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Abstract: Nowadays, there are several methods to monitor the health of the mechanical sys-
tems through the vibration signals acquired during the running time of machines. One of the 
trends is to build systems that are capable of self learning and self diagnosis basing directly on 
the vibration signals. This paper discusses about a new application of the adaptive-network-
based fuzzy logic method to detect the failures of the mechanical systems through their vibra-
tion signals. 
 

1 INTRODUCTION 

The helicopter maintenance is fulfilled by scheduled work cards. To improve the flight safety 
and also to reduce the operation and maintenance cost, a health and usage monitoring system 
(HUMS) is required to monitor the health of helicopters. The system uses the vibration sig-
nals from the drive train components and/or that from the cabin to analyze the current state of 
the helicopter. In case of fault detection, a warning will be triggered off to alert the mainte-
nance service. If the system considers the detected fault is serious enough, the aircraft may be 
grounded for further checks. 
Nowadays, the HUMSs use the indicators calculated from the vibration signals acquired after 
each flight to monitor the helicopter’s health. The faults are detected through those indicators. 
One of the advantages of this method is the simplicity. In theory, the indicators are more rep-
resentative than the vibration signals themselves and the abnormalities of the indicators’ val-
ues will identify the faults incorporating to components. However, the real conditions are so 
complex so that to achieve to a certain level of precision, the number of indicators becomes 
large and several signal processing methods would be applied.   
One of the trends to improve the performance of the system is to build systems that are capa-
ble of self diagnosis basing directly on the vibration signals. The inspiration of human intelli-
gence such as the decision making and the learning processes of the nervous system leads to 
such methods as the neural networks and adaptive-network-based fuzzy inference system. In 
this paper, we present a new application of adaptive-network-based fuzzy inference system to 
detect faults by vibration data. The advantages of adaptive-network-based fuzzy inference 
system are the self learning, decision making and modeling capabilities for complex, non lin-
ear problems. By training the system with the vibration signals of mechanical systems in 
normal states, the system will be able to detect the cases that correspond to the mechanical 
failures without dealing with a great number of indicators. 
 
In brief, the indicators are different features (e.g. 1/REV, 2/REV, RMS, etc.) from each set of 
time domain data. The analyses then are based on the evolution of each of those features to 
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detect faults. By contrast, the adaptive-network-based fuzzy inference system detects and di-
agnoses faults by comparing the current data with healthy-identified data and/or with faulty-
identified ones. 
 
 
2 FAUTL DETECTION WITH ADAPTIVE-NETWORK-BASED FUZZY INFER-
ENCE SYSTEM 

The adaptive-network-based fuzzy inference system is a particular fuzzy inference system 
which bases on adaptive network-type algorithm. The membership function parameters that 
best allow the associate fuzzy inference system to track the input/output data are computed by 
an information learning procedure. The learning procedure uses the hybrid learning algorithm 
(backpropagation and gradient descent). 

2.1 Fault detection overview 
The fault detection is the first phase of the diagnosis process. In fact, the operators need at 
first range the general status of the helicopters to assure that the helicopters are to be in ser-
vice or not. 
 
In case that faults (crack, lost of torque, etc.) occur and propagate, the vibration data would be 
modified compared to the normal evolution of the signals from the drive train. These modifi-
cations represent faults. However, the lion share of vibration data correspond to the healthy 
state. Thus, if the analysis process may identify the healthy data without doing complex tasks, 
the analysis system would be faster and simpler.  
 
The fault detection phase described below will classify the input vibration data as healthy or 
not by applying a test. The result of the test, a so-called health level, helps to automatically 
classify the data. If the data is classified as healthy, the module generates a report so that the 
helicopter may continue to operate. By contrast, if the data is classified as faulty, further 
analyses – diagnosis phase, will take place. 
 
On the fault detection phase, see the diagram below (Figure 1).  

 
 

Fig.1: Fault detection 

2.2 Adaptive-network-based fuzzy inference system for fault detection 
The module learns from healthy-classified data and generates a set of parameters. These pa-
rameters will be used to test any other data. The result of the test classifies the health state of 
the helicopter at the moment associated with that set of data. 
 
The algorithm includes 2 steps:  
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- Parameters set up 
- Test and classify data. 
 
Step 1: Parameters set up 
The fault detection module includes indeed a set of parameters.  To generate this set of pa-
rameters, we use the adaptive-network-based fuzzy inference system (ANFIS). To set up the 
system, a number of inputs and an output are assigned. By default, the output value is fixed as 
1. As the inputs and output of the ANFIS are vectors of the same lengths, the output is a vec-
tor of 1. To classify the input, each output vector is represented by a value, which is assigned 
as the health level indicator of the data. 
 
The characteristics of the chosen ANFIS (Figure 2): 
- 2 input vectors 
- 1 output vector 
- Sugeno-type fuzzy inference system (5 layers) 
- Membership functions: Bell-shaped functions, 5 membership functions per input. 
 

 
 

Figure 2: Adaptive-network-based fuzzy inference system (ANFIS) architecture 
 
ANFIS architecture: 
- Input vectors: two 1-by-n vectors, frequency domain values. 
- Out put vectors: 1 vector of 1 by format, same size with the input vectors. In general, the 
output can be represented as: 
 ),( inputparametersoutput φ= (1)
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The fuzzy inference system has two inputs Ax , Bx and one final output f . The system’s rule 
base contains 5 fuzzy if-then rules, type Takagi-Sugeno: 
 

Rule i (i=1, 5): If Ax  is iA  and Bx is iB then output iBBiAAii rxcxcf ++=  (2)
 
The membership values on the premise part are then combined to get the firing strength (or 
weight) iw  of each rule. In a general ANFIS structure, the “weights” are usually a product or 
“And” operator. These operators are referred to as triangular norm (T-norm) ones, which meet 
the requirements:  
 - boundary ( 0)0,0( =T , aaTaT == ),1()1,( ): impose the correct generation of the 
crisp sets. 
 - monotonicity ( ),(),( dcTbaT ≤ if ca ≤ and db ≤ ): a decrease (or increase) in the 
membership value in A or B cannot results in a increase (or decrease) in the membership 
value in A intersection B. 
 - commutativity ( ),(),( abTbaT = ): the operator is indifferent to the order of the fuzzy 
set to be combined. 
 - associativity ( )),,(()),(,( cbaTTcbTaT = ): the intersection of any number of sets in 
any order of pairwise groupings has the same results. 
 
The qualified consequents of the rules are then aggregated to produce the final output: 
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The system has therefore 5 layers. 
 
- Layer 1: Each node of the layer associates to a membership function. 
 )(1 xO

iAi μ=  (4)
where 1

iO is the function associated to the node i  of layer 1, x  is the input and iA is the lin-
guistic label of the node. The membership function used in the module is the bell-shaped 
function: 
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The bell-shaped membership function (MF) that obtains the values in the interval (0,1] and 
one of the advantage of the function is its smoothness. The set { }iii cba ,,  is the parameters set 
of the function: when the values of the set vary, the form of the function varies respectively. 
Parameters of this layer are referred to as premise parameters which are updated by the gradi-
ent descent as the error rates propagate backward (hybrid learning algorithm).  
The fault detection module uses 5 bell-shape functions for each input. The figure (4) below 
maps each element of the input to a membership value. 
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Figure 3: Bell-shaped membership functions: 5 for each input. 

 
- Layer 2: Each node in the layer associates with a T-norm operator. For example, an operator 
may multiply the incoming signals and send the product out: 
 )()( BBAAi xxw

ii
μμ ×=  (6)

Or an “AND” operator will generate the output from incoming signals as: 
 ( ))(),(min BBAAi xxw

ii
μμ=  (7)

 
- Layer 3: The layer will normalize the firing strengths (the “weights”): the i-th node deter-
mine the ratio of the firing strength of the rule i to the sum of all rules’ firing strength: 
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- Layer 4: The i-th node of this layer associates to a node function 4

iO : 
 ( )iBBiAAiiiii rxcxcwfwO ++==4 (9)

where iw are the outputs of layer 3 and { }iBA rcc
ii
,,  is the parameters set. The parameters of 

this layer are referred as consequent parameters and are identified by the least square estimate 
in the forward pass of the hybrid learning algorithm.  
 
- Layer 5: The layer determines the final output of the system as the summation of all incom-
ing signals from layer 4. 
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Step 2: Test and classify data 
Once the parameters are set up, the faults detection module can analyze any flight data to de-
tect faults. Each flight data will be represented by an output value, defined as “health level”. 
As the module’s parameters are adjusted by the above process so that the health level output 
will be close to 1 in case of healthy signal. The health level in fact is the energy of the output 
vector so that this indicator’s behavior is linear: the low values correspond to healthy state of 
the helicopter and the high values correspond to faulty state (Figure 4). 
 
The tests on classified helicopter data help to determine the threshold for the health level indi-
cator. For the Super Puma, the threshold may be fixed for amber and for red type alarms for 
all machines. 
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Figure 4: Health level and threshold. 

 
3 MODEL VALIDATION 

3.1 Choice of test data 
The objective of the model is to detect the failures or faults appear in the vibration signals 
acquired during each flight. The validation of the model is based on a set of data from air-
crafts that the information of fault detections and components replacements are determined. 
There are two categories: normal cases and fault detected cases. As the history of the aircraft 
is determined, we choose the vibration data near to the failure / components removal moments 
to test the output of the model to detect the failures. The data from the normal operational 
events are chosen as well to validate the model. 

3.2 Model validation 
The results from the test cases show a good detection capacity of the model: closer to the fail-
ure / component replacement events, the level of the output is higher than 1 – level defined for 
healthy states. The model is also capable to detect fault cases that the traditional indicators-
based method ignores (only detected or reported by maintenance checks). In other words, the 
adaptive-network-based fuzzy inference system described in this paper may improve the per-
formance of the fault detection for HUMS.  
 
In the Table 1 below, we represent the performance of our fault detection module in compari-
son with the current monitoring system using the classical indicators. The chosen flight data 
are associates with the maintenance records on helicopters’ state (in case of “No report”, we 
assume that the helicopter was in good condition during the period where its data are avail-
able). 
 

Case State Maintenance check Flying 
hours 

Fault 
detection 
Module 

Current 
alarm level 

1 Faulty Hydraulic pump bearing play 968 yes no 
2 Faulty Intermediate gear: lost of torque 86.03 yes no 

3 Faulty Intermediate gear: lost of torque;  
Engine shaft: worn 372.8 yes yes 

4 Faulty Intermediate gear: lost of torque 336.92 yes no 
5 Faulty Intermediate gear: worn 78.52 yes yes 
6 Faulty Intermediate gear: lost of torque 267.37 yes yes 

7 Faulty Intermediate gear: slightly lost of 
torque 50.92 yes yes 

8 Faulty Intermediate gear: lost of torque 194.47 yes manual 

Healthy zone 

Amber alarms zone

Red alarms zone

H
ea

lth
 

Flights 
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9 Faulty Intermediate gear: lost of torque 251.02 yes yes 
10 Faulty Intermediate gear: lost of torque 336.88 yes yes 
11 Faulty Intermediate gear: lost of torque 232.45 yes yes 
12 Faulty Intermediate gear: lost of torque 77.43 yes yes 
13 Faulty Intermediate gear: lost of torque 49.44 yes no 
14 Faulty Intermediate gear: lost of torque 195.99 yes yes 

15 Faulty Hydraulic pump bearing and shaft: 
worn and slightly break  36.53 yes no 

16 Healthy Fault free report 877.78 no n / a 
17 Healthy Fault free report 2019.85 no n / a 
18 No report No fault report 1829.84 no n / a 
19 No report No fault report 1608.58 yes n / a 
20 No report No fault report 1479.9 no yes 
21 No report No fault report 1093.09 no n / a 
22 No report No fault report 218.5 no n / a 
23 No report No fault report 148.74 no n / a 

 
Table 1: Fault detection performance 

 
4 CONCLUSION 

The fault detection using adaptive-network-based fuzzy inference system shows a better per-
formance compared to classical method using indicators which are retrieved from vibration 
data of helicopters during the flights. By using the same process and only two flight data to 
set up the system, the method allows to detect faults on different types of helicopters. And the 
introduction of health level indicator helps to classify the normal and faulty states of helicop-
ters without testing a large number of indicators.  
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