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Abstract 

The finite element formulation based on the principle of minimum 

potential energy for the spatial discretization of the equations of motion 

governing rotor blade aeroelastic problems is presented, A numerical 

lifting surface method based on the velocity potential is used to evaluate 

the unsteady airloads on a hovering rotor in compressible flow. The 

blade is divided into a number of equally spaced elements. Instead of the 

Hermite polynomials in helicopter dynamics new polynomials are used to 

define the shape functions so as to reduce both the computer storage and 

time required. The equations of ·motion are linearized assuming blade 

motion to be a small perturbation about the steady deflected shape, The 

flutter equations of motion are solved in an iterative modification of the 

conventional V-g method. The formulation is applied to hingeless 

helicopter rotor blades. Numerical results show sensitivity of the aero

elastic stability boundaries to the unsteady airloads 

Introduction 

The fundamental problem in helicopter aeroelasticity is the coupled 

flap-lag-torsion aeroelastic problem of a rotor blade involving nonlinear 

structural, inertial, and aerodynamic forcesl 1 1,( z 1. A comprehensive set 

of e(\uations of motion of blades has been presented' ''.These equations 

were developed from nonlinear strain displacement relations, using both 

Hamilton's principle and the Newtonian method. 

A better approach for discretizing helicopter rotor blade aeroelastic 

equations is based on the· finite element method, which enables one 

to discretize the partial differential equations of motion directly. 

Conse(\uently, a significant reduction in the algebraic manipulative labor 

required for solving the problem, in comparison with the methods of 

solution based on the modal method, is accomplished. The finite 

element method is very· flexible and the formdation can be easily 
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adapted to different rotor blade configurations. Nonuniformities in 

blade properties can be easily accommodated. In Ref. 4-7 the bending 

degrees of freedom are discretized by using a conventional beam type 

bending element based on Hermite polynomials, i.e. cubic interpolation 

for bending. 

The helicopter rotor is subject to unsteady flow phenomena in its 

operation. Various unsteady aerodynamic strip theories have been developed 

for rotary wing applications! 91 110 1. Friedmann and Yuan! 11 lhave applied 

the modified unsteady aerodynamic strip theory to the rotor blade 

aeroelastic problems in hovering flight when all three (flap, lag, and 

torsion) degrees of freedom are considered. 

Two-dimensional strip theory does not allow for curvature and finite 

aspect ratio effects of helicopter rotor blades. Jones and Moore'" 1have 

developed a simple numerical lifting surface technique for calculating the 

aerodynamic coefficients on oscillating wings in subsonic flight. Rao and 

Jones'' 3 r have applied this simple but general method of predicting airloads 

to helicopter rotor blades on a full three-dimensional basis. Ref. 14 has 

also treated the similar problem using isoparametric finite element 

method. The method takes finite aspect ratio and subsonic compressibility 

effects into account. With a realistic wake representation, Rao and 

Schatzle' ' 51 have devaloped a numerical lifting surface method to predict 

the unsteady airloads on a hovering rotor blade in compressible flow. 

In the present paper, the finite element method is used to study the 

flutter stability of coupled flap-lag-torsion of a rotor blade in hover 

The blade is divided into a number of equally spaced elements. Each end 

of the blade has an additional virtual element. Every element consists of 

two nodes with four degrees of freedom at each node. These degrees of 

freedom represent elastic displacements in the axial, lead-lag, flap 

directions and elastic twist about elastic axis, respectively. The new 

polynomials'' 1 are used to represent the bending and the torsional degrees 

of freedom. In comparision with the usual shape function based on 

Hermite polynomials, the main features of the present method are of higher 

accuracy and more economy in computing storage and time requirements. 

The element forces are obtained by applying the principle of minimum 

potential energy and the assembly of the elements yields the equations of 

motion in terms of thenodal degrees of freedom. 

The lifting surface theory for the unsteady compressible flow. 

developed in the past for rotary wing aeroelastic analyses is modified in 

the paper so as to make it applicable to the coupled flap-lag-torsion 
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aeroclastic problem of a rotor blade in hover. These corrections are 

primarily due to variable lead-lag velocity, constant angle of attack and 

constant inflow t 11 l. Isoparametric finite element method is used to deter

mine the distribution of the doublet strengths on the blade. Once the 

appropriate distribution of the doublet strengths has been found, it is 

relatively easy to determine the aerodynamic loads per unit span acting 

on the rotor blade 

The nonlinear equations of motion are solved for steady state blade 

deflections through an iterative procedure. The equations of motion are 

linearized assuming blade motion to be a small perturbation about the 

steady deflected shape. The flutter equations of motion are solved in an 

iterative modification of the conventional V-g method. The formulation 

is applied to hingeless helicopter rotor blades. Numerical results show 

sensitivity of the aeroelastic stability boundaries to the unsteady airloads. 

This is the first attempt to determine the flutter stability boundaries 

of a coupled flap-lag-torsion rotor blade using the lifting surface theory 

based on the velocity potential and the finite element method based on 

the principle of minimum potential energy, with the new shape functions, 

directly. 

The Principle of Minimum Potential Energ_:r 

The rotor blade is treated as an elastic beam rotating with constant 

angular velocity Q. The rectangular coordinate system x, y, z is attached 

to the undeformed blade which is at a precone angle of f3r. The origin is 

at the root of the blade, the x axis coincides with the elastic axis, and 

the y axis is in the plane of rotating pointed towards the leading edge 

(Fig .1). 

A few important assumptions made in the derivation of the equations 

of motion are, (1). The blade is assumed to have moderate deflections, 

i.e. small strains and finite slopes. (2). There is no coupling between 

blade and fuselage dynamics. (3). The simple numerical lifting surface 

technique is used to calculate the aerodynamic loads on the rotor blade, 

compressibility is considered, but stall is neglected. 

Blade bending 'deformations shown in Fig. 1 are descnbed by the 

displacements of the elastic axis u,v,w in the x,y ,z directions respectively. 

A point on the elastic axis that is located at (x, 0, 0) in the x, y, z 

coordinate system before deformation is located at x+u, v, w after 

deformation. Then the blade cross section undergoes a rotation 01 about 

the deformed elastic axis 
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The equations of motion are obtained using the principle of minimum 

potential energy, 

oll=oU-oW=o ( 1 ) 

where 

aU= J: (oU s+oU,)dx ( 2) 

oW= J: (L,ou -r L,ov+ L.ow + M0o¢)dx ( 3) 

where Us and U 1 are respectively strain energy and inertial potential 

energy, W is the work done due to nonconservative external forces, L .. , 

external loads distributed along the length of the L, Lw and M0 are 

blade in the axial, 

the 

lag, flap and torsion directions respectively. 

The expressions for the variation of the strain energy and the inertial 

loading can be found in Ref. 3. 

oU1 =J: -[P,ou+Pyov+P,ow+q,ov'-qyow' 

+(q,+v'q,+w' q,)o¢ ]dx ( 4 ) 

The energy expressions oUs, oU1, oW can be nondimensionalized by 

dividing them by m0Q 2R', where m0 is a reference mass per unit length. 

The nondimensional deflections v/R, w/R, ¢ are assumed to be of order 

e, where e is a small nondimensional parameter such that e2«1. The 

other nondimensional quantities and their assumed orders of magnitude 

can be found in Ref .5. The lowest order terms in oU and oW are of 

order e2 • Terms of order e' and higher are neglected. Some linear third

order terms, which are important for the torsion equation, are kept. 

Finite Element Disc retiza ton 

The first step in solving the equations of motion is the discretization 

of the spatial dependence. The blade is divided into a number of beam 

elements with equal length. Each end of the blade has a virtual element. 

Every element consists of two nodes (Fig.Z) with four degrees of freedom 

namely u, v, w, c/J at each node. 

The principle of minimum potential energy, Eq.(l), is discretized 

as 

( 5) 

with 
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MJ,=oU,-oW, ( 6 ) 

where aU, and oW, are respectively the potential energy and work 

contribution of the ith element and n is total number of elements The 

distributions of the deflections u, v, w and ¢ over an element are 

represented in terms of polynomials. Nodal degrees of freedom are 

written as 

where the shape function matrix [N] is 

[

N t N, N, N, o 0 o 0 o 0 o 0 0 0 0 0 l 
[N]= o 0 0 0 N, N, N, N, o o 0 o 0 0 0 0 

o o o o o o o o N,N,N,N,o o 0 o 
o o o o o o o o o o o o N 1 N 2 N, N, 

and the vector of element degree of freedom {q1} is defined as 

The shape functions in Eq. (8) are defined as 

Nl=--1-x!+_J._ x~ --1-x, 
2h3 • h2 • 2h 

N -2x3--
5-x'+1 z- 2h3 1 2h2 1 

( 7) 

( 8 ) 

(10) 

where his the length of the element, h=R/n, and x 1 is the local axial 

coordinate for the ith element, measured from the left end of the element. 

For single load .path blades, for example, hingeless and articulated 

blades, tbe axial displacement u can be eliminated in terms of the other 

deflections v, w, and ¢ and the centrifugal force. Nodal degrees of 

freedom are obtained by dropping all terms associated with u from Eq.(7). 

Formulation of Aerodynamic Loads 

The aerodynamic loads in hover, distributed along the length of the 

blade, are obtained using Jones-Moore aerodynamic lifting surface theory. 
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It differs from most other methods in that it is based on the use of the 

velocity rather than the acceleration potential of the flow. The velocity 

potential satisfies the wave equation. It can be shown that the soluton of 

the wave equation may be derived from the singular integral equation. 

The space variables x, y, z are replaced by X, fj, z, respectively, 

so that 

/--··
2

x _ y / 
2

z 
x=-v 1-M -- y=- z=-v 1-M -R R, R, (11) 

From Green's theorem a relation between the down wash velocity at a: 
point on a wing and a distribution of doublets over the wing and wake 

surfaces is 

(12) 

where W is the transformed downwash, K, the local doublet intensity, 

is equal to the discontinuity in the transformed potential across the wing 

or wake, r is the distance from a field point to collocation point in 

transformed coordinates; Sis surface area in transformed coordinats. 

The vertical displacement C of the blade is assumed to have a steady

state component C. due to coning and constant angle of attack, as well as 

an unsteady component due to flapping and twisting about this steady 

position, i e 

where 

c. =xf3p+ye, 

CJ=f(x)Z,p 

C,=F(x)a.,p 

(13) 

(14) 

where J(x) and F(x) are the flapping mode and torsional mode relative 

to tip, respectively. The down wash is 

W=~-+Vo..£L at ay (15) 

W=W.+WJ+W, (16) 

where subscripts s, J, t represent steady-state condition, flapping motion 

and torsional motion, respectively. The solutions for steady flow and 

unsteady flow are obtained by using Eqs,(14), (15) and (12). 

The helical wake of the rotor blade is assumed .to extend rearwards 

as indicated in Fig.3, Any distortion of the wake due to blade-tip vortex 
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interference is ignored. The rotor blade is divided into a number of 

isoparametric elements on which the distribution of the doublet strengths 

is assumed to be polynomial. Extending from each trailing edge panel is 

a wake strip, From Ref. [14] once the appropriate doublet strength 

distribution has been found, it is then relatively easy lo determine the 

aerodynamic forces per unit span acting on the rotor blade. 

Jones-Moore theory'"'·'" l is not directly applicable to rotor blades 

undergoing coupled flap-lag-torsion motion. The approximate modifica

tions, similar to Ref.11, are introduced here. The expressions of lift and 

moment about the elastic axis of the blade can be written as 

a a + 2..1 
1
_M2 PVocea.dV[ 1 +c (K)l- 2..1 

1
_ M' pV cU,0 ( 17) 

M,= ~ PV:c'[MoBo+(M!+iM,) z~h +(M3+iM,).da]-

-
1
1
6 

pa.d(•B0c1 ii + 
4
../

1 
~M' PVoc2Bo( a+ 0 .S).dV[ 1 +c(K) ]-

(18) 

where L 0 , M 0 are the steady airload coefficients, L 1 , L 3, M1, M 3 and 

Lz, L,, M 2 , M, are the in phase and out of phase airload coefficients, 

respectively. c(K) is Theodorsen lift deficiency function. V=Vo+.dV. 

It is of importance to identify correctly the relationship between the 

variables used in unsteady aerodynamic theory and the variables used in 

describing the motion of the rotor blade having flap, lead-lag and torsion 

degrees of freedom. Fig .4 shows the blade coordinate systems and 

positions of the cross-section before and after the deformation. The 

flutter motion of the rotor blade is assumed to be a small perturbation 

about the trim state. The stability equations are linearized about a static 

equilibrium position. The velocity components of a point on the elastic 

axis of the blade can be written as 

U, = -U,2 =w'v.Q+w+v1=U,0+.dU, 

U,= -U,2 =v+Dx=U,0 +LIU, (19) 

The most common approach in helicopter analyses has been to identify 

Llh as the normal velocity -.dU, at the rotor blade and Lla as the 4¢. 
For the rotor blade the quantity Llh is meaningless. 

In addition to the distributed lift and torsional moment an expression 
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for the aerodynamic load in the chordwise direction is also required for 

rotor blade aeroelastic applications. This expression can be obtained by 

using the approximate method given in Ref ,11, thus 

(20) 

where C,0 is profile-drag coefficient. 

From Eq .(5), the global matrices are obtained by the assembly of 

the element matrices. The equations of motion are 

[M]{(j} + [ C]{ q }+ [KJ{q} +([A(qo) ]{go}+ [A(qo)]{d q} )= {Q} (21) 

where [M]. [C], [K] are generalized global mass, damping, stiffness 

matrices. These matrices are the contributions from aU. The mass and 

stiffness matrices are symmetric whereas the damping matrix is antisym

metric [A(q0 )] is the steady-state generalized aerodynamic matrix, and 

[A(q 0)] is the generalized complex aerodynamic matrix, {Q} is the load 

vector. 

Method of Soluton 

The equations of motion are nonlinear 1n {q}. The steady-state 

equations are obtained by dropping all time dependent terms from Eqs, 

(Zl). The displacement {q} is written as the sum of a steady component 

{q0} and an unsteady perturbation {dq}, 

{q}={qo}+{dq} (22) 

Substituting Eq, (22) into Eqs, (21), the nonlinear steady state 

equations are 

([K( qo)l + [A(qo)]){qo}= {Q} (23) 

The numerical solution of the nonlinear steady state equations (23) is 

evaluated iteratively. 

The flutter equations of motion are linearized about the steady-state 

position. They are 

[M(qo)]{dq}+[C(qo)]{dri}+([K(qo)J+[A(qo)]) · {dq}={ 0} (24) 

The mass, damping, stiffness and complex aerodynamic matrices are 

functions of the steady deflection {qo}. 

The normal mode method is used to solve the linearized flutter equa

tions. Eqs, (24) are transformed to the modal space by writing 

{dq}= [<:P]{P} (25) 
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where [<P] is the matrix of the first N eigenvectors and {P} is the vector 

of N generalized coordinates in tlie modal space. The resulting modal

space equations ar~ 

[M*]{p}+[C*HPH([mjM,J +[A*]){P}={ 0} (26) 
' . ( .. 

where [M*], [C*], and [A*] matices are of order N. The elements of 

[J\1*] and [C*] are in general real while [A*] has. complex elements. 

Eqs, (26) can be solved in an iterative modification of the conven

tional V-g method''''. First an artificial damping coefficient denoted by 

g is introduced and combined with the flutter frequency ill ,to yield a 

(27) 

. In the usual manner at the flutter ·condition simple harmonic motion is 

stipulated by assuming 

(28) 

Co~bination of Eqs, (26) through (28) yields the complex eigenvalue 

form 

([D]-Z[I]){P}= 0 (29) 

The solution to the complex eigenvalue problem given by Eq, (29) 

yields a number of complex eigenvalues, 

Results and Discussion 
! 

The numet ical results obtained are for a hingeless rotor blade with 

uniform spanwise properties. In the computations the following numerical 

values were used: 

a=6; 

C/ R=n:f40; a=0.1 

1'=5; EI y/moD2R 4=0. 014486, K,=1.15 

GJ /rnoD'R'=0.000925, 0,005661 

Mach number M is evaluated at the blade spanwise station 0,8R. 

The main purpose of th·is paper is to examine the sensitv,ity of the coupled 

flap-lag-torsion aeroelastic stability boundaries c f a single blade in hover 

to the unsteady aerodynamic derivatives. The stiffnesses Ely, GJ and the 

inertial parameters Km1, K,12 , KA are chosen such that the rotating 

frequencies corresponding to given values, The rotating flap frequency 

of the blade is taken to be 1.15 D. Two different torsional frequencies 
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are considered, a frequency of 2.5 Q represents a torsionally-soft blade 

and 5 Q a torsionally-stiff blade. However the lead-lag frequency is varied 

over a reasonably wide range 0.5<cu"<2.5 representing a relative wide 

range of possible blade con figurations. 

The convergence properties of the method are considered first. This 

is accomplished by changing the number of elements or the number of 

mode shapes in the modal reduction process. The convergence of the 

steady state deflections using different numbers of finite elements is 

presented, Fig,S gives the accuracy of steady tip deflections 'UOtiP• Wo11J1 

(nondimensionalized with resrect to the rotor radius) and ¢011 , (in rad) 

as the total number of finite elements is varied from 2 to 6. The results 

show, for the case considered, that five elements are sufficient for good 

convergence. For comparison, the results for the steady tip geometric 

twist cf>0 ,p, when using the linear interpolation torsion element, are also 

shown. The performance of the latter element is inferior when compared 

to the torsion elemen.t based on the new interpolation which is used in 

this paper. 

Fig.6 presents the convergence of rotating coupled natural frequencies 

of the soft-inplane blade about its steady deflected position as the number 

of finite elements is varied. It is seen that five elements are sufficient 

for four digit accuracy. The results obtained by using the linear interpo

lation torsion element are also shown, and obviously, the new interpolation 

is better than the linear one 

The results presented in Fig.7 show the effect of unsteady aercdyna

mics on the stability boundary for a torsionally-soft rotor blade. The 

aerodynamic center from the elastic axis is considered to be zero As 

indicated in the figure the unsteady aerodynamic effect is considerable. 

It is evident that using the quasisteady assumption as is commonly done 

in rotary wing aeroelasticity tends to make the blade appear less stable 

than it could be in reality, however it obviously represents a conservative 

assumption for the cases considered. 

The effect of aerodynamic center elastic axis offset on stability 

boundary is important. The torsionally-stiff blade with ;;,=0 is quite 

stable, and an offset e,=-0.15 between the aerodynamic center and the 

elastic axis reduces considerably the values of e, at which instability can 

occur The effect of unsteady aerodynamics on tt e stebility boundary for 

a torsionally-stiff blade with e,=-0.15 is illustrated by Fig. 8. The 

unsteady aerodynamic effect considerably influences the stability boun

dary. This is due to the fact that the flutter frequeHy is high and 
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therefore it is sensitive to unsteady aerodynamics. 

Fig.9 illustrates the effect of Mach number on the stability boundary. 

As shown the stability boundary is less sensitive to compressibility. 

Conclusions 

The finite element method based on the principle of minimum potential 

energy has been applied successfully to determine the aeroelastic stability 

of a flap-lag-torsion blade. The rotor blade is discretized into beam 

elements of eight nodal degrees of freedom. The new polynomials are 

used to define the shape functions in order to reduce both the storage 

space and computation time required with the same accuracy as Hermite 

polynomials. A velocity potential lifting surface method has been used 

to evaluate the steady and unsteady aerodynamic derivatives for an 

arbitrary hovering rotor in compressible flow. However, the unsteady 

aerodynamic theory has to be modified when applying it to the coupled 

flap-lag-torsion aeroelastic problem of a rotor blade. These modifications 

are primarily due to constant angle of attack, constant inflow and the 

lead-lag motion. Unsteady aerodynamic effect seems to be important. 

Neglecting the lead-lag degree of freedom may not be valid in the 

aeroelastic problem of a rotor having flap, lag and torsion degrees of 

freedom 
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Appendix, Nomenclature 

a lift-curve slope 

offset between elastic axis and midchord, il=-(e,+O.S) 

[A*] generalized complex aerodynamic matrix 

C blade chord 

C,0 profile-drag coefficren t 

[ C J generalized damping matrix 
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aerodynamic center offset from elastic axis, 

i =../-1 
K doublet in tensity 

L unsteady lift per unit span 

L 0 steady lift per unit span 

[M] generalized mass matrix 

M 0 aerodynamic moment per unit length about elastic axis 

[N] shape function matrix 

n number of elements 

P:t,PY,P:: inertial forces 

{Q} load vector 

{q} vector of global degrees of freedom 

q:t,qy,Q:: inertial moments 

R blade radius 

t time 

u,v,w elastic displacements in x,y,z directions, respectively 

V oncoming free stream velocity 

V 0 constant component of V 

LIV time dependent, harmonic part of V 

x ,Y ,z rotating orthogonal coordinate system 

x2 ,y2 ,z2 orthogonal coordinate system fixed at dlade cross section 

x, local axial coordinate of the ith element 

Z complex flutter parameter 

a blade cross-section angle of attack 

flp blade precone angle 

e, constant part of pitch angle 

density of air p 

¢ elastic twist about elastic axis 

COu,COw,CO~ fundamental coupled rotating lead-lag, flap, torsion natural 

frequencies, respectively 

m flutter frequency, iJJ=m/Q 

Q rotor blade angular velocity 

0 variational notation 

( )' a( )/ax 
(*) ac )/at 

68-13 



Pig .. l Blade coordinate systems 

i-2 i-1 j l+f 
X· 
' 

Fig,2 Rotor blade ele01ents 

Fig~3 Schematic diagram of rotor 

blade and its wake 

1. ., 

Fig.4 Positions o{ the cross-section. 

before and after the deformation 

. r X 

6E-14 

', s d 
fiiPrlber of E!eJI".t.llt; 

Fig.5 Accuracy of steady tip 

deflections of a rotor 

blade ({Jp= O, iii,= 1,5, 

ro.= 2.s,e= o.2> 



-~ ! ' '. 
• 
' "' "' "' 

48 

' ~ 
' ' 40 

1.U 

J2 ( LinOM") 

Nu.mbc.,. of EJ~ments 

Fig.6 Accuracy of fundamental 

coupled natural frequencies 

of a rotor blade ({Jp = o, 
Wu=0.7, (5,6=2.5, 9=0.2) 

0,7 

•• 

•• 

c.> ~----c::---c::---;u .du 
o.s t.o 1 ~ z.~ 

Fi~.8 Effect of unsteady 

aerodynamics ({Jp= o, 

ro 1 =5, eJ= -o.t5) 
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Fig, 7 Effect of unsteady 

aerodynamics <Pp= o, 

Gi".p=2.5, ed=o) 

..: c. 
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•• 

•• 

azL--~----~------~ as /.o 1.5 z.o u w., 

Fig,9 Effect of mach number 

({J,=O, w•=5, e;= -0,15) 
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