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MODEL PREDICTIVE MOTION CUEING FOR A HELICOPTER HOVER TASK ON AN 8-DOF SERIALROBOT SIMULATOR
Frank M. Drop, Mario Olivari, Stefano Geluardi, Mikhail Katliar, Heinrich H. Bülthoff{frank.drop, mario.olivari, stefano.geluardi, mikhail.katliar, heinrich.buelthoff}@tuebingen.mpg.deMax Planck Institute for Biological Cybernetics, Tübingen, Germany

AbstractMotion cueing for helicopter hover is difficult: small simulators require considerable attenuation, render-ing motion cues not useful for stabilization, and large simulators are typically not cost effective. Industrialserial robot-based simulators provide large motion capabilities at a moderate cost, but have two distinctdisadvantages. First, they are highly dimensional systems with a non-convex motion space, such that effi-cient use of the entire space is not trivial. Second, they are typically non-stiff structures with a large massat the end effector, resulting in oscillatory dynamical properties. We recently developed a novel ModelPredictive Motion Cueing Algorithm (MPMCA) that resolves both problems effectively for pre-recorded in-ertial reference signals. The MPMCA requires an accurate prediction of the future course of the referenceinertial signals, which is trivial for pre-recorded maneuvers, but not for real-time human-in-the-loop simu-lations. In this paper, we present a model-based prediction method, which predicts pilot control inputs andthe subsequent helicopter inertial signals during a helicopter hover simulation in real-time. The method istested in a human-in-the-loop experiment and compared with the Classic Washout Algorithm. The resultsdemonstrate that the MPMCA is a promising new approach to motion cueing.

1. Introduction
The training of helicopter pilots, both novice and ad-vanced, for hover and low-speed maneuvers on asimulator is challenging, but worth pursuing giventhe obvious safety and cost related advantages overtraining on an actual helicopter. 1 Simulated train-ing requires accurate motion feedback, because pi-lots rely heavily on motion at low speeds for stabi-lization2,3,4 and improved maneuvering accuracy.5Most hover and low-speed maneuvers exceed themotion range offered by conventional Stewart plat-forms. Thus, a Motion Cueing Algorithm (MCA) isnecessary to attenuate the motion by scaling andfiltering. The distorted motion might cause the pi-lot to learn the wrong control strategy, preventingpositive transfer of training to the actual rotorcraft.Hence, one typically needs a large, expensive simu-lator for effective helicopter pilot training.5
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Simulators based on industrial serial robots pro-vide a potentially large motion space at moder-ate cost,6 but have two distinct disadvantages thathave not been resolved thus far. First, they arehighly dimensional, overactuated systems with anon-convex motion space, such that efficient useof the full motion capabilities is not trivial.7,8 Sec-ond, they are typically non-stiff structures with alarge mass at the end effector, resulting in oscilla-tory motions perceivable by the human,9 renderingcues that cannot be used for stabilization.Recently, an MCA based onModel Predictive Con-trol (MPC), was developed for the serial robot-basedCyberMotion Simulator (CMS) at the Max Planck In-stitute for Biological Cybernetics (MPI-BC) that po-tentially solves both problems. 10 A Model PredictiveMotion Cueing Algorithm (MPMCA) calculates a sim-ulator trajectory that optimizes a user-defined costfunction over a finite time horizon, based on a pre-
diction of the future reference signals, satisfying thelimits of the motion system. The reference signalsare the inertial signals (specific forces and angularvelocities) of the simulated vehicle. The cueing be-havior itself is determined by the complexity of thesimulator model, correctness of the prediction, andweighting factors in the selected cost function. 11A hardware-in-the-loop experiment with pre-recorded low-speed helicopter maneuvers 10
demonstrated that the novel method is able to 1)effectively make use of the entiremotion space and2) greatly reduce the effects of oscillatory dynamics.
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It is, however, unclear how the method performsin a human-in-the-loop simulation, because themethod relies on an accurate prediction of thefuture reference signal, which is non-trivial giventhe random nature of helicopter hover maneuvers.That is, in hover, the pilot is predominantly cor-recting for disturbances caused by random controlerrors of the pilot itself, which are hard to predict. 12The objective of this paper is to extend the previ-ous work 10 to an actual human-in-the-loop simula-tion, which requires a prediction method to be de-veloped. We will describe two prediction methods:a model-free and a model-based approach, whichdiffer considerably in their ease-of-implementationand predictive capabilities. The cueing performanceof the methods is compared in computer simula-tions and the method providing the best objectivecueing performance, the model-based approach, istested in a human-in-the-loop experiment.The paper is structured as follows. First, thesimulated helicopter hover task and the simula-tion framework is introduced. Then, the MPMCA isbriefly introduced, after which we extensively de-scribe the method to reduce the effects of the os-cillatory dynamics. The two prediction methods aredescribed in detail, after which we present the re-sults of three experiments. The paper ends with adiscussion and conclusions. A supplementary videois provided for additional insight into themethod. 13
2. Simulated helicopter hover
2.1. Simulation overview
In this study, we will consider a simulated helicopterhover task. The pilot is required to hover an identi-fied linear model of the Robinson R44 Raven-II he-licopter in front of three hover boards giving visualcues useful for hover. The pilot is seated in the CMS,sees the visual from a projection system and givescontrol inputs through Pro Flight Trainer PUMA USBcontrols, see Fig. 1.
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Figure 1: Overview of the simulation framework.
The R44 dynamics run on a MATLAB Simulink xPC

target together with the Prediction Module (PM),which calculates the prediction and sends it to theMPMCA, running on a Linux system, which controlsthe CMS motion system. An Inertial MeasurementUnit (IMU) is mounted close to the head position forverification of the method.
2.2. Identified R44 helicopter model
The helicopter model used in this paper was iden-tified from flight test data recorded from a Robin-son R44 Raven II helicopter in the hover trim condi-tion. 14 The model is a linear fully coupled 12 degreeof freedom (DOF) state-spacemodel valid within thefrequency range of 0.3 to 16 rad/s:

ẋh = Axh +Bδ,(1)
yh = Cxh +Dδ,(2)

with
δ = [δr, δp, δψ, δc]

>,(3)
yh = [u, v, w, p, q, r, ax, ay, az, φ, θ]

>,(4)
xh = [u, v, w, p, q, r, φ, θ, β1c, β1s, x1,(5)

x2, ηq, y1, y2, ηp, ν, β0, β̇0, ηCt ]
>,

in which [δr, δp, δψ, δc] are cyclic roll, cyclic pitch,pedals, and collective pitch control inputs, [u, v, w]are the linear velocities, [p, q, r] are the angu-lar velocities, [ax, ay, az] are the linear accel-erations, [φ, θ] are the roll and pitch angles,
[β1c, β1s] are the rotor-flap/body coupling dynam-ics, [x1, x2, ηq, y1, y2, ηp] are the lead-lag dynam-ics and [ν, β0, β̇0, ηCt ] are the coning-inflow dynam-ics. 15 Matrix values are given in Ref. 14.The inertial signals, to be followed by theMPMCA,consist of the specific forces and angular velocitiesas measured at the pilot head reference position.The specific forces are the sum of the accelerationsof the helicopter and the contribution of gravity, re-solved into the head reference frame:
(6) f = −a+RHWg,
with a = [ax, ay, az]

>, g = [0, 0, g]> the grav-
itational specific force vector, and RHW the worldto head transformation matrix. The angular veloc-ities are outputs of the model: ω = [ωx, ωy, ωz] =
[p, q, r].
3. Model predictive motion cueing
Recently, an MPMCA for real-time control of theCMS was developed. 10 The goal of the controller is



to accurately reproduce the reference inertial sig-
nal ŷ = [f̂x, f̂y, f̂z, ω̂x, ω̂y, ω̂z]

>. At every control in-terval, the MPMCA is given a prediction of the fu-ture Tp seconds of the reference signal ŷp con-sisting of N equally spaced samples. The MPMCAcomputes a sequence of N control inputs U =
[u0,u1, . . . ,uN−1]which are the solution of the fol-lowing optimization problem:

(7)

min
X,U

J(X,U)

s.t. x0 = x̃0,

xk+1 = F (xk,uk), k = 0 . . . N − 1,

xk ≤ xk ≤ xk, k = 1 . . . N,

u ≤ uk ≤ u, k = 0 . . . N − 1,

in which the objective function J is defined as:
(8) J(X,U) =

1

N

N−1∑
k=0

(
‖y(xk,uk)− ŷk‖2Wy

+‖xk− x̂‖2Wx
+‖uk‖2Wu

)
+‖xN− x̂‖2WxN

.

and xk is the simulator state at prediction time step
k, X = [x0,x1, . . . ,xN ]>, x̂ is a selected neu-tral state, x, x, u, and u are the lower and upperbounds of the state and control input, and F thefunction defining the discrete-type dynamics of thesimulator.The output function y defines the mapping fromthe simulator state and control input to the result-ing expected inertial signal ye, which might be differ-ent from the actual inertial signal ym measured bythe IMU at the pilot head location.The optimal solution to (7) constitutes a trade-off between the output error term weighted by thesymmetric positive-definite weighting matrix Wy ,and the washout, input, and terminal cost termsweighted byWx,Wu, andWxN , respectively. 11 Theselected numerical values of the weighting matri-ces will determine 1) the importance of each outputsignal with respect to other outputs, and 2) the rel-ative importance of tracking the reference outputor maintaining a small distance to the neutral state.The first is determined only by values in theWy ma-trix, while the latter is determined by values in boththeWy andWx matrices.

In this study, the prediction horizon Tp was 4.9 s,sampled at 12ms, such thatN = 409. See Table 1 forweighting matrix and washout position values.
4. Structural oscillations
The simulator, consisting of a long and slenderrobot arm to which the heavy cabin is attached, be-haves as a badly damped harmonic oscillator caus-ing unintended accelerations. See Fig. 2 for a typi-cal response of the simulator to a step input com-manded by the MPMCA. The expected lateral spe-
cific force f ey follows the reference doublet input f̂yaccurately, but the measured lateral specific force
fmy is very different from f ey . The high frequencyoscillations have amplitudes far exceeding the am-plitude of the doublet itself and take more than 4s to dampen out. To mitigate these oscillations, 16we identify a model of the oscillatory dynamics andinclude it in the simulator model, such that theMPMCA avoids exciting these dynamics.
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Figure 2: Typically observed oscillatory accelerations.

4.1. Measuring and modeling oscillations
The oscillatory dynamic were measured by pro-
viding a sum-of-sines forcing function as f̂ tothe MPMCA. Measurements were performed sepa-rately for the longitudinal, lateral, and vertical spe-cific forces. The sum-of-sine signal consisted of 15sines with frequencies ωd between 0.3 and 45 rad/s,with randomly chosen phase shifts. An estimate ofthe oscillatory dynamics at frequencies ωd was ob-tained from the Best Linear Approximation (BLA)method: 17

(9) H̃o(ω) =
Sf̂ ,fm(ω)

Sf̂ ,fe(ω)
, ω ∈ {ωd},

Table 1: Washout position and weighting matrix values.
Wy diag([1, 1, 0.5, 10, 10, 10])2

Wu diag([0.2, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.2])2

Wx diag([0.012, 0, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,01×8])2

WxN diag([0.012, 0, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,01×8])2

x̂ [4.45,−1.15,−1.44, 1.42, 1.51, 0.30,−1.51, 1.55,01×8]



where Sf̂ ,fm , Sf̂ ,fe are the estimated cross-spectral
densities between each component of f̂ , f e, and
fm, and subscript o denoting the Oscillation Model(OM). A linear transfer function model Ho with twozeros and two poles was then fit to estimate H̃o:
(10) Ho(s, p) =

a2s
2 + a1s+ 1

b2s2 + b1s+ 1
,

with p = [a1, a2, b1, b2], by minimizing:
(11) arg min

p

∑
ω∈{ωd}

∥∥∥∥log

(
Ho(jω, p)

H̃o(ω)

)∥∥∥∥2 .
Fig. 3 shows H̃o andHo for the lateral axis; a goodfit in the frequency domain was obtained, suggest-ing that the order ofHo was chosen correctly.
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Figure 3: Estimated dynamics for lateral structural oscil-lations.
Fig. 4 shows the simulated response of Hoy to

f ey compared to fmy , for a doublet reference on f̂y .The fitted model reproduces fmy reasonably well, al-though the measured oscillations persist for longerthan the simulated oscillations. Attempts to capturethis behavior by further lowering the damping ratioin the model lead to considerably worse fits at thedoublet onsets. It seems that the oscillatory behav-ior also involves considerable couplings in other di-rections of motion. Accounting for these effects isplanned for future work.
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Figure 4: Simulated re-sponse foy of Hoy todoublet reference com-pared to themeasured re-sponse.
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Figure 5: Measured re-sponse to doublet whenincluding Ho in the simu-lator model.

The transfer functions obtained for all axes arelisted in Tab. 2. They were rewritten into second-order model form, to highlight damping ratios ζnand natural frequencies ωn:
(12) Ho =

ω2
n

ω̄2
n

· s
2 + 2ω̄nζ̄ns+ ω̄2

n

s2 + 2ωnζns+ ω2
n

=
[ζ̄n, ω̄n]

[ζn, ωn]
.

Table 2: OM coefficients, natural frequencies and damp-ing ratios. Coefficients a1, a2, b1, and b2 were multipliedby 103.
Axis a1 a2 b1 b2 Ho

fx 0.8 2.2 1.7 10.6 [ 0.04, 36.4 ]
[ 0.13, 24.2 ]

fy 0.3 15.8 2.2 5.6 [ 0.46, 58.6 ]
[ 0.06, 21.1 ]

fz 0.5 17.5 1.4 7.7 [ 0.41, 46.5 ]
[ 0.10, 27.0 ]

4.2. Mitigating oscillations
The identified OMs were included in the modelof the serial robot dynamics, by augmenting thediscrete-time dynamics and output functions, Fand y, with a discretization ofHo:

Fo(x
a
k,u

a
k) =

[
Aa 0
0 Ao

]
xa
k +

[
Ba 0
0 Bo

]
ua
k,(13)

yo(x
a
k,uk) =

[
0 Co

0 0

]
xa
k +

[
Do 0
0 I

]
ua
k,(14)

with
ua
k =

[
f e(xk,uk)
ωe(xk)

]
,(15)

where Ao, Bo, Co, Do are the discrete-time state-space matrices corresponding to Ho, and Aa, Bathe discrete-time state-space matrices of the robot.
ωe is not considerably affected by oscillations, andis thus directly fed through in yo.Fig. 5 shows a measured response of the real sys-tem to a doublet reference signal, if the OM is in-cluded in theMPMCA. The structural oscillations areclearly reduced. Tab. 3 quantifies the improvementsby listing the Root Mean Square (RMS) errors be-tween f e and fm, with and without OM, for the ref-erence doublet of Fig. 4. The improvement is espe-cially large in the lateral DOF, where the RMS errorwas reduced by a factor of 4.
5. Prediction methods
The MPMCA requires an accurate prediction ŷp ofthe future Tp s of the reference output ŷ. The re-quirements on the accuracy of the prediction for



Table 3: RMS errors between f e and fm.
Axis RMS, m/s2without OM with OM
x 0.15 0.11
y 0.45 0.11
z 0.13 0.12

acceptable cueing are unknown. Predictions canbe generated with model-free prediction methods(FPMs), model-based prediction methods (MPMs),and methods that combine both approaches. First,we discuss the potential (dis)advantages of eachmethod, and then present the two methods consid-ered for further analysis in this paper.
5.1. Background
5.1.1. Model-free prediction methods
FPMs calculate ŷp from current or past values of
ŷ. Potential methods range from simple N-th or-der polynomial extrapolation to more complex sta-tistical signal forecasting methods. FPMs might, ar-guably, be able to predict the near future reason-ably well, but might perform worse further into thefuture. To prevent clearly wrong far-future predic-tions from affecting cueing behavior too much, itmight be beneficial to smoothly morph the extrapo-lated signals into a predetermined value. Onemightchose to let signals decay to zero, assuming thattransients are short, after which the vehicle returnsto a steady-state condition where inertial signals aregenerally small or zero.FPMs have certain potential advantages: 1) theyare easy to implement, as they work independentlyfrom other elements in the simulation, 2) they typi-cally require small computational effort, and 3) theinfluence of each parameter in the method on thepredicted output is straightforwardly examined.We foresee the following potential disadvan-tages. First, they will not be able to predict strongtransients, such as the onset of turns or strongwind gusts. Such transients are, however, exactlythe problematic areas for traditional MCAs we wishto improve. Second, even though the effect of a pa-rameter in the method on the predicted signal iseasily examined, its effect on the cueing behaviorand feel is not. Thus, these parameters need to be‘tuned’ in human-in-the-loop experiments: a tediousand time-consuming process.
5.1.2. Model-based prediction methods
MPMs attempt to predict the future by simulatinga model of the control task at hand. The model

may contain (simplified) models of the vehicle andhuman control behavior. Simple methods may as-sume the current human control inputs to re-main constant and simulate the resulting vehicleresponse. More complex methods might involve asimplified model of human control dynamics, ormay even utilize non-trivial inputs, such as physi-ological measurements, to predict human decisiontaking when the human is free to decide which pathto follow in the virtual world.MPMs have certain potential advantages. First,the utilization of an accurate vehicle dynamicsmodel should result in ‘congruent’ inertial signals.For example, a constant cyclic roll input will, de-pending on the current state of the helicopter, re-sult in different combinations of roll rate and lat-eral acceleration: something a model-free methodcannot predict. Second, themethod can also predicttransients, such as turn onsets, if it is aware of theexpected future path of the vehicle. Third, assumingthat cueing always improves if more accurate pre-dictions are provided, ultimately with the best cue-ing for a perfect prediction, then one can avoid aconsiderable amount of tedious ‘tuning’ while de-veloping the prediction method. That is, the pre-dictive capabilities can be objectively validated withpre-recorded data, and thus continuous testing onhuman-in-the-loop simulations is not necessary.Obviously, MPMs also have disadvantages. First,if the vehicle dynamics are unstable, it is not pos-sible to construct a prediction simulation with-out a stabilizing controller. The stabilizing con-troller should then resemble human control behav-ior, which might be difficult to achieve. Second, ifthe human decides to do something very differentfrom what is predicted, cueing might be unaccept-ably bad and invoke motion sickness.
5.2. Implemented prediction methods
5.2.1. Exponential decay prediction
In this paper, we limit our scope to an easy-to-compute FPM with only one parameter needingmanual selection. The Exponential Decay Prediction(EDP) method predicts the current value of each in-dividual inertial channel to decay to zero followingthe exponential function:
(16) ŷp(tp; t) = ŷ(t)e−αtp ,

with tp the prediction horizon time parameter run-ning from 0 to Tp, and α determining the expo-nential decay rate, which needs to be chosen bythe user. Fig 6 plots (16) for different values of α.Note that for α = 0 the method reduces to the‘constant’ prediction method, i.e., the signal is pre-dicted to remain constant until Tp. The exponential



function was selected, because it contains only oneparameter, decays asymptotically to zero withoutovershoot, and is continuous in all its derivatives.
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Figure 6: Exponential function (16) for different α.

5.2.2. Pilot Model Prediction
The model-based prediction method considered inthis paper consists of a “prediction simulation” run-ning inside the main simulation, see Fig. 7. It is re-ferred to here as the Pilot Model Prediction (PMP)method. The main simulation runs at 6ms intervalsin real-time, and the prediction simulation is exe-cuted at every control interval j of theMPMCA, fromtime-step k = j to j+N , to calculate ŷp. In the pre-diction simulation, a model of the pilot substitutesfor the human pilot in the main simulation.
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Figure 7: Schematic overview of the Pilot Model Predic-tion method, with the helicopter dynamics denoted H ,and the pilot dynamics denoted Y .
In Fig. 7, the pilot model Y appears twice: once inthe main simulation Y s and once in the predictionsimulation Y p. The pilot model in the main simu-lation receives the output of Hs to obtain estimate

x̃Y0 of the state of the human pilot. This state esti-mate is necessary to initialize the prediction simula-
tion. The difference δd between the human controlinput δ and the model control input δm is added tothe control output of Y p as a constant disturbancesignal, to ensure continuity between ŷ and ŷpj+1.The pilot model consists of four independent, lin-ear control loops responding to helicopter statesand outputs perceivable to the human. The vertical

position and yaw heading are controlled by a singleloop. The lateral and longitudinal degrees of free-dom are controlled by a inner loop on roll and pitch,respectively, and an outer loop on translational ve-
locity. It was found that fpx , fpy ,ωp

x andωp
y weremoreaccurate, if the pilot was assumed to drive the veloc-ity to zero, rather than the position.The limited field of view in the simulator makes ithard to see the intended hover spot, such that ef-fective position feedback is impossible. Pilots werefound to slowly drift to a position away from the ini-tial position, and then attempt to maintain the newposition, as if it was the intended position.For some helicopter dynamics, models of pilotcontrol dynamics were identified from human-in-the-loop experimental data. 12 For others, we as-sumed that the Crossover Model 18 would hold anddesigned the pilot model such that the combinedpilot-helicopter dynamics approximate a single in-tegrator and a time delay around the crossover fre-quency. The selection of the proper pilot model dy-namics was guided by deriving the on-axis transferfunctions from the helicopter state space model.The transfer functions were obtained by select-ing the on-axis terms from the state-space ma-trices. 19 For example, the on-axis dynamics from

δr to lateral outputs involves only the states
[v, ay, p, φ, β1s, y1, y2, ηp].
Vertical position controller The objective of thevertical position controller is to hold a constant po-sition by rejecting disturbances. We expect the pilotto use a purely feedback control strategy, becausethe disturbances are unpredictable.20 Fig. 8 depictsthe feedback organization adopted by the pilot.

Yze(s) Hz
δc

(s)
fz + ez

−
z

Pilot

Figure 8: Pilot model block diagram for the vertical posi-tion controller (yaw controller has identical structure). Inhover, the target signals fz and fψ are equal to zero.
The collective to vertical position dynamics are:

(17) Hz
δc(s) =

z(s)

δc(s)
=

0.75(s+ 6.7)

s(s+ 0.34)(s+ 9.5)
.

The zero at 6.7 rad/s and the pole at 9.5 rad/s areunlikely to influence the adopted pilot feedback dy-namics, because they are close to each other andconsiderably above the crossover frequency. Thus,the feedback dynamics are assumed to take thesame form as those seen 18 in pure second-ordersystems of the form K/s(s + ω), consisting of a



Table 4: Pilot model parameter values.
Param. Value Unit Param. Value Unit
Kve −0.008 - Kφe 2.5 -
Kve 0.008 - Kθe 3.3 -
Kze 1.67 - Kψe 3.3 -
Kφt 1.0 - Kθt 1.0 -
Tu1

e
4 s Tv1e 4 s

Tu2
e

0.15 s Tv2e 0.3 s
Tφ1

e
0.55 s Tθ1e 1.35 s

Tφ2
e

5.0 s Tθ2e 5.0 s
Tze 3.0 s Tψe 0.9 s
Tφt 0.2 s Tθt 0.2 s
τφe 0.25 s τθe 0.25 s
τψe 0.25 s τze 0.25 s
τφt 0.1 s τθt 0.1 s
ωnms 12.5 rad/s ζnms 0.3 -

gain, a lead, a time delay and neuromuscular sys-tem (NMS) dynamics:
(18) Yze(s) = Kze(Tzes+ 1)e−τzesYnms(s).

See Table 4 for parameter values. Fig. 9 showsBode plots of the helicopter and pilot dynamics,and the open loop transfer function from whichthe crossover frequency and phase margin can bederived. The selected parameter values result ina crossover frequency of 2.8 rad/s, which is rela-tively high compared to values measured in exper-iments without motion feedback.21 Here, pilots cangenerate lead from the perceived physical motioncues, thereby effectively reducing τze , allowing for ahigher gain, increasing the crossover frequency.2,3
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Figure 9: Bode plots of the helicopter and pilot transferfunctions for the vertical position control loop.
The NMS dynamics model represents the com-bined dynamics of the arms or legs of the pilot andthe control device.22 The NMS dynamics are mod-eled as an underdamped mass-spring-damper sys-

tem, with identical parametrization for all DOFs:
(19) Ynms(s) =

ω2
nms

s2 + 2ζnmsωnmss+ ω2
nms

.

Yaw controller The helicopter pedal to yaw posi-tion transfer function is given as:
(20) Hψ

δψ
(s) =

0.31

s(s+ 1.1)
.

The pilot will adopt the same control organizationas depicted in Fig. 8 for the vertical position loop.The pilot feedback dynamics in response to thissecond-order system will consist of a gain, a lead,and a time delay, and NMS dynamics:
(21) Yψe(s) = Kψe(Tψes+ 1)e−τψesYnms(s).

The selected gain results in a crossover frequencyof 0.92 rad/s, see Fig. 10, which is lower than typ-ical crossover values, which are usually measuredfor joystick control devices and not for pedals oper-ated by the feet.
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Figure 10: Bode plots of helicopter and pilot transferfunctions for the yaw position control loop.

Longitudinal and lateral controllers The pitch-longitudinal and roll-lateral controllers have identi-cal form, but different parameterizations. The pitch-longitudinal controller consists of an outer loop re-jecting disturbances in the forward velocity u, bygenerating the pitch target θt which is tracked by theinner loop around θ, see Fig. 11.The outer loop controller dynamics should equal-ize the combined dynamics of 1) the inner looppitch controller, 2) the helicopter pitch dynamics,and 3) the helicopter pitch to forward velocity dy-namics. Here, we assume the combined dynamicsof the first two elements to be approximately equalto a unity gain and a considerable lag. The heli-copter pitch to forward velocity dynamics are ap-proximately equal to:
(22) Hu

θ (s) =
0.72(s− 3.7)(s+ 3.7)

(s+ 0.25)
.
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Figure 11: Pilot model block diagram for longitudinal ve-locity and pitch attitude.

To the best of the authors’ knowledge, no stud-ies investigated the feedback structure adopted byhuman pilots when confronted with such systemdynamics. Therefore, we assume outer loop feed-back dynamics that stabilize Hu
θ by pole-zero can-cellation, such that the combined open loop trans-fer function approximates an integrator around thecrossover frequency. 18 The outer loop feedbackcontroller dynamics are given as:

(23) Yve(s) = Kve

(Tv1es+ 1)

(Tv2es+ 1)2
,

with Tv1e cancelling the pole at 0.25 rad/s, and Tv2ethe zeros at 3.7 rad/s, see Table 4.The pitch controller tracks the pitch target of theouter loop controller with a combined feedforwardand feedback control strategy.21,23 The helicoptercyclic pitch to pitch angle transfer function is:
(24)

Hθ
δp(s) =

3.4(s+ 0.25)

(s+ 38)(s− 0.5)(s2 + 1.1s+ 0.64)
.

Experimental studies investigating human feedfor-ward or feedback responses did not consider iden-tical dynamics. A set of similar system dynamics wasconsidered in Ref. 24, whose results give reasons toassume that the feedback dynamics will consist again, a double lead, a time delay and NMS dynamics,omitting argument s for aesthetic reasons:
(25) Yθe = Kθe

(Tθ1es+ 1)(Tθ2es+ 1)

s
e−τθesYnms,

with Tθ1e and Tθ2e placed close to the majority of thepoles and zeros of (24) to obtain single integratoropen loop dynamics around crossover.The hover performance of the pilot model with-out a feedforward element was found to be con-siderably worse than actual human hover perfor-mance. Therefore, a feedforward path consisting ofa gain, inverse system dynamics, and a time delay,23
was included, which improved performance:
(26) Yθt(s) = Kθt

1

Hθ
δp

1

(Tθts+ 1)2
e−τθts.

Bode plots of all inner and outer loop pilot and heli-copter transfer functions are shown in Fig. 12 for thelongitudinal and pitch controllers.
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Figure 12: Bode plots of helicopter and pilot transfer func-tions for the outer and inner control loops on longitudi-nal velocity and pitch angle. Bode plots for lateral velocityand roll angle are similar.

6. MPMCA Cueing Example
So far, this paper presentedmany concepts novel tomotion cueing. Section 3 introduced the Model Pre-dictive Controller, which calculates the optimal sim-ulator trajectory based on a prediction of the futureinertial reference signal. Section 4 presented our ef-forts to mitigate undesired accelerations due to theoscillatory dynamics of the CMS. Then, Section 5presented two methods for calculating the predic-tion of future inertial reference signals. Before con-tinuing the paper, we present data collected dur-ing a human-in-the-loop simulation, to provide in-sight into the cueing obtained with the MPMCA ifthe PMP method is used for prediction and the OMis included in the controller. A supplementary videois provided for additional insight into the method. 13
6.1. Prediction
Fig. 13 compares the predicted inertial signals fpxand ωp

x to the actual reference signals f̂x and ω̂x,plotted starting from the point in time when thepredictions were made. Predicted longitudinal spe-
cific forces, fpx , see Fig. 13(a), resemble f̂x reason-
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Figure 13: Example of predicted inertial signals by thePMP during a simulation. All colored lines resemble pre-dictions.

ably well during the first 2 s of the horizon, but thenstart to deviate, in approximately 50% of the cases.Other predictions deviate directly from the start.Note that the predicted accelerations converge to
a nonzero value, which is caused by δd, see Fig. 7.
In most cases, this improves the prediction, as f̂xreturns to zero very slowly.Predicted roll rates, ωp

x , see Fig. 13(a), are of-ten correct in direction, magnitude and phase, es-pecially during the first 2 s of the horizon. Theobtained results suggest that the inner loop con-trollers resemble actual human behavior quite well,while the outer loop controllers need improvement.
6.2. Cueing
Fig. 14 and 15 show the reference ŷ, expected ye,and measured ym inertial signals for each compo-nent as produced by the MPMCA. The expected out-put of the Classic Washout Algorithm (CWA) ycwa,see Appendix A, that would result from applying thesame reference output, is shown for comparison.
6.2.1. Specific forces
The plotted measured specific forces fm were low-pass filtered with a second-order Butterworth filterwith a cutoff frequency of 2.5 Hz. Above 2.5 Hz, theeffects of the oscillatory dynamics of the CMS arestill clearly visible and would make it hard to see the

low-frequent differences that exist between f e and
fm, see Fig. 14. These small differences are causedby 1) the IMU placement: it cannot be exactly in thehead-reference point, it is approximately 20 cm be-hind and to the right of the head, 2) possible dis-crepancies in the kinematic model, 3) other electro-mechanical effects in the system that might causeundesired tilting of the cabin, such as play.The expected specific forces of theMPMCA followthe reference in the longitudinal and lateral DOFsquite well, but not so good in the vertical DOF. That
is, most fluctuations in f̂x and f̂y are reproducedin f ex and f ey by forces in the same direction, withsimilar magnitude, and generally in-phase; differ-ences are often low-frequent offsets. Larger fluctu-
ations in f̂z are attenuated considerably, however,and negatively affect the cueing of f̂x and f̂y , asseen between 20 and 31 s and again between 42and 52 seconds. Here, the MPMCA cannot repro-duce all three specific forces simultaneously, andsacrifices some dexterity in the horizontal plane, re-sulting in some false cues in f ex and f ey , in returnfor more vertical motion capabilities. If desired, thistendency can be reduced by increasing the weightson fx and fy , or reducing the weight on fy inWy .Fig. 16(a) shows a detail of Fig. 14(a). Observe thatbefore 32 s, the oscillations in fmx are much largerthan after, even though f ex contains similar fluctua-tions. The OM is, apparently, able to cancel out cer-tain vibrations, but not all. Possibly, the OM shouldalso consider potential couplings between excita-tions in different directions.
6.2.2. Angular velocities
The reproduction of the angular velocities by theMPMCA is very good in all DOFs, see Fig. 15. The ex-pected and measured signals have almost identicaldirection, gain, and the phase difference is small.Fig. 15(c) shows that high frequent content in ω̂zis not reproduced in ωe

z , even though the robot isphysically capable of producing high frequent yawmotions with axis 1, which is aligned with the verti-cal and located approximately 3mbehind the cabin.The lack of high frequent content is then explainedby the large tangential acceleration that would re-sult from large angular accelerations of axis 1. Ap-parently, these cannot be compensated for by otheraxes. ωe
x and ωe

y are not affected, because thesemotions can be produced with axes located muchcloser to the head of the pilot.Fig. 16(b) shows a detail of Fig. 15(a), from whichthe phase differences can be observed better. Theexpected roll rate appears to lag the reference byapproximately 100 ms, which is in part due to atransport delay in the motion system of 48ms. The



PSfrag replacements

fcwa
x

fe
x

f̂x

fm
x

time, s

f
x

,m
/s2

28 30 32 34 36 38
-0.2

-0.1

0

0.1

(a) Detail of Fig. 14(a).
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Figure 16: Detail of example of cueing.

remainder is due to MPMCA attenuations, neces-sary to keep the system within its limits or due tothe non-zero washout-term in the cost function.
7. Experiments
7.1. Experiment I: Oscillation model
A human-in-the-loop experiment was planned toassess the importance of including the OM in theMPMCA, by comparing hover performance for theOM switched on and off. The experiment wasaborted after observing violent unstable oscilla-tions in the lateral axis when the OM was switchedoff, i.e., if structural oscillations were not prevented.Fig. 17 shows a typical oscillation, which occurredin the lateral DOF after 30 seconds of relativelystable hover. At 29.7 s, the pilot gives a slightly
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Figure 17: Example of an undamped oscillation occurringwhen the OM is set to “off”. Control signal δr was scaledby a factor of 0.3 to improve visibility of other signals.

larger than normal control input, resulting in a small
change in f̂y , which is, however, amplified dramat-ically by the actual system, see fmy . The pilot re-sponds with a corrective δr command at 30.5 s re-
sulting in f̂y to change slightly in opposite direction.Again, the actual system sees a much larger changein specific force than expected. Between 29.5 and
32 s, the phase difference between the oscillationsin δr and fmy is approximately 180 deg. Then, from
32 s onward, the phase difference is approximatelyzero, and the oscillations grow rapidly. At 34 s, themotion was terminated.Similar oscillations were never observed if theOM was switched on, and thus a thorough investi-gation into the causality was not necessary. We be-lieve the oscillations to be either pilot induced os-cillations (PIO) resulting from delays and lag in the
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Figure 14: Example of cueing obtained by the MPMCA with PMP.
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Figure 15: Example of cueing obtained by the MPMCA with PMP.



entire simulation loop, aggravated by the oscilla-tory properties of the simulator, or caused by biody-namic feedthrough,25 where accelerations imposedon the human arm (also a badly damped oscillatorysystem) result in unintended control inputs to thevehicle, that cause further accelerations and possi-bly unstable behavior.
7.2. Experiment II: Prediction method
7.2.1. Experiment
A computer simulation experiment was performedto compare the objective cueing performance of theEDP and PMP methods. An experienced helicopterpilot performed five trials of 60 s of hover in the sim-ulator and his control signals were recorded. Therecorded control signals were then played back tothe Prediction Module, configured to use either thePMP or the EDP for 13 different values of α, and ex-pected output was recorded for comparison.Two objective error metrics were considered.First, the cost function output error term, evaluatedover the entire 60 s:

(27) Jy =

60/ts∑
j=0

||ye(j)− ŷ(j)||Wy ,

which is a measure of the total cueing quality, andsecond, the total normalized error for each channelseparately, as defined here for fx:

(28) efx =

60/ts∑
j=0

(
f ex(j)− f̂x(j)

)2
f̂x(j)2

,

where ts is the simulation time step, equal to 6ms.The reported results are averaged over all five trials.
7.2.2. Results and discussion
Fig. 18(a) shows Jy as a function of α, note that re-sults are plotted on a logarithmic scale. Jy is con-siderably lower (better) for the PMP than for theEDP method, for all values of α. At approximately
α = 2.5, the EDP method has a minimum total cost,which might indeed be a good value for actual use.Fig. 18(b) shows the total normalized error of eachchannel as a function of α for the two predictionapproaches. It shows that especially the angular ve-locities are cued much better with PMP than withEDP, for all α. Specific forces are cued better for
0.1 < α < 1 with EDP, but for these values thecueing of angular velocities is especially bad.
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Figure 18: Total cost and total normalized error as a func-tion of α. Solid lines correspond to EDP, dashed lines toPMP. Smaller values are better.

Future human-in-the-loop experiments shouldreveal whether the clear differences in these ob-jective metrics are indeed indicative of the cue-ing quality perceived by humans. The results sug-gest, however, that model-free methods such as theEDP might provide acceptable cueing performanceif their parameters are selected properly. This selec-tion process will not be trivial, as α apparently alsoaffects the trade-off between the different inertialsignals. That is, a particular α might work well for acertain set of cost function weights, but not for an-other, complicating the tuning process.
7.3. Experiment III: Comparison to ClassicWashout Algorithm
7.3.1. Experiment
A human-in-the-loop helicopter hover experimentwas conducted to evaluate the functionality of theMPMCA for a variety of pilots, and to determinewhether pilots achieve a comparable hover perfor-mance level as that observed with the CWA that weused in previous studies. 1,8 Based on the results ofExperiment II, we selected the PMP method for usewith the MPMCA. See Appendix A for a detailed de-scription of the CWA.Subjects were instructed to perform a helicopterhover task for 60 s andminimize the norm of the he-licopter velocity vector. The first five seconds wereexcluded, to limit the effect of starting transients.The score, shown to the subject after each trial, rep-resented the mean velocity vector norm:

(29) D =
1

55

60/ts∑
j=5/ts

ts
√
u(j)2 + v(j)2 + w(j)2.

This error metric was selected, because the limitedFOV of the visual made it hard to perceive the ab-solute location in space, especially in the longitudi-nal direction. Thus, pilots did not attempt to moveback to the intended hover position after drifting



forward. A position error-based performance met-ric would thus not be reflective of the stability of thehover: a slight drift at the start of a trial followed bya perfectly stable hover would result in a very highscore. The mean velocity vector norm reflects hoverperformance better.Four subjects performed the experiment: two pi-lots with private pilot license, with 100 and 140 flighthours on the Robinson R22 and R44, respectively,and two non-pilots with approximately 20 hours ofsimulator flight hours on the Robinson R44 modelused in this experiment. All subjects were male, theaverage age was 29.5 years.Before starting the experiment, subjects wereasked to perform as many training trials withoutphysical motion feedback as necessary, to reach astable level of performance. On average, subjectsperformed 15 training trials. For each motion condi-tion, subjects also performed as many trials as nec-essary to obtain a stable level of performance, af-ter which five repetitions were collected as themea-surement data.
7.3.2. Results
All subjects were able to maintain stable controlof the helicopter during all trials of all conditions.The unstable oscillations, as reported in Section 7.1,were not observed. Furthermore, no trials had tobe terminated due to MPMCA related problems. Assuch, we consider themethod sufficiently robust forfurther experimental studies.All subjects reported that during the MPMCA tri-als, they were able to perceive physical motion that“makes sense” and was “smooth”. They furthermorereported that they “were actively using the motioncues”, but this cannot be confirmed with objectivemetrics from the measured data. The CWA motionwas described as “very hard to perceive” and “roughand bumpy”. The latter is most likely due to theCartesian controller attempting to avoid axes lim-its and the uncompensated oscillatory dynamics ofthe CMS. For all conditions, subjects reported it was“hard to prevent drifting”.Fig. 19 shows the obtained scores, averaged overthe five measurement trials for each subject sepa-rately, and averaged over all subjects. The limitednumber of participants does not allow for a rigorousstatistical analysis. We nevertheless observe that, 1)all participants obtained similar scores for both con-ditions, and 2) scores averaged over all participantsare highly similar between the two MCAs.
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7.3.3. Discussion
First, it is important to stress that a thorough eval-uation of MPMCA versus CWA motion feedback isbeyond the scope of this experiment. Instead, theexperiment successfully showed that the MPMCAdoes not result in considerably worse hover perfor-mance than our CWA implementation. The CWA im-plementation cannot be improved further, given thelimited Cartesian motion capabilities required bythe CWA. As such, improving the MPMCA is clearlya more promising way forward.
8. Discussion
This paper presented results from the first human-in-the-loop helicopter hover experiment on a se-rial robot-based simulator with an MPMCA. Threeexperiments were presented, showing encouragingresults. Still, many improvements are to be madeand further experimental studies are necessary todetermine whether pilots can make effective use ofMPMCAmotion cues. Here, we discuss the most im-portant points for improvement.First, we believe it to be worthwhile to investi-gate hybrid prediction methods that consist of sim-ple linear filters whose form and parametrizationis guided by the pilot model approach. Such meth-ods would not require complex and computation-ally heavy prediction simulation schemes, but mightstill provide acceptable prediction performance.The model-based approach should, however, bethe first choice if the cueing performance is to bemaximized. The presented pilot model-based pre-diction method can be improved considerably inmany different areas. The method is sensitive tonoise and rapidly changing control inputs, whichcause the prediction to change rapidly as well. Stateestimation of the pilot model, based on measuredinputs and control signals, might resolve this prob-lem. The form and parametrization of the pilotmodel should be based on system identification



analyses with the actual helicopter dynamics, in-stead of creative extrapolations of experimental re-sults with similar dynamics. Once a reliable modelis obtained that works for most pilots, personalizedmodels can be identified from or during the human-in-the-loop simulation.Finally, improvements to the MPMCA can bemade, independent of the used prediction method.The current washout position was manually se-lected based on insight into the kinematic proper-ties of the robot. An optimization-based approachmight reveal a better, but non-trivial, washout po-sition. Furthermore, the currently selected outputerror weights were not tuned based on subjectiveor objective pilot feedback, which might further im-prove the perceived quality of the motion feedback.Note, however, that an almost perfect reproductionof a well-controlled helicopter hover should not ex-ceed the kinematic capabilities of the robot, 10 inwhich case the selected output error weights wouldbecome irrelevant. That is, as the accuracy of theprediction is further improved, the need for ‘tuning’the cost function weights should decrease.
9. Conclusion
This paper presented results from human-in-the-loop experiments with a novel Model Predictive Mo-tion Cueing Algorithm (MPMCA). A central elementof the method, described in detail, is a model-basedprediction method, simulating a model of a humanpilot in control of a helicopter. Experimental re-sults show that the method is capable of resolvingtwo important challenges associated with the useof serial robot-based simulators. First, the MPMCAis able to fully exploit the entire workspace of thesimulator, and reproduce the inertial reference sig-nals with high accuracy. Second, the MPMCA is ableto drastically reduce unwanted oscillations in real-time, resulting from the mechanical design of thesimulator, during human-in-the-loop simulations.
A. Appendix: CWA
The MCA referred to throughout this paper consistsof a CWA giving position and attitude setpoits to aCartesian Control Law (CCL) developed for the CMS.The CCL transforms setpoints in Cartesian space tosetpoints for the individual axes of the serial robot.The structure of the CWAwas identical to the Uni-versity of Toronto CWA26,27. The third-order specificforce high-pass filters were identical for all DOFs:
(30) Hhpf =

s3

(s+ 0.5)2(s+ 0.3)
.

The specific force low-pass filters were:
(31) Hlpf =

0.075

(s+ 0.5)2(s+ 0.3)
.

The angular velocity high-pass filters were:
(32) Hhpω =

s

(s+ 0.5)
.

Based on the comments of a licensed helicopter pi-lot, the scaling factors for the specific forces wereset to 0.1 in all DOFs. The scaling factors for angularrates were set to 0.3 in all DOFs.For this study, we used the CCL of Ref. 7, whichwas later extended to use the linear rail. The CCLextends the classic kinematic inversion formulationto account for simulator joint and actuator con-straints, by redefining it as a Task Priority inversionproblem.28 That is, the main task is divided intothree subtasks with different priorities, in order ofimportance: 1) following the desired orientation, 2)following the desired position, 3) accomplish bothtasks if the robot is not close to singularities.Task Priority inversion avoids singularities andjoint position limits, but does not account for veloc-ities and accelerations limits. Hence, an additionalsaturation scheme is applied,28 which prevents the
control velocity vector from exceeding limits result-ing from joint limits. Saturating the velocity vector,instead of the individual joint commands, ensuresthat the direction of the control vector remains un-altered, preventing off-axis distortions of the mo-tion.
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