
swashplate, and this has the effect of making the form of f in 
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equation (4.1) somewhat simpler. It can then be shown that [~T ~J 
in equation (4.5) is a diagonal matrix of scalar terms, and that 
periodic contributions appear in the structural stiffness matrix 
when the effective stiffnesses of the cyclic control jacks are 
unequal. This is in fact the case with the Lynx; it can further 
be easily demonstrated from the analysis that the periodic 
contributions vary at twice per rotor revolution. 

A stability study on the 8 d.o.f. 
range of rotor speeds up to 30 

op 
operating speed, in increments of 

model was carried out for a 
where 0 is the normal op 
0.05 0 using the Floquet 

op 
technique to obtain eigenvalues. Instabilities were detected at 
speeds of 0.2, 0.25, 1.25. 1.75 and 2.25 0 Below 0.2 0 

op op a 

clear solution could not be obtained. Bearing in mind that this 
model is completely undamped, and that it is a characteristic of 
parametric vibration that isolated instabilities are readily 
suppressed by the presence of only a small amount of damping, the 
effect was not considered important. Indeed, in extensive testing 
and operation of the Lynx overmany years, freedom from any such 
instabilicies has been clearly demonstrated. 

5. Discussion 

This paper describes the work concerned with the development of 
the computer program AGEM subsequent to that reported in Refs [1] 
and [2]. The verification exercises used to explore the 
applicability and limitations of the program in the current work 
have centred on air resonance stability of the Lynx helicopter and 
the bearingless main rotor experimental model. The latter 
highlighted the importance of correctly modelling the system (in 
the mathematical sense), particularly in regard to split load 
paths and input data points. The other verification exercise 
concerned the incorporation of transmission system dynamics into 
the overall model. The inclusion of flexible fuselage dynamics 
can equally be performed without difficulty, but lack of results 
from other means of analysis meant that a full verification could 
not be carried out. 

The latter two examples help illustrate the scope of the AGEM, and 
this is further demonstrated by Section 4 concerned with the 
effects of non-homogeneity in the (non-rotating) rotor control 
jack stiffnesses. 

These exercises have allowed consolidation of experience and 
confidence in the use of AGEM. The program has been mounted and 
tested at WHL, Yeovil. since 1985 and is now running at RAE, 
Farnborough. 
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Appendix A.l: Expressions for matrix coefficients 

The full derivation for the expressions which 
~iven in Ref.[l]. The coefficients are the elements 
LP], [Q] and [RJ in the equations of motion: 

[P]l;i.. + (QJi + [R]~j. = Q. 

appear below is 
of the matrices 

(A.l.l) 

in which 11- is a vector of generalised co-ordinates representing 
perturbations from some steady-state situation. The matrix 
coefficients are: 

=j"i3. . a~ dm 
aqi "Cl.i 

.• (A.l.2) 

.. (A.l.3) 
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R .. =jaa. 
1J aq. 

1 

•. (A.l.4) 

/

aR 
- ~. 

in which ~is the position vector of a point in the helicopter with 
reference to space fixed or inertial axes, F is the aerodynamic 
force vector per unit area referred to the same axes, u is strain 
energy, dm is an elemental mass, dS an elemental area and dV an 
elemental volume. The integral signs are symbolic, the integration 
being as indicated by dm, dS or dV and over an appropriate extent, 
e.g. the total number of blades, the blade lifting surface, the 
fuselage, etc. The dot products ensure that the integrals are of 
scalar quantities. Structural damping is introduced into[~ 
separately. 

To evaluate the integrals, ,8, and.,E' have to be expressed in 
terms of local co-ordinates by means of a set of transformations (see 
Appendix A.2); the differentials are performed numerically for a 
given time instant and the integrations (also numerical) are arranged 
so that, for a blade, they utilise blade properties expressed along a 
blade axis. The general scheme is explained in Ref.tl). 

Appendix A.2: Formulation of transformation from local to fixed axes 

Figs. S(a) and (b) show the various deformations and axes that 
enable the transformation from local co-ordinates based on moving 
axes to co-ordinates based on fixed or inertial axes to be made. 
The flap, lag and twist deformations are expressed in terms of 
assumed modes, each of these being associated with a generalised 
co-ordinate, q.. The assumed modes may be experimentally obtained 
or previously 1 calculated, or based on some simple algebraic form, 
e.g. polynomial, trigonometric etc. Thus: 

.. (A.2.1) 

in which f
13
(s), f (s) and0 (s) are the flap, lag and pitch 

deflections at a ~tation d1stance s along the ~lade axis, 130 is the 
coning angle, ~0 the steady lag, and 0

0 
the combined built-1n twist 
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and applied pitch. The sectional steady-state values are given by 
f (s), f (s) and e (s), and the contributions from each mode qi 
a~~ f .(sJ~ f .(s) a~a f6.(s). Any mechanical pitch/flap or pitch/ 

B1 1;;1 1 . 
lag coupling terms (i.e. due to 63 and a2), and collect1ve and 
cyclic pitch (e.g. arising from the ASE) is inserted into the 
expression for es(s). Differentiation of fS(s) and fl;;(s) with 
respect to s provides expressions for local flap and lag angles, 
S(s) and ~;;(s) respectively. Further angles, necessary to formulate 
rotation transformation matrices are T = nt (instantaneous angle of 
rotation of the datum blade about the rotor axis), n (rotor axis 
tilt), and~. w. y (fuselage roll, pitch and yaw). 

It can be shown that a point at L1o = {x1o. y1o, Z1o} on a 
blade (local blade axes with x10 = 0, see Fig.5{a)) may be expressed 
in terms of axes attached to the rotor hub as 

!h - {Xs,Ys,zs} 

= [Al]_t10 + ]1 •• (A.2.2) 

where [A!] = [TTJ [T rJ (T ~;;J [T9] 

[B!] = [Tr](rs + [Talrsl 

s 
.rs = -~ /z;(s) 2 ds 

0 

fz;(s) 

0 

s 
.£6 = s - ! f a(s)l ds 

0 

Yo 

Z0 + fB(s) 

in which Y
0 

and Z define the built-in blade axis offset. A 
rotational tran~formation matrix is denoted [T(angle~; the angle 
indicates the angle between the axes concerned. A typical matrix is, 
for example: 

[r,J • ~ 0 

cos0( s) 

sine(s) 

~sine(s )] 
cos0(s) 

The diagonal positioning of the 'one' depends upon the axes about 
which the rotational transformation is taking place. 
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For axes fixed in space: 

= [A]!)o +!!. .• (A.2.3) 

where [A] = [\] [T1/J1[T<P)[TTlJ[A1] 

~ = [\] [TwJ [T<P] ( [\U 1 + Iacl + l:f 

in which r c defines the co-ordinates of the aircraft centre of mass, -a . 
and Lf = {qxf' qyf' qzf} is a vector of the fuselage translational 
displacements (see F'ig. 5(h)). The suffices n, <1>, 'i' andy refer 
to rotor shaft tilt, and fuselage roll, pitch and yaw 
respectively. It is normally convenient to align the J:p a><es 
with the instantaneous position of the fuselage principal a><es. 

P." (>:. ':1- < ) - hvb f·~·cl <.oord< .... .) • ~. 5 

r • (x u 2 ) - biad< "''•"' ..... lo• J'"' to 

Fig.5 (a): Transformations to hub-fixed axes 

F1g.5(b): Transformations to space-fixed axes 
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Hec..v~ 

( S fo•<~o.s• al..o.r'.) 

FIG 1 AIR R£SONIJNCG /"TOPEL.. 

real pari (rad/s) 

c '., on 1':01 

-!D ·IC 

.,., l 
I -~.s .,_ 

Table 1: Real end imaginary parts of eigenvalues, 
air resonance in forward flight. •"jO IU u 

. .., Ll u 1t'HL results AGEM results 

Resl I.aJiinary Real I.sJfinary 

-0.0199 9.48 -0.0199 9.49 

-0.064 7.34 -0.056 7.43 

-2.589 10.88 -2.70 10.88 

-2.433 10.88 -2.34 10.88 

-0.076 3.54 -0.065 3.54 

-2.32 5.50 -2.28 5.49 

-2.58 5.49 -2.60 5.5 

-0.0431 1.87 -0.038 1.87 

-0.191 1.35 -0.188 1.34 

-2.56 1.32 -2.56 1.31 

-2.27 0.798 -2.20 0.69 

-0.195 0.627 -0.193 0.63 

-0.296 0.096 -0.32 0.15 

-0.111 0 -0.11 0 

-0.007 0 -0.01 0 

-0.0326 0 -0.048 0 

::I -1.:> •10 

F!..~-<P Li'G . 

Imaginary pari (rad/s) 

·..:~ 100 """" 

LA< 
Ft.FI~ 

ICC So ICO 

Cases: 
1 Result from WHL program J133 
2 AGEN with no torque tuba represenlatioo 
3 AGEM with torque tube representation 

I 
I 

I 

TO ... SJON 

TO[(!a.ICN 

Fjg 2 Calculatgd ejgeovalups for model RMQ· 
comnar!sgo gr 5log!s-blnrte hub-Oxed illn 
(3 coupled blade modes) 
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Table 2: Comparison of natural frequencies when 
the transmission system is included. 

,Vsturnl frequency 1/z 

ft'HL AGEH 

5.39 5.40 

7.82 7.91 

16.6 16.6 

18.9 18.95 

36.3 38.0 

63.6 69.5 

real par1 (radls) 

0 
I ?. 1. !o-

'-"< 
-s I 

_., 

-1ol uJt -:::..:. 

F~AF- _, 
TO~oON 

Imaginary purl (rad/s) 

F:..,..p. 

~I ~ •<ol 

m 
'-f\C, TCI'H;o:tt 

··i 1T , .. ,...-,-
' I' 

! 
I ,. 5'""' 

Cases: 
1 Result from WHL program J 133 
2 AGEM with sparse points around control load path branch 
3 AGEM with internally computed structural stiffness 
4 AGEH with externally computed slruclural stiffness 

Ejg3 Cg!qtJt!Rd gjgonyglup!i for '!hoor&lkal" ~ 
romparjson of sjngle-blgde bub-fixed ~ 

(3 coupled blade modes) 

Table 3: N~tural fr'?<Juencies ror flexible ruselage z.odel 
w1th and Wltbout rotor flexibility. 

Flexible fuselage with Flexible fuselage 

la2ped .ass rotor ~<~ith 
flexible rotor 

Description of Natural frequency Natural freque»cy 
•sin rotor Hz 

head .ations Hz (J'uselage IMJdes) 

Fore/aft and heave 13.792 14.33 

Fore/aft 18.466 18.56 

Fore/aft and roll 18.783 19.67 

Sideways 19.170 20.00 

Sideways, roll and 
yaw 30.19 32.32 

Yaw 35.445 • 
* No comparable frequency obtained. 

Blade 1 

Jock sfiffness J. w 

Ror9 pt of 
Swa.shplale 

W!ocko' 
posn. or 
non-rofj 
pf. oP 
swa.sJJpla.fe 

l:Jaft<M 
posn. of 
non- f'r>ti 
pf. of 
Swa.shplcJ.t. 

~/(", 4. RoTOR PITCff CoNTl<O~ 7HRoVGH 

SwASH PLATE 
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