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1. Introduction

The work reported herein is part of a continuing long term programme of
government sponsored research into the dynamic characteristics of helicopter
airframes.

The objectives of the research were to assess general metheds of analys-
ing helicopter vibration, with particular reference to the use of ncrmal modes
in the forced response problem.

The normal modes of a Wessex helicopter were isclated (using multi-point
excitation), guantified and compared with modes calculated from minimum complex-
ity finite element anslysis. Both sets of modes were used to predict forced
response and were compared with measured responseé to rotor head exciltation.
Acceptable agreement has been achieved vetween measured and calculated modes and
predicted forced response amplitudes were sufficiently close to the measured
values to give confidence in both testing techniques and the use of normal modes
in the forced response problem.

The research was conducted using the 'total dynamics' concept where one
small interdependent team was responsible for the entire project. It was found
that the use of such & concept was totally justified. Furthermore it is believ-
ed that the use of the fechniques repcrted herein brings a new level of under-
standing to the airframe dynamics problem.

2., Normal Mode Theory

The Existence, Excitation and Characteristics of Forced Damped Normal Modes

Initially the theory is developed to show the existence of normal modes
in a lineer system with properticnal hysteretic damping. The egquation of motion
of a linear sitructure subjected to a set of harmonic real forces may be written.

MR(t) + (K + iH)x(t) = fe' (1)
Where M , K and H are mass, stiffness and damping matrices and x and f
are vectors of response and force, w 1s the forcing frequency and ¢ is time.

Assuming a solution of the form x{(f) = x¢“” and removing time dependence
then 1 becomes

(—wM + (K + iH)x =1 (2)

Let X = Xg + ix‘r then

K — w*M ~ Hx, =f
{ w*Mxg Xy } 3)

HXR + (K - (IJZM)XI = {)
It is assumed that M, Kand H are symmetric and positive definite. We
wish to show that for any foreing frequency o there exists an f, such that all

elements of the displacement vector x are mutually in-phase. The analysis is
developed for the case where @ is a root of det{K — w*M) =0
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Then there exists a reel non-trivial vector y such that

(K~ oMy =10 (4)
This suggests a mono-phase solution to 3:
Xp=y
XR = 0 (5)
f= —Hy

Eguation 5 shows that when w is a natural frequency of the undamped
system, the displacement vector {which is in quadrature with the excitation)
corresponds 1o the sigenvector of the undemped system. This leads to the follow-
ing response criterion which is used as a basis for normal mode experiments.

"For a linear system with proporticnal hysteretic damping, excited by a
set of monophase harmonic forces, a sufficient conditicn for the response of the
system to be in a normal mode is that the displacement vecitor be in quadrature
with the excitation.”

This will be noted as a speclal case of de Veubeke's Characteristic Phase
Lag Theory. (Ref.1)

Traill-Nash (Reference 2} has shown that the force distribution required
to excite a normal mode may be rationalised by taking into account the number of
effective degrees of freedom at any resonant frequency, thus providing a practic-
al bagsis on which experiments may be designed.

A mathematical Justification for using normal mcdes in forced response
analysis is that the H matrix is of a particular form. To make the analysis
meaningful and to allow the use of experimental technique we shall introduce the
concept of modal damping. We shall attempt to justify the use of modal damping
by comparing experiment and thecry.

The Use of Uncoupled Modes of Vibration in the Mathematical Model

The displacement vector x may be transformed to principle co-crdinates
by the equation

X = ¥Yp (6)
where Y is the matrix of mode-shapes and p is a vector of principle co-ordinates.
Substituting 6 into 2 and pre-miltiplying by Y’ gives.
(—w*M* + (K* + iH*)p = YTf (7
where M* K* and H* are the diagonal matrices of generalised normal mode proper-
ties, the diagenal elements of which are :-
m; =y "My, Generalised Mass of the Jth moge
k, =y Ky, Generalised Stiffness of the jth mode (8
h; =y Hy, Generalised Damping of the Jth mode
Note that the crthogenality relationships hold 2=
Yﬁh4¥;=‘) i #]
YKy, =0  i#j 9)
and we assume

) YiTHyJ‘:'O i#j
Taking the J/th equation of 7

(—w*m, + (k; + ih)p, = ¥;'f (10)
Let Pj ] ajej” (Il)
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Substituting 11 into 10 and taking real and imaginary parts

(k;, — w’ma; cos a; — h;a; sin aj=y}-rf} (12)
h;a; cos a, + (k; — w'ma;sing; = 0
Solving 12 for 4¢; and tang;
tan a; = hjlk; - w'm)
If the damping is light then
w; = (k;m)* (14
and we introduce the modal loss factor "; defined by
n; = hj/kj (15}
and let ) = wjw, (16)

Substituting 14, 15 and 16 into 13
a; =y, k{1 — 12 4 YR
tan z; = n(l - r}*)
Note that the rigid-body modes should be included in the calculation of forced
response and that for these modes k,=h;=0

(mn

So we calculate 4; and tana, for rigid-body modes from 13 and for
flexural modes from 17. The forced response x is thern calculated by substit-
ution into 5.

The equations 13 and 17 cculd alsc te used to calculate forced response
from the experimentally derived modal data. However, errors caused by using
measured values of damping and static properties can be eliminated by using the
measured resonant amplitudes and force sets required to isolate the modes.

If we assume that y; in the preceding equations is the measured resonant
displacement vector and let f, be the force set used to isolate the Jjth mode,

then substituting r,=1 and [ =1 in 17, we have
a; = yjrfj/kjnj} (18)
tana; = X
But by definition ¢, will be unity in these circumstances so
| o= ijfj/kjﬂ}- {19]
x; = n/2

Note that this equation impties that at resonance the structure behaves as a
single degree of freedom oscillator.

Dividing the first equation of 17 by vy, f/k;n,

a; =y, tyly, 40—+ nf)‘fz}

tana; = 7,1 — ,-).Z) (20)

The first equation ¢f 20 is important to the experimenter because at
resonance the equation is independent of damping., Thus in situations where it
may be considered that cnly one mode is effective, forced response may be com=-
puted for any aerbitrary excitation without reccurse to measured values of damp-
ing or static properties. In the experiments reported herein, equation 20 is
used to calculate the forced response to rotor head excitation and the resultis
compared with response measured during sctusl rotor head excitation.

At resonance the calculated response is dependent only on the measured

modal elgenvectors and the measwed applied forces, thus minimising the effects
of experimental errors.
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3, Descripbion of Experiments

Aipframe State

The airframe was suspended clear of the ground via heavy duty braided
rubber cord. The airframe was ballasted to give a nose-down attitude of 27,
with lumped masses replacing rotors, crew and standard equipment. The attitude
was chosen %o eliminate free-play between the main rotor shaft and gearbox.
The fuel tanks were empty and the transmission system free to rotate. The oleos
were completely decompressed.

Figure 1 is a diagram of the experimental set-up.

Isclating and Measuring the Normai Modes

Prior to setting the normal modes some overall "feel" for the dynamie
characteristics of the helicopter was achieved by recording the complex fre-
quency response (using single-point excitation) of the structure at s number of
points, for a number of exciter pcsiitions, to produce a "panorama' of sensitive
frequencies and areas of maximum response.

In setting up the normal modes a philosophy of '"'minimum complexity" was
employed, consistent with acceptable results. Where multi-point excitation was
required a six-channel MAMA (reference 3) system was employed, thus reducing the
work lecad to a minimum.

The acceptability cr otherwise of each mode was based upon the character-
istic phafe lag criterion, with, in general, an allowable experimental phase
error of -107 of total in-phase velocity response at all points on the structure.

For each of the five modes investigated the modal properties were recorded
in terms of shape, natural frequency, complex frequency response, orthogonality
(with respect to the mass matrix) and modal damping. Evidence of modal non-
linearity was also recorded.

Fach mode shape was recorded at 95 points. With vertical, lateral and
fore-and-aft measurements at each point this resulted in a response vector of
order 285.

Response was measured using the integrated signal from a piezoelectric
accelerometer/charge amplifier system. The resultant voltage, which was
essentially in-phase with the applied force-set(itself monitored using vibrator
currents) was fed from the MAMA Transfer Function Analyser to a semi-automatic
dataz-reduction facility which recorded, for each poini, the three vibration
amplitudes onto punched card.

Complex plotting of amplitude vs frequency was done via the Transfer

Function Anslyser and X-Y plotter. Modal demping was assessed using the 'half
power' technique and by using the relationship between dynamic magnifier 'Q' and
rate-of-change of phase with respect to frequency arocund each natural frequency.

Forced response experiments were performed by representing rotor loads
with a large electromagnetic vibrator produecing uniaxisl in-plane force at the
rotor head.

Figure 2 identifies the main elements of the experimental equipment.
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4. Creation of the Mathematical Model

The data obtained from earlier experimental stiffness tests on the Wessex
was initially rationalised by assuming that the fuselage could be represented
by beams with linear taper in EI and GJ. Such beam elements are very attractive
for a coarse finite element model since they enable a complicated stiffness and
mass distribution to be represented with many fewer degrees of freedom than would
be required if uniform elements were used.

Geometry

Figure 3 shows the geometry of the model of the Wessex, the numbers
referring to the Joints of the beams.

The positions of nodes 1, 2, 3, L, &, 6, 7, 10, 15, 18 and 19 were dic-
tated solely by geometric considerations. Nodes 8, %, 11 and 13 were added to
enable the stiffness distributions to be accurately represented and it was thought
that these 15 nodes enabled the mass distribution to be adequately represented
too.

It was found, however, that nodes 12, 1L, 16 and 17 were required in the
less-stiff rear end of the fuselage and tail pylon to provide gufficient degrees
of freedom to adequately represent the shapes of the higher frequency normal
modes. There are & degrees of freedom at each mode, 3 transiations and 3 rota-
tions.

Stiffness

Fach element of the model is capable of deforming axially, torsionally,
in bending and in transverse shear, so its stiffness characteristics are defined
by EA, GJ, EI in two perpendicuiar axes and GA.

The engines, gearbox components, rotor head mass and tall rotor mass
were free to rotate but interconnected by shafts but as the inertia of this system
was unlikely to be overcome the main rotor and tall rotor masses were assumed to
be rigidly attached tc the main rotor pylon and tail rotor support arm respective-
ely.

Mg ss

The mass distribution of the Wessex was refined by breaking down the major
non-structural items together with all structursal components into many small
masses, whilst maintaining the centre of gravity positions of each item and the
moments of inertia of the whole aircraft.

It was found that a very fine breakdown was required at the more flexible
tail end of the alrframe to correctly represent the kinetic energy of the struct-
ure in the higher frequency normal modes.

Lumped-mass models proved to be very poor when the normal modes were
compared with the experimentally derived normal modes, with only the first mode
being of satlisfactory accuracy. This was due tc the inability of a lumped mass
system, in a very coarse model, to correctly represent the kinetic energy of
sectiong of structure which have significant motion in translational and rotatione
al directions simultaneously in the normsal modes.

The formulation of the consistent mass matrices enabled non-structural
point masses to be attached anywhere on the elements.
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5. Discussion of Results

Relevance of the Theory in the Light of Experimental Evidence

The initial assumptions on which the ncrmal-mode theory is based are that
the structure is linear and that the dissipative characteristics may bte des-
cribed by proportional hysteretic damping.

Proportional hysteretic damping was assumed because such an assumption
has been justified on similar complicated structures. The 'Wessex' experiments
have tended to confirm the general concept of modal damping although 1% has been
found that the modal dampings, whilst generally increasing with frequency, do
not follow any simple pattern.

One task of the research was to assess the use of multi-peoint excitation
on helicopter structures. It has been found that the rationalisation of the
number of exciters used, due to Traill-Nash, was justified, but one point part-
icularly relevant to heliccpters was that exciters should be used {even if at
very low force) at the rotor head to ensure that the components of the eigen-
vectors representing head motion are fully excited. In this way any backlash
or local non-linearities are taken inte account. It was found that no more than
3 exciters were required to achieve total in-phase velocity response to within
$10° (a reasonable practical limitation) in any mode.

It was found that the generalised mass matrix (Fig. L) compares favour-
ably with the theoretical ideal (eguations 8 and 9}, i.e. the off-diagonal terms
were small compared to the diagonals. It was found however that the generalised
mass matrix, whilst giving confidence in the experimental measurements, could
not be relied upon to give an assessment of the value of the measured modes in
the forced-response case.

It was found that on the whole, the modal frequency dependences(figures
5, 8, 11, 14 and 16) show fair agreement with the single-degree-cf freedom
concept. In the 9.48 Hz mcde no explanation can be given for the bump at the
high frequency end of the complex plot. No explanation can be given for the
sudder decrease in the modulus of the response around the resonant frequency of
the response around the resocnant frequency of the 20.17 Hz mode.

In measuring modal damping, it was found the relationship between dé/dw
and ‘() was more accurate than the half-power technique.

Superposition of the normal modes and comparison with experimental forced
response provides the key to validating the normal-mode approach to forced
response. The peak amplitudes are independent of measured damping values and
static stiffness properties and hence discrepancies would indicate errors in the
measurement of resonant amplitudes, errors in force measurement or invalidity
of the theory.

Errors in the damping would be manifested by divergence of the slopes
elther side of the peaks from the slopes of the forced response. Figure 19
‘(which is typical of a large number of points) indicates that there is fair
agreement between the super-position of normsl modes and forced response.

Comparison of Theoretically and Experimentally Derived Normal Modes

Figures 6 and 7 show the mode shapes of the first mode of the airframe
and model respectively. The frequency error for this mede is 1.L% and the
deflections at the head are accurate to within 3%. These errors cause an error
of about 15% in the modulus of the response of the mode to a 15 Hz excitatiocn
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force at the main rotor head ( @, in equation 17). Note that the experiment-
ally derived values of modal damping are used when superimposing both sets of
modes so the error in phase of response to a 15 Hz excitation is due solely to
the error in the freguency.

Figures 9 and 10 show the second modes of airframes and model. The
frequency is accurate to .3%.

Figures 12 and 13 show the third mode of airframe and model. The freq-
uency is accurate to .3% but the mode shape appears at first glance to be
rather inaccurate. The two shapes are normalised to give the same maximam
deflection but the position of the maximum differs. However the shapes of the
fuselage deflections are very simlilar apart from the scale, which suggests that
the main undercarriage 1s poorly represented in the mcdel. There was found to
be a lot of 'play' in the bearings of the main undercarriage legs and nc attempt
was made to incorporate this in the model. The deflecticn at the rotor head
is very accurate so the modulus of the response to 15 Hz rotor head excitation
is also accurate.

Figures 15 and 16 show the fourth modes of airframe and model. The
frequency is not very accurate (2.3% error) but this only causes an error of
2 degrees in the phase of the response of the mode to 15 Hz excitation and this
is acceptable. The general shape of the mode is recognisable as being the
same mode but it differs in details. There are differences in the deflection
of the main rotcr head which affects the prediction of response to excitation
forces applied at the rotor head. There is also some frame deformation in the
airframe mode which the model is incapable of representing.

Figure 18 shows the fifth mode of the airframe. There are gross deforma-
tions of the frames so there is no comparable mode of the model. The model
predicts the first three normal modes sufficlently accurately. The predicticn
of the fourth mode could be greatly improved by modelling the main rotor pylon
in mich greater detail., The fifth and higher modes would involve a model with
many more degrees of freedom.

6. Conclusions

The experiments and theoretical analysis on a Wessex helicopter confirm,
in general, the validity of the normal mode approach to the helicopter forced
response problem.

Tt was found that the equipment and techniques, specifically adapted for
helicopter shake-testing, were well suited for the task in hand. It was found
that de Veubeke's Characteristic Phase Lag Criterion, modified to allow phase
errors of up to - 10% at areas of significant response, produced results that
were broadly confirmed by forced response analysis. It was found that a mexirmum
of three exciters were required to achieve the necessary modal purity in all
five normal modes measured in the frequency range up to 21 Ha.

The derivation of modal damping from the d¢/dw/Q relationship was found
%0 be more reliasble than the half-power method. The damping values obtained,
however, are still not considered to be particularly accurate.

The theoretical analysis, based upon a dynamic model with 11L degrees of
freedom, demonstrated that coarse branched beam analysis adequately represented
the first three normal medes. The representation of higher modes would reguire
an increase in model complexity.

It was found that in dynamic analysis using coarse idealisation, the use
of a consistent mass matrix was required tc achieve the necsssary accuracy of
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the modes.

It was found that the generalised mass matrix, whilst representing a
satisfactory degree of orthogenality (i.e. small off-diagonal terms) was
inadequate in confirming the usefulness of the normal modes in the forced
response case.

The use of the 'total dynamics' concept where one smail multi-disciplin-
ary team is responsible for the entire project, from inception to final report
stage, was totally justified.
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