
098

TOWARDS CONSISTENT HYBRID OVERSET MESH METHODS
FOR ROTORCRAFT CFD

M.Jarkowski1, M.A.Woodgate2, J. Rokicki1, and G.N.Barakos2

1 Institute of Aeronautics and Applied Mechanics
Warsaw University of Technology, 00-665, Poland

http://c-cfd.meil.pw.edu.pl/ccfd/
2CFD Laboratory, School of Engineering
University of Liverpool, L69 3GH, U.K.

http://www.liv.ac.uk/engdept
Email: G.Barakos@liverpool.ac.uk

Abstract

The use of overset grids is popular within the rotorcraft research community since such grids allow for the relative motion
between the helicopter blades and fuselage to be accurately accounted for in Computational Fluid Dynamics methods. In this
paper, a method is presented for treating overset grids within CFD codes. The method is simple to implement and is compatible
with solvers enabled to compute on multi-block structured grids. The methodis based on a hierarchy of searches that characterise
mesh cells located in the overlap region between two structured blocks. Theefficiency of the method relies in the utilisation of a
search tree approach. Due to the efficiency of the algorithm the search for overlapping cells can be carried out on-the-fly while the
CFD solver is computing the flow domain and is suitable for parallel execution. The method has been demonstrated for several
flows ranging from simple aerofoils to rotor-body interaction cases. Thepaper presents and demonstrates the method and shows
that it has low CPU overhead. It also highlights the limitations of the method andsuggests remedies for improvement.

1 INTRODUCTION

The relative motion between helicopter rotor blades and fuse-
lage leads naturally to the development of overset mesh meth-
ods for the analysis of helicopter flows. Consequently, the
overset method is relatively well established in the CFD re-
search and practice and is in use today by researchers at
Universities and practising engineers in the industry [2, 3,
5, 8, 10, 15]. Despite its use and acceptance two main chal-
lenges related to the efficient implementation and accuracyof
Chimera methods still remain: (a) The identification of over-
lapping structure (localisation of the interface points ofone
CFD mesh with respect to other meshes) for complex flow
cases and (b) the implementation of consistent and conserva-
tive flux computation methods in the framework of the con-
trol volume formulation employed in CFD solvers. In this
paper, progress made towards both challenges is described
using the Helicopter Multi-Block method (HMB) of Liver-
pool to demonstrate the overset methods under development.
The novel elements of the proposed method are a fast hi-
erarchical search method for the localisation of the solution
and the implementation of a consistent flux-reconstruction
scheme within the framework of strongly implicit CFD meth-
ods. The method begins with identification of block-to-block
overlap at each instance of an unsteady flow computation. A
search for cell-to-cell overlap is then conducted to categorise
CFD cells as normal, fringes or holes based on the nomencla-
ture introduced in the literature. [12,16] The key idea is touse
the implicit indexing of the structured grids to identify each
cell on the mesh and mark it as hole or fringe as well as iden-
tify a cloud of near-cell neighbours on overlapping domains.
The CFD grids associated with major parts of the helicopter
follow a hierarchical approach (eg. background grid, blade
1, blade 2, fuselage etc) which is compatible with the overall

mesh system of HMB [13].

2 NUMERICAL METHODS

For the purposes of this work, the Helicopter Multi-Block
CFD solver was modified to allow for efficient solution local-
isation and efficient computation of the flow solution in the
mesh overlap regions. These two modifications were possible
due to the data-structure of HMB that has enough flexibility
to accommodate extensions to the solver without major re-
writing of the core solver functions [18].

2.1 Solution Localisation

The method employed for solution localisation consists of
three steps. The first step is to generate a minimum vol-
ume bounding box (MVBB) around each block in the mesh.
This is a relative straightforward task and Figure 1 shows a
typical block and the associated MVBB. This is followed by
the second step that identifies all block-to-block overlapsfor
a given test case. Since memory in HMB is allocated per
block, finding all the blocks with potential overlap provides
a mechanism for allocating the minimum memory required
and also restricting the necessary searches for the identifica-
tion of the solution at cell-level. The third step is the iden-
tification of each cell on blocks with potential overlap. At
the end of this step, each cell in the computational domain
has been marked as a:"cell-in-solid", "hole-cell-in-fluid",
"hole-cell-with-interpolated solution", "fringe" or "normal-
cell". This extra information can be stored in a file for the
HMB solver to read or can be calculated on-the-fly as the
HMB solver is executed, for unsteady flow cases with mov-
ing girds where the flow solution must be localised and re-
localised during the computations. It should be noted that

1

9981
Barra

9981
Casella di testo
ID 99



HMB merges this information into three classes, normal cells,
("fringe","normal-cell"), holes, ("cell-in-solid", "hole-cell-
in-fluid", "hole-cell-with-interpolated solution") and finally
interpolation ("hole-cell-with-interpolated solution") which
are the only cells which require extra information associated
to them.

2.1.1 Minimum Volume Bounding Box

The MBVV generation consists of the following steps:

1. For each block perform the following operations:

(a) Read the coordinates of the mesh points.

(b) Calculate the centre of mass of each block.

(c) Calculate the matrices for the second area mo-
ments about the origin and centre of mass.

(d) Find the eigenvectors of the above matrix and cre-
ate a rotation matrix (constructed out of the eigen-
vectors in rows).

(e) Apply rotation to the block (about its centre of
mass) and determine the co-ordinate ranges inx,
y andz directions.

(f) Free the memory allocated for the mesh point co-
ordinates coordinates.

2. Write abox file for each block which contains the coor-
dinates for the principal axes of inertia of each block as
well as thex, y, z ranges of the MVBB rotated to align
with the axes of the co-ordinate system.

Some blocks halo cells may also require interpola-
tion information from other levels so the MBVV is
increased in size to include this possible case in the
Block-to-Block overlap calculation.

2.1.2 Identification of Block-to-Block Overlap

This step utilises the MBVV information to identify which
block overlaps with each other block in the mesh. The method
consists of the following steps:

1. Read the number of blocks in each grid component
(fuselage, blade, flap etc) and the total number of
blocks (nblt)

2. Allocate memory for the external 6 faces of each block
and read all mesh points on solid walls.

3. Find the cell with the smaller size in each block. This
value will be utilised for for local refinement close to
the block edges.

4. Read and store the nodes on the edges of each block.

5. Convert the node information to cell-centre information
and store it in the HMB data structure. Only external
block faces are stored.

6. Use the MVBB information and check if any boundary
nodes of a block are within the MVBB range of any of
the other blocks in the mesh.

7. To account for inclusions if blocki overlaps with block
j then blockj must overlap also with blocki.

8. Store the block-to-block overlap information.

This algorithm is very efficient and data parallel, however,
it is always optimistic in the generated block-to-block overlap
information. Consequently, some of the the block overlaps
that are to be tested for cell overlap will produce no results.

2.1.3 Cell Overlap Search

This part of the method also deals with hole cutting and em-
ploys an algorithm that will performnlog(n) searches between
two overlapping blocks. The interpolation scheme can be zero
order though a second order method is used for compatibil-
ity with the spatial scheme of HMB. Hole cutting is based
on mesh hierarchy. At first, hole cells within solid bound-
aries are found based on the information stored in HMB for
solid boundary cells. Node-in-solid is identified by the vec-
tor product criterion, which has proved to be accurate for all
test cases. However some grids with very high aspect ratios
can possibly generate inaccurate results. In future an addi-
tional method (solid bounding box) will be developed to as-
sure correct flags for the cells in solid. The hierarchy of grids
is usually defined with a special input file. Before any node
belonging to any block of a mesh at a level in the hierar-
chy is localised with respect to any other level, an in-house
range-tree is used, to determine in which cells of a block the
node is potentially located. Range tree works like a kd-tree,
but it returns a range(s) (cell’s axis-aligned bounding box), in
which the point is located instead of the nearest neighbour of
the point. The in-house range-tree algorithm is also capable
of finding the nearest neighbour, but a simple kd-tree strat-
egy is not optimally efficient. For this reason, at the nearest
point search stage, a binary Approximate-Nearest-Neighbour
library is used, which integrates a kd-tree with other nearest-
neighbour strategies. The library has been extensively tested
and well documented [9]. An exact arithmetics library is used
to determine if a point is inside a cell. This library is docu-
mented in reference [4].
Load balancing is essential for the efficiency of the search al-
gorithm and in this work, intersecting blocks are grouped into
sets with one block considered to be a host, and the rest, re-
ferred to as neighbours. Each block can be a host only once,
but can be a neighbour more than once as shown in Figure 2.
This process forms a set of searches that are then distributed
between the processors.

The grids used in HMB are structured and body-fitted
with hexahedral elements, numbered as presented in Figure 4.
Each cell wall can be treated as a piecewise linear shape made
of four triangles with a common apex located in the wall’s
centroid (Figure 5). Each of the 24 triangles constructed as
described above is a base of a tetrahedron. A hexahedral cell
is replaced by a set of 24 tetrahedra with a common apex in
the cell centroid. This operation is consistent in terms of mesh
volume as the position of wall centroid is independent of the
side it is calculated from (inside or outside). Moreover, unlike
a hexahedron, a tetrahedron has a simple linear transforma-
tion into a normalised shape (Equation 1):

2



xi = xi
0 +

3∑
k=1

(
xi

k
− xi

0
)
· ξk (1)

where:
i = 0, 1, 2, 3.

At the stage of node localisation within the cells of another
level, the position of the node at hand, is checked and flagged
as inside of outside with respect to any other another grid
level. For an exact and consistent check this procedure is
based on tetrahedra. The position of a node with respect to
the walls of the tetrahedra is checked using Schewchuk’s ex-
act arithmetics library [4]. In general, the position of point P
with respect to a plane (below or above) is defined by A, B
and B can be checked as follows (see equation 2):∣∣∣∣∣∣

xA − xP xB − xP xC − xP

yA − yP yB − yP yC − yP

zA − zP zB − zP zC − zP

∣∣∣∣∣∣ (2)

The details on this method and assurance for the correct sign
of the determinant can be found in [14].

After the node localisation the cells are flagged according
to the following rules:

1. A cell is marked as ahole if all 8 nodes are inside an-
other grid level.

2. A cell is marked as afringe if at least one and less than
8 nodes of a cell are inside another grid level.

Fringe cells, shown in red in Figure 3 are bounded by both
normal cells, shown in green, and hole cells, shown in cyan.
However to be to calculate the cell residual of any given
fringe cell flow solution must be available for the whole of
the residuals stencil. In HMB case, this means 2 layers of
cells from each face. To achieve this those cell as flagged as
interpolationcells, shown in yellow, for which an interpola-
tion stencil is to be found.

Depending on the position of the cell in the grid hierarchy, an
interpolation stencil may consist of:

1. one nearest cell (zero order interpolation), or

2. 10 to 15 nearest cells - cloud of the nearest
centroids(2nd order interpolation based on Least
Squares approach), or

3. 7 cells, for the case of aninterpolationcell with its ad-
jacent cells (2nd order without cross terms interpolation
based on the reconstruction of flow variable distribution
within a cell).

An outline of the cell localisation process is given below.
The list includes only the major steps that have to be per-
formed.

1. Read number of levels (nlv) and total number of blocks
(nblt) from the input files of the HMB solver.

2. Create a block-limiter vector, which is a map between
a global (0 to nblt) and local (associated with levels)
block numbering

3. Allocate memory for blocks. All blocks are stored in
one-dimensional arrays and each processor stores one
or more host blocks as well as all the blocks that be-
long to its group.

4. From the.lev input file read the names of grid files of
all the components of the mesh.

5. Read and store basic block information (but no mesh
co-ordinates) for all blocks of the mesh.

6. Read the number of overlaps for each block from the
overlap.head file.

7. Read the mesh hierarchy file.

8. Read the data on the intersection - which blocks should
be localised inside other blocks on the various levels of
the hierarchy.

9. Calculate the load balancing of the cell localisation
search.

10. Read the coordinates of all solid surfaces of the mesh
that are to be localised by the current processor.

11. Localise nodes with respect to solid boundaries. The
binary tree is used to find the nearest point of the solid
for each node. Then the normal vector product crite-
rion is used to determine if a node is inside or outside
the solid body.

12. Flag the cells within a solid asholes(see Figure 6a).

13. Flag two rows of cells as holes and solids. This assures
that the flow variables are never interpolated from a cell
in direct proximity of a solid body (Figure 6b ).

14. For any two blocks (A and B), which belong to differ-
ent levels, and for which the overlap has been identified
in the previous step do the following:

(a) Localise against the host block all nodes from the
group of neighbouring blocks.

(b) Insert the nodes of all the neighbours in a group
to a range tree.

(c) Conduct a search loop using the range tree.

(d) Flag each nodes as in or out of any cell in each
neighbouring block.

15. For each cell in each block do the following:

(a) Check how many nodes of the cell are inside any
other cell. If none of them - flag the cell asnor-
mal, if all of them, flag the cell withhole. If more
than one, but not all of the nodes of the cell are
inside of another cell than the cell is flagged with
fringe.

(b) Flag all cells belonging to a Chimera boundary
with aCHIMERA_BOUNDARY tag.

16. Find the donor cells for each cell that needs to have in-
terpolated values.

3



17. For each interpolated cell find the nearest neighbour or
the list of nearest neighbours according to the desired
solution reconstruction method.

18. Write out TECPLOT files with the overlap information
for inspection and visualisation.

19. Write out binary files that the HMB solver can use to
restart or compute a solution on the overlapping mesh.

A sample of the outcome of the above process for a sim-
ple case of a regular background mesh and a foreground mesh
around a NACA0012 aerofoil can be seen in Figure 7(a). The
foreground mesh is a higher in the hierarchy, as it is much
finer. The region of the background grid which has an over-
lap with the foreground mesh is treated as a hole (Figure 7b).

2.2 Helicopter Multi-Block solver

The Helicopter Multi-Block(HMB) code, developed at Liver-
pool can solve the Navier-Stokes equations in integral form
using the arbitrary Lagrangian Eulerian (ALE) formulation
for time-dependent domains with moving boundaries:

d

dt

∫
V (t)

~wdV +
∫

∂V (t)

(
~Fi (~w) − ~Fv (~w)

)
~ndS = ~S (3)

where V (t) is the time dependent control volume,∂V (t)
its boundary, ~w is the vector of conserved variables
[ρ, ρu, ρv, ρw, ρE]T . ~Fi and ~Fv are the inviscid and viscous
fluxes, including the effects of the time dependent domain.
For hovering rotor simulations, the grid is fixed and a source
term ~S = [0,−ρ~ω × ~uh, 0]T is added to compensate for the
inertial effects of the rotation.~uh is the local velocity field in
the rotor-fixed frame of reference.

The Navier-Stokes equation are discretised using a cell-
centred finite volume approach on a multi-block grid, leading
to the following equations:

∂

∂t
(wi,j,kVi,j,k) = −Ri,j,k (wi,j,k) (4)

wherew represents the cell variables andR the residuals.
i, j andk are the cell indices andVi,j,k is the cell volume. Os-
her’s [11] upwind scheme is used to discretise the convective
terms and MUSCL variable interpolation is used to provide
third order accuracy. Van Albada limiter is used to reduce the
oscillations near steep gradients.

Temporal integration is performed using an implicit dual-
time step method. The linearised system is solved using the
generalised conjugate gradient method with a block incom-
plete lower-upper (BILU) pre-conditioner [1].

Multi-block structured meshes are used for HMB. These
meshes are generated using ICEM-Hexa™of Ansys. The
multi-block topology allows for an easy sharing of the cal-
culation load for parallel computing. Adding sliding meshes
[17], as well as allowing for mesh overlap makes the HMB
a very flexible solver for dealing with complex geometries.
Given the existing data structure of the solver, the modifi-
cations required for the mesh overlap were restricted to a
small part of the code. Within HMB, hallo cells are employed
by each block, and are populated from boundary conditions,

bloc-to-block data exchanges, data from sliding surfaces or
data from overlapping meshes. For as long as a block has
correct information on the hallo cells, its solution can be up-
dated and then shared with other neighbouring blocks. In the
strongly implicit HMB method, only the preconditioner em-
ployed for the solution of the linear system of equations is
decoupled between blocks. For overlap regions though and
to minimise the exchange of data, the Jacobian matrix is also
de-coupled for overlapping mesh regions. Another necessary
modification for the solution on overlapping grids is related
to the treatment of cells marked as holes. These are identified
and kept in the original system of equations even if their solu-
tion is not to be updated. This allows for the structure of the
solver to remain the same and has minimal overhead in the
computation.

3 RESULTS AND DISCUSSION

To evaluate and demonstrate the overlap mesh capability in
HMB, several test cases have been considered. Figure 7
shows a simple case for the flow around a NACA0012 aero-
foil. A mesh is constructed consisting of a background grid
that covers the computational domain and a foreground mesh
around the aerofoil. For this case, holes can be avoided by re-
moving from the computation the background blocks that are
completely covered by the foreground mesh. This is shown
in Figure 7(b). The remaining blocks have a minimal overlap
and a sample set of isobars of the solution is shown in Figures
7(c) and (d). The isobars are computed on both background
and foreground grids to show the continuity in the solution
on the overlap region. Due to the simplicity of this test case,
it was only used for an initial check of the treatment of halo-
cells in HMB and was then replaced by a rather more complex
version shown in Figure 8. For this configuration, the back-
ground grid has no overlap with the foreground over a large
central section of the domain and consequently certain cells
were identified as holes. For the foreground mesh, Figure 8
(a) shows the location of the fringe cells that are to be com-
puted using information from the background grid and vice-
versa. The cells marked in blue colour are holes and their
values will not be updated by the solution process. Figure 8
(b) shows the reverse situation with the solution localisation
for the foreground mesh. The fringe cells were quickly iden-
tified and are shown in red colour.

Although the previous cases were useful for the initial
stages of the method development, were restricted to 2D.
The next test case considered a simple wing based on the
NACA0015 aerofoil with an aspect ratio of 6.6. The con-
figuration is shown in Figure 9. The case consists of a regular
background grid and a standard C-type mesh around the wing
with extruded tip blocks. The solution localisation is also
shown and this time a more detailed identification method is
used. The method not only detects holes, normal cells and
fringes but also shows the interpolation cells in cyan colour.
The cells in blue are identified as "cell-inside-solid" and are
treated like holes, the cyan cells are "holes-inside-fluid"and
are also treated like holes. The yellow cells are "holes-in-
need-of-data" and their values must be populated from other
grids in the solution since these are to be used for the recon-
struction of fluxes. The red cells are fringes and the green

4



cells are normal cells. Several planes of the background mesh
are extracted and shown highlighting the regular localisation
pattern obtained along the mesh. The total size of cells for
this case was more than 4 millions and the search took less
than a minute on a Pentium 4 computer. The solution shows
the propagation of the wake generated around the wing on
the background mesh. Due to the regular mesh employed,
the wake and tip vortices were very well preserved. This is
a potential advantage of the overset grids that allow for the
best numerical properties of the underlying scheme if regular
grids are used.

Following from the wing case, a rotor in hover was con-
sidered. This case is similar to the wing case though it has a
different background grid. The ONERA 7AD rotor was used
and a quarter of the rotor was considered. For this case, the
block-to-block overlap detected some extra blocks with po-
tential overlapping cells. This was due to the relative high
aspect ratio of the blade and the large blocks that were used
on the background grid. Regardless, the cell localisation was
performed in a very efficient fashion and is shown in Figure
10. The solution captured well the blade loading that is com-
pared on Figure 10(d) with a result obtained using a matched
grid.

To demonstrate that potential of the method to deal with
more complex multi-block topologies that don’t follow the
pattern usually employed with HMB, the case of a missile in-
side a weapon bay was considered [7]. Figure 11 shows the
employed topologies, the solution localisation and samplere-
sults. The localisation pattern on the background mesh shows
the extend of the hole cells and the relatively complex exten-
sion of the cut near the fins of the store. The final solution
shows no discontinuities near the boundary though it revealed
limitations of visualising the overlap region where rendering
of one solution over another must be carried out. For this case
the output from HMB was written in a finite element format
to allow for the irregular regions between the overlaps to be
properly visualised. The time for the solution localisation is
reported on Table 1 and the results show that 2 minutes were
enough for this complex case.

The final case considered in this paper is rotor-body con-
figuration of ROBIN [6] that has been used in the past for the
validation of the HMB method. For this configuration, a typi-
cal O-grid is used around the fuselage. The blades use C-type
grids with a fine mesh around the tips. The complete mesh
contained more than 12 million cells and was localised in 240
seconds. The result of the solution localisation and a solution
for the surface pressure on the fuselage can be seen in Figure
12.

This set of test cases is deemed adequate for the initial
validation of the overset method in HMB and the results show
that the employed scheme provides a good starting point for
a production version. The accuracy of the solutions should
be further compared against benchmark HMB solutions on
matched multi-block grids to identify the limitations of the
proposed flux calculation, implicit solver and solution locali-
sation.

4 CONCLUSIONS AND FUTURE WORK

In this paper a method was presented and demonstrated for
using overset grids within CFD solvers. A hierarchical ap-
proach was used that is compatible with the HMB CFD solver
and resulted in fast turn-around times for the localisationof
the solution on relatively complex meshes. The method had
enough flexibility to allow for arbitrary mesh overlaps and is
designed with parallel execution in mind. The key ingredi-
ent to the method is the use of a tree-structure to represent the
mesh and facilitate the localisation combined with an efficient
local search for cell overlap. Once the solution is localised
the CFD solver requires minimal modifications with respect
to the computation on a fully matched grid. This is due to the
employed facility for populating the halo cells of the mesh
with the most appropriate values from the localised solution.
The method was first used for simple cases like flows around
aerofoils and progressively was demonstrated for 3D flows
like flows around wings, rotors in hover and rotor-body con-
figurations. The overlap region was the focus of attention to
assess the accuracy of the method and the continuity of solu-
tion across the overlap region. The results showed minimal
deterioration of the solution near the overlap region and the
rate of convergence of the solver was not substantially influ-
enced by the decoupled approach adopted for the implicit so-
lution in the overlap region. This encouraging result shows
the potential of the method. On the other hand, there are sev-
eral areas where the method could be improved. This includes
the use of more efficient memory structures, the demonstra-
tion of the scaling of the method for massively parallel com-
putations, the treatment of overlapping solids where no com-
bination of cells on either grid approximate the intersection
accurately and the treatment of cells that appear and dissap-
pear from hole status. This is last topic is important since
there are possible configurations where this situation occurs
near active flaps, rotor hub and pitch link assemblies as well
as retractable undercarriage.

REFERENCES

[1] O. Axelsson. Iterative Solution Methods. Cambridge
University Press: Cambridge, MA, 1994.

[2] M.J. Berger. On Conservation at grid interfaces.SIAM
Journal, 24(5):967–984, 1987.

[3] L. Cambier and J.-P. Veuillot. Status of the elsa cfd soft-
ware for flow simulation and multidisciplinary applica-
tions. 46th AIAA Aerospace Sciences Meeting and Ex-
hibit, Reno, Nevada, USA, January 7-10 2008. AIAA-
2008-664.

[4] J.R. Chewchuk. Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric Predicates.
Discrete & Computational Geometry, 18(3):305–363,
1997.

[5] X. Juvigny G. Jeanfaivre and C. Benoit. Parallle
Chimera Computations of Helicopter Flows. ICAS2004
International Congress of the Aeronautical Sciences,
2004. .

5



[6] S. L. Althoff J.D. Berry. Computing Induced Ve-
locity Pertubations Due to a Helicopter Fuselage in a
Fresstream. Technical Report TM-4113, NASA, 1989.

[7] S. Lawson and G. Barakos. Review of numerical simu-
lations for high-speed, turbulent cavity flows.Progress
in Aerospace Sciences, 47(3):186–216, April 2011.

[8] A. Madrane, R. Heinrich, and T. Gerhold. Implemen-
tation of the chimera method in the unstructured hybrid
DLR finite volume TAU-Code. 6th Overset Composite
Grid and Solution Technology Symposium, Ft. Walton
Beach, Florida, USA, October 8-10 2002.

[9] D.M. Mount. ANN Porgramming Manual,
http://www.cs.umd.edu/ mount/ANN/. Technical
report, 2010.

[10] R.H. Nichols and P.G. Buning. User’s manual
for OVERFLOW 2.1. Technical report, NASA
Langley Research Center, Hampton, VA, 2008.
http://people.nas.nasa.gov/p̃ulliam/Overflow/Overflow
_Manuals.html.

[11] S. Osher and S. Chakravarthy. Upwind Schemes and
Boundary Conditions with Applications to Euler Equa-
tions in General Geometries.Journal of Computational
Physics, 50(3):447–481, June 1983.

[12] N.A. Petersson. Hole-Cutting for Three-Dimensional
Overlapping Grids. SIAM Journal on Scientific Com-
puting, 21(2):646–665, 1999.

[13] R. Steijl, G. Barakos and K. Badcock. A framework for
CFD analysis of helicopter rotors in hover and forward
flight. International Journal for Numerical Methods in
Fluids, 51(8):819–847, 2006.

[14] J.R. Shewchuk. Robust Adaptive Floating-Point Ge-
omeric Predicates. pages 141–150. ACM, Proceedings
of the 12th Annual Symposium on Computational Ge-
ometry, May 1996. .

[15] J. Sitaraman, M. Floros, A. Wissink, and M. Potsdam.
Parallel domain connectivity algorithm for unsteady
flow computations using overlapping and adaptive grids.
Journal of Computational Physics, 229(12):4703–4723,
June 2010.

[16] B. Sjogreen and E. Part-Enander. Conservative and non-
conservative interpolation between overlapping grids for
finite volume solutions of hyperbolic problems.Com-
puters Fluids, 23(3):551–574, 1993.

[17] R. Steijl and G. Barakos. Sliding Mesh Algorithm for
CFD Analysis of Helicopter Rotor-Fuselage Aerody-
namics.Int. J. Numer. Meth. Fluids, 58:527–549, 2008.

[18] M. Woodgate and G.N. Barakos. Impicit CFD Methods
for Fast Analysis of Rotor Flows. 36th European Rotor-
craft Forum, Paris, France, September 2010. .

Test Background Foreground MVBB Block Overlap Cell Search
Case mesh size (blocks) mesh size (blocks)
Wing 2,488,320 (60) 1,511,424 (20) 25s 9s (6,20) 68s
Hover 2,592,000 (112) 350,892 (48) 21s 8s (98,48) 395s
Missile 5,000,448 (724) 3,015,680 (220) 53s 60s (42,220) 179s
Robin 7,190,604 (388) 1,458,528 (160) 55s 37s (91,160) 240s

Table 1: Sample CPU times on a single Pentium 4 processor for the solution localisation of the test cases.

(a)

Figure 1: Minimum Volume Bounding Box (MBVV) around a 2D shape.

6



(a)

Figure 2: Multiblock topology with two different levels in 2D. In this case the following groups are created for load_balancing
Host : 0, Nbr : 6;Host : 1, Nbr : 6, 7;Host : 2, Nbr : 7;Host : 3, Nbr : 7; Host : 4, Nbr : 6, 7;Host : 5, Nbr : 6;Host :
6, Nbr : 0, 1, 4, 5;Host : 7, Nbr : 1, 2, 3, 4

(a) (b)

Figure 3: (a) Shown the normal cell in green, the fringe cellsin red, and the holes cells in cyan. (b) Shows the addition of
interpolation cells in yellow to allow the cell residuals ofall the fringe cells to be calculated.

7



Node i, j, k Node i+1, j, k

Node i, j+1, k Node i+1, j+1, k

Node i+1, j+1, k+1

Node i+1, j, k+1

Node i, j+1, k+1

Node i, j, k+1

Cell i, j, k

(a)

Figure 4: Cell and associated nodes nodes. All cells are unambiguously referred to by giving the lowest I, J and K indices of the
nodes.

(a)

Figure 5: Hexahedron splitting into 24 tetrahedra. Each cell face is split into four triangles with a common apex (a-b-c). Each
tetrahedron is thus split in 24 tetrahedra, with a common apex located at the cell centroid (a-b-c-d).

8



(a)

(b)

Figure 6: (a) Identification of solid_hole cells. In the second step (b) additional cells are flagged as solid holes. The number of
cells flagged as solid holes in this step is dependent on the resolution of the grid which interpolates data from the current grid.
The aim of this operation is to guarantee that the grid has at least two rows of interpolation cells outside of a solid body.

9



(a) (b)

(c) (d)

Figure 7: Simple 2D test case for a NACA0012 aerofoil. (a) Thebackground mesh (Blue) is of a very simple topology and the
foreground grid (Black) is of typical C-type (Black). (b) After removing the holes and localising the solution, isobarsof the
obtained solution are show (Mach 0.8, alpha 1.25 degrees).

10



X

Y

-5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

(a)

X

Y

-4 -2 0 2 4

-4

-2

0

2

4

(b)

Figure 8: Simple 2D test case for a NACA0012 aerofoil. Normalcells (green), holes (blue) and fringes (red) located on (a)the
background mesh and (b) the foreground mesh.

11



X

Y

Z

(a) Wing surface and body-fitted mesh topology

X

Y

Z

(b) Solution localisation

(c) Wake visualisation

Figure 9: Demonstration of the method for a simple Wing case:Blue cells represent solid, cyan represent halo, yellow represent
fringes and green are normal cells.

12



X Y

Z

(a) Solution localisation - Block overlap search

X

Y

Z

(b) Block overlap near blade

X Y

Z

(c) Solution localisation near blade

X Y

Z

(d) Blade surface pressure

Figure 10: Solution localisation and sample results for thecase of a hovering ONERA 7AD blade. The inviscid model was used
for this computation and the near-blade grid was restrictedto a single layer of blocks around the blade.

13



X

Y

Z

(a) Solution localisation

(b) Mach number field

(c) Surface pressure

Figure 11: Solution localisation, and obtained Mach and pressure fields for the of a missile inside a weapon bay. The Spalart-
Allmaras turbulence model was use for this calculation at a free-stream Mach number of 0.85 and for a cavity with length to
depth ratio of 5.

14



Y

X

Z

(a) Solution localisation - Block Overlap Search

XY

Z

(b) Solution localisation near rotor

X

Y Z

(c) Mesh topologies

XY

Z

(d) Surface pressure on the fuselage and blades

Figure 12: (a) Block-to-block overlap, and (b) solution localisation for the ROBIN case. (c) Location of blade inside the
background mesh, and (b) comparison between the overlap mesh results (red lines) and the matching mesh (colour contours) for
the surface pressure on the blade. The inviscid model was used for this computation and the near-blade grid was restricted to a
single layer of blocks around the blade.

15




