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Abstract

A new approach for detection and identification
of damage in a rotating helicopter rotor is pre-
sented. A full–scale rotor analysis has been car-
ried out using a detailed model of the blade elas-
tic behavior and dynamics, where the blade elas-
tic modes in addition to root hinge rotational de-
grees of freedom comprise a state vector. Sev-
eral damage locations are considered and a set of
Kalman filters is constructed accordingly. The
best fitting model, according to measurements
taken from the truth model, is determined in a
probabilistic manner. In the proposed approach,
measurement and process noise are treated in-
herently, enabling enhanced performance com-
pared to other published methods. Combined
with the model–based feature, the proposed al-
gorithm eliminates the need for a training stage
and enables a wide range of flight regimes. In
this work, noisy measurements are generated us-
ing sensors placed at a finite element node along
the blade. A Monte–Carlo analysis is carried out,
giving a comprehensive view of the statistical na-
ture of the results. A parametric study is pre-
sented and conclusions concerning the detectabil-
ity of damage in a helicopter rotor and the effi-
ciency of the proposed method are drawn.

1. Introduction

The detection of damage as a part of self health
monitoring in structural systems is an important
contributor to their safety, reliability and struc-
tural integrity. Early damage detection has the
potential of reducing life cycle costs and possibly
increasing replacement time intervals. If damage
is located and monitored, then components of the
structure may be replaced before some critical

∗Graduate Student.
†Associate Professor.
‡Associate Professor.

Presented at the 26th European Rotorcraft Forum, 26–29
September 2000, The Hague, The Netherlands.

point is reached and a dangerous failure occurs.
Cracks found in structural elements have var-

ious causes. One form of cracks is caused by fa-
tigue and takes place under service conditions as
a result of the limited fatigue strength. Cracks
may also appear due to mechanical defects or
manufacturing processes. Cracks present a seri-
ous threat to proper performance and most fail-
ures of presently used equipment are due to ma-
terial fatigue. For this reason, methods enabling
early detection and localization of cracks have
been the subject of many studies.1–5

One class of damage detection methods in
which damage is seen as a change in the param-
eters of a structural model is based on modal in-
formation. Typically, modal–based damage de-
tection methods use a finite element model of the
system combined with experimental modal data
to determine damage location and extent. The
effect of cracks on the natural frequencies of a
cantilever beam is demonstrated in Ref. 2. In
their study, the authors assumed that the cracks
occur in the first mode of fracture: i.e., the crack
opening mode. These cracks were modeled us-
ing rotational springs with equivalent stiffnesses.
The natural frequencies were calculated by solv-
ing the beam’s deflection partial differential equa-
tion with the appropriate boundary conditions
at the crack locations. The positions of two
cracks in relation to each other, in addition to
the changes in crack depths, was shown to affect
the beam’s natural frequencies. However, only
the first mode was shown, and no information
was given regarding the effect of the cracks rela-
tive to an undamaged beam. The work presented
in Ref. 3 also applies a rotational spring to model
the crack when the crack is open. The crack pa-
rameters (size and location) are to be extracted
by examining two crack signatures calculated by
subjecting the beam to harmonic loading at two
frequencies that would excite the first and second
modes. These crack signatures are calculated us-
ing Fourier transforms of the displacement at a
specific point along the beam, and are shown to
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be very small. Since natural frequencies change
very slightly as crack size and location varies,
the addition of noise, not treated in this work,
would significantly decrease the identification ca-
pability. In Ref. 4 the changes in mode shape
due to presence of structural damage was deter-
mined. A finite element model with reductions of
the modulus of elasticity in prescribed segments
was implemented. It was shown that the elas-
tic rotation undergoes a step jump in value when
crossing the damage location, while the displace-
ment parameter takes a change in its slope. An
eigenstructure assignment technique for damage
detection in rotating structures is demonstrated
in Ref. 5. The damage is simulated by a 10%
loss of mass and stiffness in the damaged ele-
ment. The eigenvector that best approximates
the damaged eigenvector is obtained and the an-
gle between these two vectors is evaluated. This
process is repeated for every one of the modes
considered. A test case with noise contaminated
mode shapes is also presented. An extension to
this algorithm for rotating helicopter blades ac-
counting for hovering aerodynamics is presented
in Ref. 6. The blade’s aerodynamics is incorpo-
rated as a damping term in the structural dy-
namics of the blade. The damage is shown to be
properly characterized when flapping modes are
used. However, the algorithm presented is based
on taking the pseudo–inverse of a known matrix
in order to solve for the damage extent. This
key component, actually, is a least–squares esti-
mation procedure which could prove to be very
poor in some cases.

Another approach for damage detection in
beam structures described in literature is using a
subspace rotation algorithm.1 This method views
damage location and damage extent as two differ-
ent problems requiring two separate solutions. In
this approach, damage is manifested as changes
in the mass, damping and stiffness matrices of the
structure. Strain sensors were used, therefore,
a method for extracting displacement frequency
responses from strain data was presented. This
study shows that higher–order vibration modes
are required to locate damage events. In addi-
tion, condensation methods can not be used to
remove rotational degrees of freedom because of
their coupling with translation degrees of free-
dom.

Several studies have been published concern-
ing damage detection in helicopters.7–10 In these
works, a model of the helicopter is utilized to sim-
ulate typical main rotor components faults. The
model results are then inserted as inputs to a
neural network in order to complete the train-
ing stage. The network’s detection capability is
tested in several cases including noise corrupted

inputs.
In the present study, the damage detection

methodology is based on the multiple–model ap-
proach. In this method various damage loca-
tions and levels are considered, where each case
is adequately represented by a finite element
model. A Kalman filter is tuned according to
each model and the best fitting one is deter-
mined in a probabilistic manner based on noisy
displacement or velocity measurements. Previ-
ous studies concerning a rotating blade can be
found in Refs. 11, 12. The results in these works
have clearly demonstrated high damage detection
and identification capability. In addition, an ex-
tensive parametric study was carried out, giving
insight on the influence of various parameters.

2. The Multiple–Model Adaptive
Estimation approach

In various estimation problems, specifically in
damage detection cases, uncertain parameters
exist within the system model used for algo-
rithm design. Typically, these parameters can
undergo large jump changes. Such problems give
rise to the need for the estimation of parame-
ter values simultaneously with estimation of state
variables. One means of accomplishing this is
the multiple model adaptive estimation technique
(MMAE).13,14 The system is assumed to be ad-
equately represented by a linear stochastic state
model, with uncertain parameters affecting the
matrices defining the structure of the model or
the noise distribution model. It is further as-
sumed that the parameters can take only dis-
crete values. In cases where continuous param-
eter values are presented, representative discrete
values have to be chosen throughout the contin-
uous range of possible values. A Kalman filter is
then designed for each choice of parameter value,
resulting in a bank of K separate filters. Based
on the residuals of each one of these K filters, the
conditional probabilities of each discrete parame-
ter value being “correct” (given the measurement
history to that time) are evaluated iteratively.

Following the development presented in
Refs. 14,15, consider the system model described
by the first–order, linear, stochastic differential
state equation of the form:

ẋ(t) = F(a)x(t)+G(a)w(t) (1)

with noisy measurements described by

z(ti) = C(a)x(ti)+v(ti) (2)

where x(t) is the system state vector and z(t)
is the measurement vector. It is assumed that
w(t) and v(t) are independent, zero–mean, white
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Gaussian noise processes with covariances Q(t)
and R(t), respectively. a is a vector containing
all the uncertain dynamic parameters given in the
system model. F(a) is the system plant matrix,
G(a) is the noise distribution matrix and C(a)
is the measurement matrix. Since a may assume
a continuous range of values over the space of al-
lowable parameters, it is necessary to discretize a
into a set of J vector values: a1,a2, ...,aJ . A mul-
tiple model adaptive estimator consists of J in-
dependent Kalman filters, in which the jth filter
is constructed according to a specific parameter
set aj . These J filters form a bank of elemen-
tal filters which are processed in parallel. Each
elemental filter produces its own estimate of the
true state, denoted as x̂j(ti), for the jth hypothe-
sized value of a. The residuals of all J elemental
filters are then used to calculate the probabil-
ity that a assumes the value aj at time ti, for
j = 1, 2, ..., J . This probability is called the “hy-
pothesis conditional probability” and is denoted
as pj(ti). This conditional probability represents
the validity of the jth filter’s system model at
time ti. The hypothesis conditional probabilities
pj(ti), j = 1, 2, ..., J , are calculated at each sam-
ple time ti, by the recursive equation:

pj(ti) =
fz(ti|a,Z(ti−1)) (zi|aj ,Zi−1) pj(ti−1)

∑J
k=1 fz(ti|a,Z(ti−1)) (zi|aj ,Zi−1) pk(ti−1)

(3)
where Z(ti−1) is the measurement history from
the first sample time until sample time ti−1,
and the innovation probability density function
is given by

fz(ti|a,Z(ti−1)) (zi|aj , Zi−1) =
1

(2π)S/2 |Ak (ti)|1/2

· exp
{

−1
2
rT

k (ti)A−1
k (ti) rk (ti)

}

(4)

where S is the number of sensors. The kth filter
residual vector is:

rk(ti) = z(ti)−Hk(ti)x̂k(t−i ) (5)

where x̂k(t−i ) is the kth filter predicted state es-
timate. The kth filter–computed residual covari-
ance matrix, Ak(ti) is calculated by

Ak(ti) = Hk(ti)Pk(t−i )HT
k (ti)+Rk(ti) (6)

where Pk(t−i ) is the kth filter prediction er-
ror covariance. The residual of the jth filter
plays a major role in determining pj(ti). As
is evident from (3), the filter with the smallest
value of rT

j (ti)A−1
j (ti)rj(ti) assumes the largest

conditional hypothesis probability. Thus, this
algorithm is consistent with the intuition that
the residuals of a well–matched filter should be

smaller (relative to the filter’s internally com-
puted residual covariance, Aj) than the residuals
of a mismatched filter. To allow the estimator to
adapt to the changing parameter value, the hy-
pothesis conditional probabilities are artificially
bounded below by a small number (0.0005). This
insures preventing any of them from converging
to zero, which would make it very difficult for
them to change significantly in response to a sub-
sequent change in true parameter value.

3. Structural Model

The full–scale rotor analysis has been carried out
using the software package RAPID/Plus,16 which
is capable of modeling general rotorcraft config-
urations, conventional helicopters and tilt-rotors.
RAPID/Plus may handle nonuniform and dissim-
ilar blades and is therefore suitable to the cur-
rent task. Both rigid and elastic blade analyses
are possible. Blade elasticity is modeled using
a built-in modal based analysis for structurally
pretwisted spars. This analysis enables including
the blade’s axial, lead–lag, flap and twist elas-
tic deformations, designated by u, v, w and φ,
respectively. Damage is manifested through a re-
duction in the bending stiffnesses and torsional
rigidity of one element at a specific location along
the span. Calculation of the reduced stiffness
caused by a crack, based on fracture mechan-
ics concepts, can be found in Refs. 3, 11. A de-
formed blade is presented in Fig. 1. The model
also includes fully articulated blades with arbi-
trary pitch, flap and lag offsets, root springs and
dampers, and a detailed control system mecha-
nism (swashplate, elastic pitch links, pitch horn,
etc.), which enables future study of faults in these
components.

φ

Undeformed

Deformed

u v

w

Figure 1: A deformed elastic blade

The damage detection algorithm consists of 5
different models running in parallel – 4 dam-
aged blade models along with the baseline un-
damaged blade model. These models are des-
ignated as “0” for the baseline model and “1”–
“4” for the damaged blade models. The modeled
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damage, reflected by reduced stiffness values, is
assumed to be located at one of four spanwise
locations designated by x/R = 0.15, 0.35, 0.55
and x/R = 0.75. The true damage may occur at
10 equally spaced elements along the blade (i.e
x/R = 0.1, 0.2, · · · 1.0).

3.1 Damage Identification Logic

The decision logic is based on calculating the fit-
ness probability for each of the models over an
inspection time interval (designated as td). Let
pj(ti) denote the hypothesis conditional proba-
bility of the jth model at a discrete time ti (3),
and qj refer to the fitness probability of the jth
model. Then

qj =

∑

t∈td
pj(t)

∑J
k=1

∑

t∈td
pk(t)

(7)

Let qmax be defined as

qmax , max
j∈{1,2,...,J}

{qj} (8)

The model associated with qmax is said to de-
scribe the true damaged behavior in the best
manner. In order to provide a comprehensive
view of the statistical nature of the results, a
Monte–Carlo analysis17 is carried out, where the
same damaged case is repeated. For each one of
the tested cases, the Monte–Carlo procedure con-
tinues until no change occurs in the model found
to be the most fitting, and its identification prob-
ability, or a limit of 150 runs is reached.

4. Parametric Study

The detection and identification capabilities of
the proposed method are demonstrated through
two test cases of a full–scale, fixed–shaft rotor
with flap, lead–lag and twist elastic motions.

4.1 In vacuum results

Consider a two–bladed fixed–shaft rotor in vac-
uum with blade properties listed in Table 1. In
this case, 3 elastic modes are considered: the first
beamwise (flap) bending mode, the first chord-
wise (lead–lag) bending mode and the first twist
mode. Here, the damage is manifested as a 10%
reduction in both the beamwise and the chord-
wise stiffnesses, as well as in the torsional rigid-
ity, at a specific blade element. The equations of
blade motions are derived using RAPID/Plus.16

The system matrices are then utilized for con-
structing the bank of Kalman filters. In this case
the damaged models are spread along the blade
as previously stated in section 3., however, the
damage is assumed to occur only in one of the

blades – designated as blade#1. Moreover, the
models account for damage only in blade#1.
Three measurements are taken at a specific node
along blade#1 – two velocity components (ver-
tical and horizontal), and one angular velocity
(pitch rate). The measurement noise standard
deviation is ±0.1 m/s for velocity and ±0.1 rad/s
for angular velocity (these values correspond to
a signal to noise ratio of 10 for measurements
taken at the blade’s tip). For this case, 4 ro-
tor revolutions are taken as the detection time
interval, while the decision time is the last rev-
olution. Since there are 11 possible locations of
the true damage (zero means no damage), and
10 different sensor locations, the total number of
cases inspected equals 110. In Figs. 2, 3, 4 three
performance measures of the proposed detection
and identification algorithm are examined: False
alarm, missed detection and false identification
rates, all presented versus sensor location along
the blade. False alarm rate is defined as the
probability of detecting damage when no dam-
age occurs. Missed detection is the probability
of obtaining the output “no damage” while dam-
age indeed occurs along the blade. The case of
false identification is defined, in this study, as the
probability of detecting true damage, albeit in a
wrong location. Fig. 5 shows the damage identi-
fication results. The shaded areas in Fig. 5 com-
prise all the cases in which the true damage was
identified (this is the case where the model as-
sociated with qmax represents damage location
closest to the true damage location). The first
column (zero damage location) represents the no–
damage case. Let p denote the probability of a
correct identification for a specific damage and
sensor locations, defined as p , Nc

NMC
where Nc

corresponds to the number of Monte–Carlo runs
in which correct identification was achieved, and
NMC is the total number of Monte–Carlo runs.
Three levels of confidence are shown, each one
corresponding to an interval of values of p. Let
q̄max be defined as

q̄max ,

{

qmax correct identification achieved,
0 no identification.

(9)
then the percentage given in Fig. 5 is given by:

True ID =

∑1
xd=0

∑1
xs=0.1 q̄max (xd, xs)

110
(10)

where xd is the damage location, xs refers to the
sensor location, and q̄max (xd, xs) is computed ac-
cording to Eqs. 8, 9. As demonstrated, damage
detectability, using the proposed method, is fairly
high at most sensor locations. The high false
alarm rate, for sensors located near the blade’s
root, originates from the relatively low signal
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Table 1: Rotor properties.

Radius R = 8.2 m
Chord c = 0.53 m
Beamwise stiffness EIb = 7.62 · 104 Nm2

Chordwise stiffness EIc = 1.72 · 105 Nm2

Torsional rigidity GJ = 8.57 · 104 Nm2

Tensile stiffness AE = 2.97 · 109 N
Mass per unit length λ = 10 Kg/m
Angular velocity Ω = 27 rad/s

to noise ratio (10 at tip, less than 10 inboard)
adopted in the present results.
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Figure 2: False alarm rate.

4.2 Aerodynamics included results

Consider the same rotor as discussed in the pre-
vious section. In this case aerodynamic loads
are also presented, and therefore, a trim (equilib-
rium) state has to be determined initially. The
blades are given collective and cyclic commands
and the periodic steady–state response is calcu-
lated for each one of the 5 models. The state
vector now comprises of 5 coupled elastic modes,
which include the first 2 flap modes, first 2 lead–
lag modes and the first pitch elastic mode. In
order to stabilize the unstable lead–lag modes a
damper is introduced and the lead–lag root angle
is added to the state vector. The measurements
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Figure 3: Missed detection probability.
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Figure 4: False identification probability.

taken include beamwise and chordwise velocities
along with the pitch rate at the tip of the two
blades. Since the rotor blades now respond basi-
cally in a periodic manner, the measurement vec-
tor includes, along with response to initial con-
ditions, the true periodic response. In order to
include in the filtering algorithm only the differ-
ences between the various models, the measure-
ments are pre–processed in each filter. In this
preliminary stage, the current filter calculated pe-
riodic response is subtracted from the measure-
ments. Therefore, the measurements embedded
information consists of small deviations from pe-
riodic response due to initial conditions, in ad-
dition to small steady–state response differences
between the various models and the truth model.
Owing to the zero external excitation, the de-
tection and identification process is based solely
on these small steady–state differences, combined
with small changes in modal shapes and natural
frequencies.

In the case under discussion, the true damage
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Figure 5: In vacuum rotor damage identification
results

is located at x/R = 0.2 where x is measured
from the blade’s root. Two damage levels are
presented in the damaged models: the first dam-
age intensity is manifested as a 30% stiffnesses
reduction and the second level is represented
by a 45% reduction. Moreover, 2 noise levels
are introduced through the noise percentage:
a low noise level represented as 0.2% of the
measurement, and a second level of 1%.

Fig. 6 shows the detection probability for the
various damage and noise levels, defined as the
probability to detect actual damage occurring
(regardless the damage location). Clearly, high
detection capability is demonstrated for 0.2%
noise level, while a noise level of 1% causes a
substantial reduction of this capability. This is
due to the lack of sufficient difference between
the damaged and undamaged models. Thus, the
results for the 0.2% noise level show that the
present approach is capable of distinguishing
between very similar models, while the effects
of a noise level of 1% are equivalent to the
differences between the models and therefore
cause the presented degradation in damage
detectability. It should also be noted that the
undamaged and the damaged models are based
on modal representation of the Finite–Element
modeling. While, such an approach contributes
to the efficiency of the numerical procedure, it
tends to “smooth” the differences between the
models.

Fig. 7 shows the true identification probability,
meaning the location of the identified model
is indeed the closest to the actual damage
location (in this study, the model expected to be
identified is the one related to x/R = 0.15). For

the larger damage level (45%) and 0.2% noise
the true location is identified with a relatively
high probability. In the other cases damage
is still detected, however the identified model
location is not the closest to the true one.
This miss–identification is caused again by the
proximity of one damaged model to another.

Fig. 8 demonstrates the false alarm proba-
bility vs. modeled damage level for the various
noise levels. In the case where a 30% stiff-
nesses reduction is implemented in the four
damaged models a relatively high false alarm
rate exists. Since this rate is equivalent to the
miss–identification of the undamaged model,
when indeed no damage occurs, a similar iden-
tification problem exists here as appeared also
in Fig. 7. The very small differences between
the five models (including the undamaged
model) which are obtained for low damage
levels, obscure the correct identification of the
undamaged case. When a 45% damage level is
implemented in the damaged models, and a low
noise level is considered, the false alarm rate de-
creases to a lower, more acceptable, value of 0.14.

Adding aerodynamics tends to mask the influ-
ence of the reduced stiffnesses since high damping
values are present. This causes the natural fre-
quencies and modal shapes to become less sensi-
tive to stiffness changes. Moreover, aerodynamics
generates coupling between elastic modes, which
is affected by stiffness changes, and ones which
are hardly influenced. This effect also decreases
damage detectability.
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Figure 6: Detection probability for various noise
and damage levels
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Figure 8: False alarm rate for various noise and
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5. Conclusions

A model–based damage detection algorithm for
a helicopter rotor, using an adaptive estimation
technique, incorporating noisy measurements,
is presented. The blade elastic and dynamic
characteristics are introduced using RAPID/Plus
package where finite element model of the blade
is utilized to represent damage as equivalent
reduced stiffnesses in one of the elements. A
set of Kalman filters is constructed to simulate
various damages. The proposed method enables
various types of rotor faults and sensors to be
implemented.

The algorithm presented constitutes a new
approach towards damage detection in mechan-
ical systems. Contrary to other model–based
damage detection methods in helicopter rotors,
such as methods based on neural networks, this

approach requires no training stage, and treats
measurement and process noise inherently. The
damage detection capability is tested in various
cases. In general, for low noise levels, this
approach produces good damage identification
results. The results for the case of a full–scale
rotor in vacuum clearly indicate good damage
detectability although a relatively high noise
level is present. When aerodynamics is present
damage detectability generally deteriorates, due
to damping and mode coupling. For 0.2% noise
level and a relatively large stiffness reduction,
fairly good detection and identification results
are achieved.

As demonstrated in this work and also in
other published studies, the problem of detect-
ing and correctly locating local stiffness changes
in helicopter rotor blades using noisy blade re-
sponse measurements constitute a very difficult
task. The significant advantage of the proposed
approach arises from the filtering process en-
abling probabilistic determination based on rel-
atively little information. Introducing an exter-
nal excitation in this case would probably in-
crease damage detectability since the transient
system response will provide additional informa-
tion. Moreover, other rotor faults such as blade
mass changes, pitch link or damper defects, mis-
tracking etc. are expected to be considerably
more detectable. These topics are currently un-
der investigation.
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