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ABSTRACT

The Carrera Unified Formulation (CUF) is here used to perform dynamic analyses of rotating structures. The hier-
archical feature of CUF enables refined kinematic theories to be obtained in a systematic way. The displacement
field components can be approximated using an arbitrary number of generic functions of the cross-sectional
coordinates (x,z). In this work, both Taylor- and Lagrange-like polynomial expansions are used. The Finite
Element technique along the longitudinal direction (y) of the structure is used to solve the weak form of the
three-dimensional differential equations of motion in terms of fundamental nuclei, whose forms do not depend
on the adopted kinematic assumptions. Structures that rotate about either transversal or longitudinal axis can
be analysed by including gyroscopic and stiffening contributions. In particular, the dynamic characteristics of
advanced rotary-wing configurations made of metallic, and composite materials are studied. Moreover, further
simulations are performed on a three-layered blade with a viscoelastic core to evaluate the capabilities of 1D-CUF
elements when structures with significant material anisotropy are considered. Current results are compared with
theoretical and experimental solutions, when available. Comparisons reveal that the present one-dimensional
formulation combines a relevant accuracy with a low computational cost.

1 INTRODUCTION

Over the years, the intrinsic 1D nature of rotors and
the low computational cost have motivated the exten-
sive use of the beam formulations in the study of the
rotor dynamics. Many works have been devoted to
the use of Euler-Bernoulli and Timoshenko theories
for investigating the vibrational behavior of spinning
shafts [1] and centrifugally stiffened beams [2]. How-
ever, the complexity of actual structures and the use
of anisotropic materials have determined the need
to improved the assumed kinematics with respect
to the classical models. To this end, advanced 1D
formulations encompassing the effects of transverse
shear, cross-sectional warping and, non-uniform tor-
sion have been proposed. The enhanced features of
these models have been evaluated through stability
and critical speed analyses performed on thin-walled
box beams and cylinders made of composite materi-
als [3]. Although the significant improvements deriv-
ing from the advanced 1D formulations, their use is re-
stricted to rotors with compact cross-sections. When
the deformability is no longer negligible, shell and
solid solutions are required in order to include the cen-
trifugal effects properly. Hence, thin and thick walled
cylinders, discs as well as multi-section rotors are typ-
ically modeled through combinations of 1D, 2D and

solid finite elements [4]. Nevertheless, this modeling
technique may present two drawbacks: 1) high com-
putational cost, especially when solid elements are
being used in the model; 2) the assemblage of differ-
ent finite elements types. In order to overcome these
issues, reduction techniques [5] and rigid/transition el-
ements [6] can be adopted.
This paper proposes advanced classes of beam fi-
nite elements for structural analyses of rotors. The
present methodology exploits the one-dimensional
Carrera Unified Formulation (1D-CUF), which enables
one to go beyond the classical kinematic assump-
tions. CUF is a mathematical tool, which makes it
possible to derive, at least theoretically, any kind of
sophisticated displacement models. The 1D-CUF el-
ements have been extensively adopted for the study
of the mechanical response of complex-shaped struc-
tures made of isotropic and composite materials ac-
cording to either equivalent single layer (ESL) or layer-
wise (LW) approach. Within the ESL context, arbi-
trary N -order power series expansions (referred as to
’TEN ’) of the cross-sectional coordinates were used
to approximated the tree components of the displace-
ment fields (uT =[ux, uy, uz]). The ’TEN ’ models pro-
vided encouraging results for shafts made of isotropic
[7] and orthotropic materials [8], for thin/thick rotat-
ing shells [9] and, for straight rotary-wing configu-
rations [10]. These results demonstrated that TE



models are efficient for prismatic structures, but they
can show limitations when the components of the ro-
tor present different deformability. In order to over-
come this shortcoming, the LW approach has been
recently adopted. The LW 1D-CUF elements have
been derived by exploiting the inherent capabilities of
Lagrange-type expansions (referred as to ’LE’), which
make possible local refinements, depending on the
characteristics of the rotor component (deformabil-
ity, mechanical properties, etc.). To evaluate the en-
hanced features of ’LE’ elements, vibrational analyses
have been performed on metallic rotors (rings, discs,
and bladed shafts) [11], and on layered viscoelastic
structures [12].
The proposed unified formulation enables one to
derive the equations of motion in a fully three-
dimensional form by including all effects due to the
rotational speed namely the Coriolis term, the spin
softening and the centrifugal stiffening. In this work,
close attention is given to the dynamical response of
real rotary-wing configurations. In particular, the ef-
fects of the sweep angle and the use of viscoelastic
materials on the natural frequencies are being eval-
uated. Owing to their computational efficiency and
accuracy, the 1D-CUF elements enable one to con-
sider many structural configurations. This capability
can significantly facilitate the design process by pro-
viding useful insights on the dynamic response of the
rotary wings.

2 KINETIC AND POTENTIAL EN-
ERGIES

To obtain the equations of motion of a structure that is
rotating with a constant speed Ω, Hamilton’s Principle
is used

(1) δ

∫ t1

t0

(T − Utot) dt = 0

where T and U are the kinetic and the potential en-
ergies in the co-rotating reference frame, and δ is the
virtual variation of the functional (see [7]). The abso-
lute velocity of a point P at a distance rtot from the
neutral axis is the sum of the relative velocity and the
transfer velocity

(2) vabs = vrel + vt = u̇+Ω× rtot

Ω =





0 −Ωz Ωy

Ωz 0 0
−Ωy 0 0





According to Eq.2, it is possible to derive the kinetic
energy, whose explicit expression can be found in [9].

In the linearized analysis, the total potential energy,
Utot, is given by the sum of the elastic term U and
the geometric contribution Uσ0

, which is due to the
pre-stress σ0 (or pre-strain ǫ0) field generated by cen-
trifugal or thermal effects. The expressions of U is

U =
1

2

∫

V

uTDTCDudV

The linear strain-displacement relation is defined by
the differential operator D [13], while the expressions
of the stiffness coefficients of C matrix for orthotropic
and viscoelastic materials can be found in [14] and
[12], respectively.
The expression of the geometric term is

Uσ0
=

∫

V

σT
0 ǫ

nl dV

where ǫnl are the non-linear components of the strain
field. For example, the expression of σ0 for a centrifu-
gally stiffened blade (Ωy=0) is

σ0 = Ω2
zρ[rhL− rhy + 0.5(L2 − y2)]

where L, and rh are the length of the beam, and the
dimension of the hub, respectively.

3 CARRERA UNIFIED FORMU-
LATION

Within the CUF framework, the displacement field is
an expansion of generic cross-sectional functions, Fτ

(3) u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, . . . ,M

where uτ is the vector of the generalized displace-
ments, M is the number of terms of the expansion
and, in accordance with the generalized Einstein’s no-
tation, τ indicates summation. In this work, two kinds
of expansions are considered, namely the Taylor-like
and the Lagrange-like expansions. As far as the TE
polynomials are concerned, the displacement field up
to the first order (TE1) is

u(x, y, z) = u1(y) + x u2(y) + z u3(y)
v(x, y, z) = v1(y) + x v2(y) + z v3(y)
w(x, y, z) = w1(y) + x w2(y) + z w3(y)

while, for the nine-point Lagrange element (LE9), the
interpolation functions become

Fτ = 1

4
(r2 + r rτ )(s

2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1

2
s2τ (s

2 − s sτ )(1 − r2) + 1

2
r2τ (r

2 − r rτ )(1 − s2)
τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9



where r and s vary from −1 to +1. rτ and sτ are the
coordinates of the nine points expressed in the natural
coordinate frame (see [11]).
The generalized displacement vector along the beam
axis is interpolated through a classical finite element
technique

(4) uτ (y, t) = Ni(y)qτi(t)

where qT
τi(t) = [quxτi

, quyτi
, quzτi

] is the nodal
displacement vector, and Ni are the lagrangian
shape functions along the longitudinal axis (see [13]
(§5.2.2)).

4 GOVERNING EQUATIONS

The equations of motion are derived by Eq.1, in which
the kinetic and potential energies are expressed using
the CUF approximations (Eqs.3, and 4). The homo-
geneous equations of motion in CUF form are

(5) M τsij q̈+G
τsij
Ω

q̇+(Kτsij+K
τsij
Ω

+K
τsij
σ0 )q = 0

where M τsij is the mass matrix, Gτsij
Ω

is the Coriolis
term, Kτsij

Ω
is the softening matrix, Kτsij

σ0 is the cen-
trifugal contribution, and Kτsij is the stiffness matrix.
Neither the nature of functions Fτ nor their number
N modifies the expressions of these mathematical
operators, which are traditionally called fundamental
nuclei. The explicit expressions of the fundamental
nuclei can be found in [15]. The complete structural
matrices related to the adopted mathematical model
are being obtained through the assembly technique
schematically shown in Fig.1.

Fundamental nucleus

τ

s

i

j

1 SN

SN

1

1MM

N1

Node Element Structure

M

Figure 1: Graphical representation of the assembly
procedure.

The numbers of degrees of freedom (DOFs) required
for the CUF models have been obtained using the fol-
lowing formula

DOFs = (3 ×M)× SN

where ’SN ’ stands for the structural beam nodes
along the longitudinal axis.
The homogeneous equations are solved assuming a
periodic solution q = q̄eiωt in order to obtain natural
frequencies and normal modes of the rotor.

(6)
q̄eiωt

[

(K +Kσ0
−KΩ) + (GΩ)iω − (M)ω2

]

= 0

The quadratic eigenvalue problem of Eq.(6) is solved
as previously done in [7] and [8].

5 NUMERICAL RESULTS

Although the proposed formulation enables rotary-
wing and spinning structures to be considered, the fol-
lowing section aims of presenting analyses performed
on straight and swept-tip blades made of isotropic,
composite and viscoelastic materials.

5.1 Isotropic blades

A metallic blade, which is schematically shown in
Fig.2, has been considered. The Young’s modulus
is E=73.08 [GPa], Poisson’s ratio is ν=0.325, and the
density is ρ=2682 [kg m−3].
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Figure 2: Swept-tip blade configuration.

Firstly, for L=80.01, s=15.24, r=6.35, and different val-
ues of Λ, Tabs. 1-4 list the natural frequencies of
structures computed with the first-order shear defor-
mation theory (FSDT) and two higher-order 1D mod-
els (TE2-TE3) using a mesh with 11 4-node elements
along the y-axis. The notations ”B” and ”T” indi-
cate vibration modes dominated by bending and tor-
sional deformation, respectively. Current results have
been compared with solutions reported in [16], where
a non-linear beam formulation was validated against
theoretical and experimental data presented in [17].
Due to the significant twist-bending coupling, the first-
order shear deformation theory provided inaccurate
results for swept-tip configurations. Conversely, com-
parisons have revealed good correlations between
the TE predictions and reference solutions for all com-
binations of sweep angle and rotational speed. In the
second application, according to Fig.2, dimensions L,
s, and r have been assumed equal to 16.5, 15.24 and
69.85 [cm]. The Young’s modulus is E=68.9 [GPa],
Poisson’s ratio is ν=0.3, and the density is ρ=2700
[kg m−3]. Natural frequencies are shown in Figs.3 and
4 as functions of the rotational speed for Λ=0o and
45o, respectively. For both cases, TE3 results have
been reported together with the solutions provided in
[18], where the results obtained with a solid-shell fi-



nite element were compared with those derived from
a non-linear 1D formulation [19].
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Figure 3: Λ=0o, L = 16.5, s = 15.24 and r = 69.85 [cm].
’–’: TE3, ’- - -’: [18], ’•’: [19]

For Λ=0o, it is observed that TE3 results strongly
agree with those predicted by the solid-shell solution
while slight discrepancies exist with the 1D approach.
As far as the second configuration is concerned,
the frequencies related to the first four modes ba-
sically match those presented in [18]. Conversely,
for the coupled modes 4B/1T and 5B/1T, the three
approaches predicted different results. The maximum
discrepancy between the 1D CUF and the solid-shell
solution is about 10%.

5.2 Composite blades

To evaluate the capabilities of the presented method-
ology in the study of swept-tip blades made of com-
posite material, a structure with a chord and a thick-
ness equal to 1.79578 and 0.30734 [cm], respec-
tively, has been considered. The other geomet-
ric dimensions are L=80.01, s=15.24, r=6.35, and
Λ=45o (see Fig.2), while the material properties are
E11=142, E22 = E33 = 9.78 [GPa], ν12=ν13=0.42,
ν32=0.54, G12=G13=6.14, G32=5.52 [GPa], and ρ=
1538 [kg m−3].
The analyses have been performed using the
TE3 and TE4 theories for two different lamination
schemes: θ =0o and θ =15o. The related results
are shown in Figs. 5 and 6. Also for these cases,
the solutions presented in [16] have been reported
as reference values. For θ =0o (Fig. 5), the 1D re-
sults agree well with the experimental and theoreti-
cal data, except for slight discrepancies in the com-
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Figure 4: Λ=45o, L = 16.5, s = 15.24 and r = 69.85
[cm]. ’–’: TE3, ’- - -’: [18], ’•’: [19]
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Figure 5: Composite blade [0o]. ’–’: TE4, ’- - -’: TE3,
’- - -’: Theory [16], ’•’: Exp. [17]
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Figure 6: Composite blade [15o]. ’–’: TE4, ’- - -’: TE3,
’- - -’: Theory [16], ’•’: Exp. [17]

putation of the 4B/1T frequency. As far as the sec-
ond lamination scheme (Fig. 6) is concerned, it can
be observed a good correlation between the experi-
mental data and the current solutions for the first four
frequencies. Conversely, the reference theoretical ap-
proach provided lower values of natural frequencies.

5.3 Layered viscoelastic blades

A symmetric sandwich beam has been considered.
The structure consisted of a viscoelastic core with
thickness hc = 0.127 [mm] constrained between two
metallic layers with Youngs modulus Ef = 69 [GPa],
density ρf = 2766 [kg m3], Poissons ratio νf = 0.3 and
thickness hfb = hft = 1.524 [mm]. The beam length
and the width have been assumed equal to L=177.8
[mm] and b=12.7 [mm], respectively. This beam con-
figuration was extensively analysed in previous works
by assuming either constant or frequency-dependent
properties of the core. For the case of constant values
of ηc, the storage core modulus, the density and the
Poissons ratio of the core have been assumed equal
to Ec0 = 1.794 [MPa], ρc = 968.13 [kg m3] and νc =
0.3, respectively. Table 5 list the damped frequencies
and the corresponding modal loss factors for ηc = 1.5.
The results obtained with 3LE9 and 8 4 node-beam
elements are compared with solutions available in the
literature and those derived from a convergent 3D fi-
nite element model. The current values compare well
with both reference solutions in terms of both damped
frequencies and modal loss factors. Also, it should be
observed that the present layer-wise approach pre-
dicted accurate results for torsional deformations. For
the same value of ηc, Fig. 7 shows the first two flex-

ural and the first torsional damped frequencies with
corresponding modal loss factors as functions of the
rotational speed.

0

200

400

600

800

1000

0 50 100 150 200
F

re
q
u
e
n
c
y
 [
H

z
]

� [Hz]

1T

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

�

Figure 7: Damped frequencies, ’–’, and modal loss
factors, ’- - -’, of viscoelastic blade. ηc=1.5.

It should be observed that the absolute values of fre-
quencies and loss factors exhibit different variations
when the velocity increases. The centrifugal effects
tend to increase the blade bending stiffness, there-
fore reducing the effectiveness of the damping layer.
For the torsional, any significant variations have been
observed within the considered speed range. Figures
8 and 9 show the variations of damped frequencies
and modal loss factors of the first two bending modes
as functions of ηc.
The analyses have been performed at three differ-
ent velocities Ω = 0, 100 and 200 [Hz]. The sim-
ulations reveal that the modal loss factor related to
the first flap mode is higher than η2 for values of ηc
lower than 0.8. The material loss factor represents,
therefore, an effective design parameter for the con-
trolling of vibrations and dynamic instabilities. The
proper value of such quantity could be determined
through optimization processes, which require the
use of reliable and computationally effective mathe-
matical tools. Hence, the 1D-CUF approach may rep-
resent a valuable methodology for this kind of analy-
sis.

6 CONCLUSION

In this paper, advanced beam formulations were used
for the study of the dynamic response of structures
that can rotate about the longitudinal or transversal
axis. The three-dimensional equations of motion,
which were derived from Hamilton’s Principle, were
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obtained in the CUF framework. All mathematical op-
erators, namely the mass matrix, the stiffness matrix,
the Coriolis matrix and the centrifugal matrices were
written in terms of fundamental nuclei, whose expres-
sions do not depend on adopted kinematic theories.
Close attention was given to swept-tip blade config-
urations made of isotropic and orthotropic materials.
Moreover, a laminated straight beam with a viscoelas-
tic core was analysed in order to show the capabilities
of 1D-CUF elements when structures with significant
mechanical anisotropy are considered. Current solu-
tions were compared with theoretical and experimen-
tal results published in the literature. These compar-
isons revealed that the 1D-CUF approach provides
accurate results for all considered structural prob-
lems. The refined beam models are able to detect
coupling effects due to the geometry and the lamina-
tion scheme.
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Speed [rpm] Mode FSDT TE2 TE3 Theory [17] Exp. [17] Theory [16]

0

1B 1.487 1.502 1.496 1.41 1.41 1.41
2B 9.320 9.415 9.375 9.24 9.24 9.99
3B 26.09 26.39 26.25 24.8 26.2 26.2

4B/1T 51.14 51.83 51.46 49.1 51.5 51.5
5B/1T 84.54 85.91 85.10 82.4 84.8 87.9
1T/5B - 106.4 106.4 104. 99.5 102.

500

1B 9.191 9.217 9.210 9.24 9.24 10.1
2B 23.83 23.91 23.89 23.9 23.9 25.0
3B 44.55 44.78 44.69 44.0 44.0 45.5

4B/1T 72.60 73.15 72.89 - - -
5B/1T 108.0 109.2 108.6 - - -
1T/5B - 106.8 106.8 - - -

750

1B 13.55 13.58 13.57 13.6 13.6 14.7
2B 34.00 34.09 34.07 34.0 34.0 36.1
3B 59.48 59.71 59.64 59.6 59.6 62.2

4B/1T 91.80 92.30 92.10 90.2 92.4 92.4
5B/1T 130.8 131.8 131.3 131. 131. 135.
1T/5B - 107.3 107.3 104. 104. 104.

Table 1: Natural frequencies of metallic blade (see Fig.2). Λ=0o, L = 80.01, s = 15.24 and r = 6.35 [cm].

Damped Frequencies [Hz]

f1 f2 f3 f4 f5 f6 f+7 f+8
Ref. [20] 69.9 309.1 755.2 1401.4 2268.4 3352.3 - -
3D FEc 70.645 313.575 762.520 1409.877 2279.704 3367.621 1003.142 3036.941
LE9 70.643 313.614 762.687 1410.441 2281.621 3373.871 1032.369 3124.899

Absolute values of Modal Loss Factors × 100

Ref. [20] 22.95 29.55 21.75 13.05 8.4 5.7 - -
3D FEc 22.626 28.908 21.514 12.923 8.398 5.727 2.146 2.185
LE9 22.333 28.319 21.272 12.877 8.390 5.726 2.068 2.119

’+’: torsional mode shapes.

Table 5: Frequencies and modal loss factors for ηc = 1.5



Speed [rpm] Mode FSDT TE2 TE3 Theory [17] Exp. [17] Theory [16]

0

1B 1.503 1.518 1.512 1.62 1.93 1.62
2B 9.422 9.483 9.443 9.33 9.89 9.33
3B 26.38 26.16 26.02 25.4 26.4 26.4

4B/1T 51.70 50.00 49.65 48.3 50.3 50.3
5B/1T 85.47 80.18 79.53 77.2 81.3 81.3
1T/5B 127.7 110.1 109.6 109. 105. 113.

500

1B 9.198 9.186 9.180 9.26 10.1 9.26
2B 23.88 23.24 23.22 23.5 25.1 23.5
3B 44.73 42.64 42.56 43.4 43.4 41.7

4B/1T 73.02 68.51 68.28 - - -
5B/1T 108.8 99.69 99.29 - - -
1T/5B 152.4 125.7 125.3 - - -

750

1B 13.55 13.47 13.46 13.6 14.4 13.6
2B 34.04 31.90 31.88 33.6 34.8 33.1
3B 59.64 54.64 54.56 57.1 54.6 53.4

4B/1T 92.17 84.62 84.45 87.5 85.3 82.8
5B/1T 131.4 118.0 117.8 115. 120. 120.
1T/5B 177.8 142.2 141.7 137. 144. 144.

Table 2: Natural frequencies of metallic blade (see Fig.2). Λ=15o, L = 80.01, s = 15.24 and r = 6.35 [cm].

Speed [rpm] Mode FSDT TE2 TE3 Theory [17] Exp. [17] Theory [16]

0

1B 1.553 1.568 1.568 1.57 1.76 1.57
2B 9.733 9.706 9.663 9.49 10.1 9.49
3B 27.25 25.56 25.41 24.1 25.3 24.1

4B/1T 53.40 45.87 45.53 45.3 46.7 45.3
5B/1T 88.28 74.54 73.90 72.5 76.3 76.3
1T/5B 131.9 114.0 112.9 111. 116. 121.

500

1B 9.221 9.123 9.116 9.28 10.2 9.28
2B 24.03 21.70 21.66 22.9 23.7 22.6
3B 45.29 38.69 38.57 40.7 38.1 36.4

4B/1T 74.29 63.35 63.11 - - -
5B/1T 111.0 97.05 96.57 - - -
1T/5B 153.1 138.9 138.0 - - -

750

1B 13.58 13.21 13.20 13.7 14.9 13.7
2B 34.16 27.55 27.48 32.5 31.1 30.0
3B 60.11 49.02 48.91 54.9 47.1 45.4

4B/1T 93.25 80.36 80.16 84.3 80.9 77.9
5B/1T 133.4 119.3 119.0 118. 120. 118.
1T/5B 181.0 163.5 162.9 159. 165. 173.

Table 3: Natural frequencies of metallic blade (see Fig.2). Λ=30o, L = 80.01, s = 15.24 and r = 6.35 [cm].



Speed [rpm] Mode FSDT TE2 TE3 Theory [17] Exp. [17] Theory [16]

0

1B 1.637 1.653 1.646 1.65 1.65 1.65
2B 10.26 10.14 10.09 9.73 10.2 9.73
3B 28.72 25.02 24.82 22.7 23.6 22.7

4B/1T 56.29 42.57 42.19 40.3 42.4 40.3
5B/1T 93.06 72.61 71.94 69.6 72.0 75.4
1T/5B 139.1 115.7 114.4 114. 112. 125.

500

1B 9.258 9.103 9.092 9.34 10.4 9.34
2B 24.28 20.49 20.40 21.9 21.9 21.9
3B 46.27 35.88 35.70 38.8 33.7 32.4

4B/1T 76.47 60.43 60.17 - - -
5B/1T 115.0 95.33 94.80 - - -
1T/5B 162.1 140.5 139.4 - - -

750

1B 13.62 13.03 13.01 13.7 15.0 13.9
2B 34.38 24.63 24.49 28.8 26.5 26.5
3B 60.93 46.05 45.90 49.5 43.2 41.4

4B/1T 95.13 77.58 77.35 81.6 76.5 73.9
5B/1T 136.8 117.3 116.9 121. 116. 116.
1T/5B 186.5 165.8 164.9 165. 161. 172.

Table 4: Natural frequencies of metallic blade (see Fig.2). Λ=30o, L = 80.01, s = 15.24 and r = 6.35 [cm].
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