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Abstract

The Finite State Unsteady Wake Model as presented by
He and Peters showed to be an accurate and powerful
formulation in order to calculate the dynamic rotor
induced inflow distribution. The complexity of the
model and therewith the local resolution over the rotor
disk can easily be adapted to the specific user
application. This makes it well suited for use in
sophisticated dynamic helicopter simulations. DLR and
ONERA have implemented the model in their
respective simulation codes. The application at ONERA
concentrates mainly on aspects concerning the
interaction of the wake with other components, whereas
at DLR the realtime application in the ACT/FHS system
simulator is of major interest.

This paper will highlight the application of this model
in both non-linear off-line and realtime helicopter
simulation. The advantages, disadvantages and the
range of application will be discussed. Also, comparison
with other theories and validation calculations using
flight test data are performed.

Notations

( , , )T
ie x y z= coordinate frame components, [-]

ˆ ˆ ˆ ˆ( , , )T
ie x y z= ground frame components, [-]

( , , )T
ie x y zx x x x= freestream frame components, [-]
, ,m r l harmonic number, [-]
, ,n j k shape number, [-]

p non dimensional pressure, [-]
,TPP TPPp q tip path plane motion, [rad/s]

r non dimensional rotor radius, [-]
t non dimensional time, [-]

v geometric influence coefficients, [-]
( , , )T

iv u v w= inflow velocity components, [-]
( , , )T

iv u v wx x x x= freestream inflow components, [-]

,C D influence matrices for ground effect, [-]

,b eF blade element lift force, [N]
G resulting gain matrix for ground effect, [-]
H Legendre derivative function matrix, [-]

altH altitude above ground, [-]
,p qK K wake distortion coefficients, [-]

L inflow gain matrices, [-]
M mass matrix, [-]

bN number of blades, [-]

eN number of blade elements, [-]
,P Q normalized associated Legendre functions of

first and second kind, [-]
R rotor radius, [m]
V flow matrix, [-]

MV non dimensional flow parameter, [-]

TV total flow parameter, [-]
V∞ free stream velocity, [-]

,a b induced inflow coefficients, [-]
c wake skew angle, [rad]
d switch function, [-]

ijd Kronecker symbol, [-]
, ,f ml l l inflow parameters, [-]

m disk advance ratio, [-]
, ,n h y ellipsoidal coordinates, [-]

ˆˆ ˆ, ,n h y ellipsoidal coordinates in ground frame, [-]
r air density, [kg/m3]
s ground effect coefficients, [-]
t pressure coefficients (generalized forces), [-]
x freestream coordinate, [-]

by blade azimuth, [rad]

By helicopter heading, [rad]
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way wind axis direction, [rad]
Φ non dimensional pressure potential, [-]
Γ wake integral functions, [-]
Ω rotor speed, [rad/s]
Ψ radial shape function, [-]

( ) ( )
*

,t
= differentiation w.r.t. non dimensional time

( )
,i

differentiation along ith coordinate direction

( )
,x differentiation along freestream line

Introduction

In the field of rotorcraft research, both at ONERA and
DLR, helicopter flight dynamic modeling is a major
issue. A wide range of applications, e.g. rotor
aerodynamic and aeroelastic studies, helicopter
performance and stability investigations, realtime and
pilot-in-the-loop simulations for handling qualities
investigations, require accurate consistent mathematical
helicopter models. In recent years, a lot of effort has
been made to improve the prediction capability and
accuracy of helicopter dynamic simulation tools with
special emphasis on the prediction of helicopter cross
coupling behavior excited by pilot cyclic control inputs.
In this context, one of the approaches investigated and
implemented is the dynamic inflow model of Pitt and
Peters [1], describing the 3 state rotor inflow
distribution by a set of ordinary differential equations
governed by the global aerodynamic thrust as well as
roll and pitch moments. As shown in several
publications (e.g. [2], [3], [4]) this model allows an
improvement in on-axis as well as off-axis predicted
dynamic helicopter responses.

However, this model is a low order approximation to the
rotor induced flow field and hence is inadequate to
describe the more complex flow field distributions (e.g.
non linear radial inflow distribution). In forward flight
the non-uniform flow distribution is known to be
important to correctly predict the helicopter dynamics.
Also higher harmonic components in the rotor wake are
known to have an influence on helicopter trim and
dynamic simulation. Further, for investigations of
interactions between main rotor wake and fuselage or
tail components, a dynamic inflow model is required
which provides induced velocity not only at the rotor
disk itself but also at an arbitrary point outside the disk.
A promising approach which incorporates Pitt&Peters
theory but beyond that overcomes above disadvantages
was found in the Finite State Unsteady Wake Model [5],
[6]. In this formulation presented by He and Peters, the
inflow is expanded in terms of higher harmonic
functions for azimuthal distribution and radial shape
functions using Legendre polynomial functions. The

resulting set of equations governing the dynamic inflow
states are driven by the present (arbitrary) blade lift
distribution. A major advantage is that the number of
harmonic and shape functions and thus the number of
coefficients can be defined by the user in dependence of
the particular application which makes the model well
suited for a wide range of different investigations.
Especially the use of this formulation in combination
with a modal blade dynamic approach guarantees a
balance between the complexity of dynamic and
aerodynamic modeling.

The Finite State Unsteady Wake model is already
implemented in comprehensive simulation programs as
FlightLab [7]. Numerous papers show the power, the
wide range of application and the constant contribution
of new model extensions [8], [9], [10], [11].

Within the close cooperation between DLR and ONERA
and in the scope of a personnel exchange, it was
decided to study the Finite State Unsteady Wake Model
and make it available for both offline and realtime
simulations operated at DLR and ONERA. This is done
by implementing the model in the common
ONERA/DLR helicopter simulation environment HOST
(Helicopter Overall Simulation Tool, developed by
Eurocopter [12]) and in the new system simulator
environment for the ACT/FHS flying helicopter
simulator [13], a pure realtime application at DLR.

General theory

Pressure potential
Since the theoretical background of the Finite State
Unsteady Wake Model is explained extensively in
literature [5], [6], [14], [15], here only a brief
description of the principal theory will be given. Similar
to the Pitt&Peters formulation the Finite State Unsteady
Wake Model bases on a pressure perturbation function
Φ , describing an acceleration potential in an
incompressible potential flow field. Considering the
principal fluid mechanic equations for conservation of
mass and momentum in dimensionless notation:

, 0i iv = (1)

 , , ,i t i iv V v x∞− ⋅ = − Φ (2)

a division of the pressure function in a convection part
VΦ  and  an acceleration part AΦ  seems reasonable:

V AΦ = Φ + Φ (3)

with:

, , , ,,V A
i i i i tV v vx∞Φ = ⋅ Φ = − (4)
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The convection part describes the pressure variation
along the flow line, whereas the acceleration or
unsteady part counts for the variation with time.
Differentiating equation (4) shows that both pressure
function parts satisfy Laplace's equation:

, ,0 , 0V A
ii iiΦ = Φ = (5)

Kinner was the first to show that an analytical solution
for the pressure function can be obtained for a circular
wing or a disk, when expressing the Laplace equations
in ellipsoidal coordinates and expanding with Legendre
polynomial functions [16]. For zero pressure
perturbation at infinity the overall pressure function
becomes:

( )
0 1,

3,..

1
( ) ( )

2

( )cos ( ) sin

m m
n n

m n m
m

mc ms
n n

P Q i

t m t m

n h

t y t y

∞ ∞

= = +
+

Φ = − ⋅ ⋅

⋅ +

∑ ∑
(6)

where , ,n h y  are ellipsoidal coordinates (see appendix)
and m

nP  and m
nQ  are the normalized associated

Legendre functions of the first and second kind. The
arbitrary cosine and sine coefficients mc

nt  and ms
nt  are

functions of the present disk loads and thus vary with
time. The index m denotes the respective harmonic
number and n the mode shape related to harmonic m.
The Legendre functions are defined only for  n ≥ m.

Equation (6) describes an arbitrary pressure distribution
field from a circular disk with a pressure discontinuity
across the disk itself. The resulting lifting pressure
distribution, i.e. the difference between the upper and
lower surface pressure, matching the present disk loads
can then be written as:

2 ( , 0, )p n h y= − ⋅Φ = (7)

The advantage of the formulation in (6) is that through
the double summation the individual terms can be
treated separately, since orthogonality is obtained in
azimuthal as well as radial direction. The Fourier terms
cosmy  and sin my  guarantee orthogonality in
azimuth, whereas the Legendre radial shape functions
are generally linear independent and thus satisfy:

1

' '

1

( ) ( ) 2m m
n n nnP P dn n n d

−
⋅ =∫ (8)

with the Kronecker symbol ' 1nnd =  for 'n n=  and

' 0nnd =  for 'n n≠ . For a given harmonic m all shapes
n are thus orthogonal. In rotor application, however,
only a definition of the shape functions from rotor hub

to blade tip is of interest, thus changing the integration
boundaries. In this case orthogonality is only given for
m n odd+ = :

1

' '

0

( ) ( ) ,m m
n n nnP P d m n oddn n n d⋅ = + =∫ (9)

a condition which is reflected in the running index of
the second sum in equation (6): 1 , 3, ..n m m= + + .

Since pressure function at the left hand sides of
equation (4) is expressed in terms of Fourier and
Legendre functions, a more or less similar expansion for
the induced velocity at the right hand side makes sense.
For the moment, only the induced velocities at the rotor
disk ( 0h = ) are of interest. The normal component of
the induced velocity w ( zv= ) at the disk can then be
expressed as:

( )
0 1,

3,..

( ) ( ) cos ( )sinr r r
j j j

r j r
r

w t r t rn a y b y
∞ ∞

= = +
+

= Ψ ⋅ +∑ ∑ (10)

where r
ja  and r

jb  are the inflow states with respect to
shape function r

jΨ .

For solving the unsteady part AΦ  of the pressure
function, it appeared that using:

( )r
jr

j

P n
nΨ = (11)

for the shape function in (10) achieves a good
convergence of the model. An analytical expansion of
this r

jΨ  is shown in the appendix. From (4), we obtain
for the induced velocity acceleration at the rotor disk
( 0h = ):

*

,

0

A

tw w
z h=

∂Φ= = − ∂ (12)

Substituting the pressure and velocity functions and
making a comparison of coefficients leads to:

*

0

1 ( )

2 4

m
r mc m cn
j n n m

n

Q i

Hh

h pa t th =

∂= − ⋅ = ⋅∂ (13)

*

0

1 ( )

2 4

m
r ms m sn
j n n m

n

Q i

Hh

h pb t th =

∂= − ⋅ = ⋅∂ (14)

where m
nH  is used to substitute the Legendre function

derivatives. An analytical expression of m
nH  is given in

the appendix.
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For calculating the steady induced velocity at the rotor
disk, the convection part of the pressure potential VΦ
has to be integrated along a freestream flow line from
rotor disk to infinity:

0

1 V

w d
V z

x
∞

∞

∂Φ= − ∂∫ (15)

Here, the velocity radial shape function from (10) is
assumed as:

( )r r
j jP nΨ = (16)

Substituting velocity and pressure functions leads to:

1 1ˆˆ
2

cr r m m c
j j n nV La t−= ⋅ ⋅ (17)

1 1ˆ ˆ
2

sr r m m s
j j n nV Lb t−= ⋅ ⋅ (18)

where ˆ sr m
j nL  and ˆ sr m

j nL are the gain matrices having

elements which are integral functions of the form:

( )
2 1

0

0 0 0

1ˆ ( )cos ( ) ( )

cos

cr m r m m
j n j n nL P r P Q i

z

m d d d

p
n y n hdp

y x n y

∞ ∂= ⋅∂
⋅

∫ ∫ ∫ (19)

( )
2 1

0

0 0 0

1ˆ ( ) sin ( ) ( )

sin

sr m r m m
j n j n nL P r P Q i

z

m d d d

p
n y n hp

y x n y

∞ ∂= ⋅∂
⋅

∫ ∫ ∫ (20)

with 2d =  for 0r =  and 1d =  for 0r ≠ . The hat in
equations (17) and (18) indicates, that in order to derive
the inflow states another velocity shape function is
assumed. V is a diagonal matrix consisting of the free
stream velocity V∞  in the main diagonal.

Combining equations (13), (14) and (17), (18) gives:

( )* 1 1ˆ ˆ
2

cr r m r m c
j j n j nM L Va a t

−
⋅ + ⋅ ⋅ = (21)

( )* 1 1ˆˆ
2

sr r m r m s
j j n j nM L Vb b t

−
⋅ + ⋅ ⋅ = (22)

with a mass matrix: 2 m
nM H p= (23)

To overcome the difference in the shape function

assumption from (11) and (16) the L̂  matrix has to be
corrected. Additionally, the obtained L  matrix and the
flow states and pressure coefficients are normalized

with 2 /m
nH p  (indicated with an additional bar). The

resulting linear equation system can then be written as:

( ) ( )*
c cr m r m r r m m c

j n j n j j n nL V La a t⋅ = − ⋅ + ⋅ (24)

( ) ( )*
s sr m r m r r m m s

j n j n j j n nL V Lb b t⋅ = − ⋅ + ⋅ (25)

The matrices L  consists of a time independent part Γ
(which can be calculated in advance) and a time varying
part depending on the present wake skew angle. In
hover and axial flight, L  are matrices with diagonal
character. In forward flight, numerous elements are non
zero and thus provide an "interstate" coupling between
the individual inflow states. Analytical expressions for
the matrices are given in the appendix

Inflow considerations
As a refinement of the theory, the diagonal mass flow
matrix m

nV  is used instead of V. The new matrix
consists of equivalent velocity: 0

1 MV V=  and steady
state velocity: , ( 0, 1)m

n TV V m n= ≠ ≠  elements on its
main diagonal. The velocity parameters are derived as:

2 2
TV m l= + (26)

m
M T

T

V V
V

ll= + (27)

Here m  is the advance ratio and f ml l l= +  the total
inflow, which is the freestream inflow fl  plus the
induced mean inflow ml  from momentum conservation,

with: 0
1

3

2m

pl a= (28)

Further, the wake skew angle can be derived as:

tan
mc l= (29)

The above set of equations allows an analytical
calculation of the time-dependent induced velocity
derivatives directly from an instantaneous pressure
distribution on the rotor disk and in dependence of the
present flow conditions. In each integration step, the
derivatives are integrated by a numerical method to the
actual inflow states. These are then used to calculate the
flow distribution and subsequently the resulting blade
loads.
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Generalized forces
In order to calculate the pressure coefficients m

nt  (i.e.
the generalized forces) the theory includes an analytical
transition for the governing equations from a
continuous pressure distribution on a rotor disk to a
load distribution on discrete rotor blades. A
simplification can be made when instead of a blade
spanwise pressure distribution a lifting line, or even
blade element lift is assumed. Both helicopter
simulation programs mentioned before use a blade
element method to calculate the resulting blade element
loads. Calculation of the pressure coefficients then
becomes:

,
2 4

1 1

1 ( )
cos

4

b eN N m
b em c n

n bm
n

F P
m

R H

n pt ydp r n= ⋅ ⋅ ⋅Ω∑∑ (30)

,
2 4

1 1

1 ( )
sin

4

b eN N m
b em s n

n bm
n

F P
m

R H

n pt yp r n= ⋅ ⋅ ⋅Ω∑∑ (31)

where ,b eF  is the lift of the particular blade element.

Model limits
Although the model finds a broad application, it cannot
cover all occurring physical phenomena with respect to
rotor dynamics and aerodynamics. Besides the
restrictions due to the incompressible flow assumption,
the model does not represent effects due to blade
vortices  and blade vortex interactions and is, therefore,
not suited to aeroacoustic investigations. Further, the
assumed cylindrical deformation of the wake does not
allow for capturing wake role up and wake distortion
effects. Another limitation is that if the lifting line
approach is used to govern the equations, the number of
harmonics m should not exceed the number of 30 in
order to avoid divergences.

Application and Validation

In the application of the Finite State Unsteady Wake
model for DLR, realtime and pilot-in-the-loop aspects
play a major role, since the model will be used in the
ground based ACT/FHS system simulator. ONERA has
put emphasis on improving the prediction capability for
dynamic phenomena as Dutch Roll and Ground Effect.

Related topics to above applications, appropriate
implementation aspects and model validations will be
outlined subsequently.

Realtime constraints

The intended use of the Finite State Unsteady Wake
model in the simulation code of the ACT/FHS system

simulator makes high demands on the realtime
capability of the model. In this context, the major goal
is to implement the model, as far as possible, in a less
time consuming way. For example, all time independent
calculations are done in a pre-process. The main
influence of this model, however, on time consumption
comes from the number of harmonics and shapes (i.e.
the number of states) taken into account for a particular
simulation. This number can be freely chosen by the
user depending on his particular application.

Increasing the number of model states refines the
representation of the actual blade loads using the
generalized forces. A more or less equally distributed
pressure over the rotor disk becomes more and more a
discrete pressure distribution with peaks spatially
located at the rotor blades. As an example, the left
pictures in figure 1 show the difference of the resulting
pressure distribution with respect to the numbers of
states taken into account for EC135 helicopter in slow
forward flight. In consequence of increased number of
states, the resulting inflow distribution is also more
expressed. As shown in the right hand side pictures of
figure 1 ,it tends from the well known trapezoidal shape
(Glauert, Pitt&Peters) towards a more discrete
downwash distribution with peaks at the rotor blades (or
more precise, due to the unsteadiness of the model:
"shortly after the blades"), and rotating with them.

Figure 1: pressure and inflow distribution for EC135 at
10 m/s

Realtime condition is satisfied when the simulation
cycle time is less than the integration step time.
Simulation cycle time, i.e. the time needed to update all
occurring model states for the next instance in time,
depends mainly on the simulation computer CPU
performance and on the complexity of the used
simulation model. The integration step time is

6 harmonics

ΩΩ

ΩΩ

2 harmonics
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determined for a given numerical integration method by
the highest modal frequencies occurring in the model.

On increasing the number of states, the realtime
condition is affected by an opposite change of the
simulation cycle time and integration step size. Since
for each cycle the linear equation systems of (24) and
(25)have to be evaluated, simulation cycle time
increases in a cubic order with the number of states. On
the other hand, higher harmonic inflow state
frequencies become dominant with respect to other
system modes when the number of states is increased.
The integration step time has to be reduced in order to
avoid numerical instabilities.

Both effects are displayed in figure 2. The figure is
based on the present status of the ACT/FHS realtime
simulation configuration (w.r.t actual processor
performance, model complexity, etc.). For reasons of
comparison, the present integration step time is defined
as 100%. For the Finite State Unsteady Wake model in
Pitt&Peters configuration (i.e. 1 harmonic, 3 states) the
cycle time is about 50% of the step time, thus two times
realtime. On increasing the number of states to about
40, the realtime condition is no longer guaranteed. In
order to stay away from the absolute bound and to have
some spare for implementing other model extensions, it
is suggested to use a maximum of about 25 states (i.e.
about 5 harmonics). Not using inflow harmonics higher
than 5 does not affect the flight dynamic simulation
performance, since the frequencies incorporated with
these harmonics are generally too high to play any
significant role in helicopter flight dynamics.

Figure 2: realtime constraints for the present ACT/FHS
configuration

Effects on trim

From higher harmonic control (HHC) or individual
blade control (IBC) investigations [17], it is known that
a higher harmonic interfering in the aerodynamic
rotor/wake equilibrium can have a remarkable influence

on the helicopter trim state. Since the Finite State
Unsteady Wake Model also interferes in this
equilibrium, in dependence of the number of harmonics
taken into account, the effect of the model complexity
on the trim state is investigated. For a particular EC135
configuration trim calculations have been performed for
hover, level flight at 30 m/s and at 55 m/s. For all three
velocities only the number of states has been varied.

Figure 3: trim pilot controls for EC135 configuration

In figure 3, the results are shown for the effect on the
trimmed value of longitudinal and lateral pilot control.
As one can see the longitudinal control is only slightly
influenced by the number of states considered in the
model. The trimmed lateral control, however shows
strong variations especially for forward speed and in the
region with only few harmonics. The crosses in figure 3
indicate the trim results when using the Pitt&Peters
dynamic inflow model.

Due to the gyroscopical behavior of the rotor, the trim
of the lateral control is mainly dependent on the
longitudinal inflow distribution. Due to the wake skew
the inflow is no longer symmetric in forward flight.
Second and third harmonic terms seem to interfere with
the rotor/wake equilibrium in different ways.

In the Pitt&Peters model, a correction is performed to
take into account the influence of higher order shape
functions in only 3 states. The Finite State Unsteady
Wake model does not have this correction when only
using 3 states. However, considering more than about 3
harmonics (i.e. 10 states) this correction is
automatically included. As can be seen from figure 3,

0 10 20 30 40 50 60 70

100 %

50 %

200 %

integration step time

number of states

simulation cycle
      time

non real timereal time

30

40

50

60

70

20
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number of harmonics

55 m/s

longitudinal control

lateral control

30 m/s

hover

30 m/s

hover

55 m/s

%

%

75604415 2810 6 3

= number of states
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lateral control trim values for this case correspond with
Pitt&Peters values.

The trim value of the collective control is directly linked
to the mean momentum inflow. Because of the
orthogonality of inflow states, the higher harmonic
terms have no contribution to the mean inflow, and thus
do not affect the trim value of the collective control.
Also, pedal control trim used mainly to compensate for
rotor torque shows no variation with the number of
states considered.

Summarizing the results, it seems reasonable for flight
dynamic applications to use the model with a minimum
of 15 states (i.e. 4 harmonics). The number of states
then no longer has influence on the helicopter trim
attitude.

Definition of reference frame

The basic Finite State Unsteady Wake model has been
formulated to describe the inflow distribution of a lifting
rotor in hover, axial or forward flight. The equation
system is evaluated in a reference frame which is
aligned with  the inflow direction (i.e. the wind axes
system), as shown in figure 4. The description does not
basically count for any hub motion other than
translational motion in wind axis direction. In practical
helicopter flight dynamic simulation, the hub motion,
however, in arbitrary translational as well as rotational
sense can not be neglected. For example, the effects of
distorting the wake due to pitch and roll motion of the
rotor (i.e. rotating the reference system about the x and
y axes) play an important role on the prediction of
helicopter cross-coupling behavior. The "parametric
wake distortion" formulation (see next paragraph) is
used to extend the inflow model to account for these
phenomena.

Figure 4: reference frame and angle definition

The influence of sideward hub motion or a yaw motion
of the reference system (i.e. rotation about the z-axis),
however, is still not considered. To overcome both
problems, a reference system other than the wind axes
frame has to be used. In [18] for the Pitt&Peters inflow
model, a formulation is derived which uses the rotor
frame as reference system. Going one step further, here
it is proposed to use the geodetic (earth fixed) inertial
system as reference. The advantage of this formulation
is that the integration of the inflow state derivatives is
performed in a fixed and non rotating system. No effects
due to integrating in a moving reference system occur.
It has to be mentioned that this holds true only when
helicopter roll and pitch attitudes do not become too
large.

As shown in figure 4, the geodetic North axis is taken
as reference. The system described in equations (24)
and (25) is still evaluated in the wind axes frame. The
integration of derivatives, however, is performed with
respect to the North axis. In practice, this means that
the inflow states after integration have to transformed
into the wind axes system using a rotation matrix T:

cos sin

sin cos

m m m
abs absn n n

m m m
abs absn n nwa

m m
T

m m

y ya a a
y yb b b

      −      = ⋅ = ⋅                   
(32)

where abs B way y y= +  the angle between reference axis
and wind axis. The index wa marks the inflow states in
wind axes frame. The resulting derivatives then have to
be transformed back in a similar way by using:

1 1
m m m
n n n

m m m
n n nwa wa

T T
a a a
b b b

− −           = ⋅ + ⋅                 

i i
i

(33)

To calculate the generalized forces in equations (30)
and (31) the angle rel b way y y= +  has to used instead
of by . Finally, to obtain the present inflow at the blade
element location, equation (10) has to be evaluated
using the wind axes inflow states from (32) and the
angle rely  as reference angle.

Wake distortion

As mentioned before, a rotation of the helicopter about
the roll or pitch axis results in a bending of the induced
wake. The induced flow field now at the rotor disk is
distorted in such a way that it can be interpreted as if an
additional trapezoidal inflow gradient is superposed on
the induced flow. Due to the gyroscopical behavior of
the rotor disk, the helicopter dynamic response to such
an inflow gradient occurs mainly in the off-axis. The

x y

ψb

ψwa

ψB

z

North

wind axes

v∞

χ
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wake distortion effect, thus, has an important influence
on helicopter cross-coupling prediction.

For practical use, in flight dynamic simulation
parametric models are derived to take into account the
wake distortion effects. In a first approach here, a
similar extension as proposed for the Pitt&Peters model
is implemented. Tip path plane motion dependent linear
perturbation terms are included in equations (24) and
(25):

( ) ( ) ( )*

,

c cr m r m r r r m m c
j n j n j j wd j n nL V La a a t⋅ = − ⋅ − + ⋅ (34)

( ) ( ) ( )*

,

s sr m r m r r r m m s
j n j n j j wd j n nL V Lb b b t⋅ = − ⋅ − + ⋅ (35)

where ,
r
j wda  and ,

r
j wdb  count for the additional inflow

gradient. Since in this simplified approach only the first
harmonic distortion components are considered, the
distortion states are only non-zero when 1r =  and

2j = :

1 1
2, 2,1 1

2 2

0 0

,
( ) ( )

q TPP p TPP
wd wd

K q K p

P P

n n

a bn n
n n= =

⋅ ⋅= =
Ω⋅ Ω⋅

(36)

The values of the gain factors pK  and qK  in above
equations have been subject to extensive theoretical
investigations (e.g. [2], [19] ). Also, parametric
optimization methods can be applied to estimate the
gain factors [20]. In general, it is agreed on

1.5p qK K= =  for the hover case. In forward flight
both, factors decrease but in different measures
depending on the theory or method used to determine
them.

Validation and results

At DLR an extensive flight test data base for the BO105
helicopter exists. The data are used for identification,
model validation and handling qualities research
purposes. Since, for the moment, only limited flight test
data for the EC135 are available, the validation of the
realtime code for the ACT/FHS system simulator is
mainly performed in BO105 configuration using the
existing BO105 data base.

The helicopter model used for the validation runs
incorporates a 6 DOF rigid body formulation, main
rotor rigid blade flapping and lagging, local blade
element aerodynamic, wake interference on fuselage tail
components and a dynamic engine representation. For
the induced velocity, the 3-state Pitt&Peters and the
Finite State Unsteady Wake model are available, both

with geodetic reference axis and parametric wake
distortion extension.

In figure 5, a lateral 3211 cyclic control was applied to
a BO105 helicopter in hover. The thick solid line
represents the flight measured data. The dashed line
represents the simulation results using the Pitt&Peters
formulation, whereas the thin solid line shows the
results for the Finite State Unsteady Wake approach
with 4 harmonics (i.e. 15 states). For both models, the
wake distortion factors are set to 1.5p qK K= = .

Figure 5: lateral 3-2-1-1 for BO105 in hover

In the on-axis roll response prediction, both model
formulations perform very well. In the off-axis pitch
response, the damping of the Finite State Unsteady
Wake model seems to be higher than the one in the
Pitt&Peters formulation. The latter, therefore, gives a
better prediction of the cross-coupling response. A
possible cause might be that the relatively simple
parametric wake distortion extension of (34) to (36) is
not appropriate for such a complex formulation as the
Finite State Unsteady Wake model. This may indicate
that in combination with this model more sophisticated
wake distortion formulations, as presented in [9], have
to be used.
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In the yaw axis, however, the damping in the
Pitt&Peters model is too low and the Finite State model
performs better. This is probably due to the more correct
unsteady inflow representation in rotational sense which
provides a better interaction between the "rotating"
dynamic higher harmonic states in combination with
the dynamic engine model.

Figure 6 compares the flight test data (thick solid line)
to the simulation results for a longitudinal 3211 cyclic
control input at 100 kts forward. The wake distortion
parameters are set to 0.5p qK K= = . Again, the
comparison between the Pitt&Peters formulation
(dashed line) and the Finite State Unsteady Wake model
with 15 states (thin solid line) is performed.

Figure 6: longitudinal 3-2-1-1 for BO105 at 100 kts

Both dynamic inflow representations show a similar
result for the on-axis pitch response which is slightly
overpredicted. In the off-axis roll response, the Finite
State Unsteady Wake model is able to match flight test
data slightly better. This results in less drift in the roll
attitude, occurring after about 5 sec. It has to be

mentioned that the values for the wake distortion
parameters used in this simulation are higher than the
theoretical values derived for forward flight ( 0)≈ . The
considered values, however, allow for a better cross-
coupling prediction. The yaw axis response is
overpredicted by both formulations which might be due
to the not well predicted higher order dynamics in the
engine model for high forward speeds.

In general, both dynamic inflow formulations applied in
helicopter flight dynamic simulation are able to
correctly predict the on-axis response to pilot control
inputs for hover as well as forward flight. Taking into
account the parametric wake distortion extension, the
correct tendencies in the off-axis cross-coupling
behavior could also be predicted, although considering a
more sophisticated wake distortion approach for the
Finite State Unsteady Wake model could even improve
the results.

Rotor wake interferences

The extension of the Finite State Unsteady Wake model
to compute of the induced velocities outside of the rotor
has been studied at ONERA this year. The purpose is to
apply it to calculate the rotor wake interferences on the
rear components (horizontal and vertical tails, tail
rotor) and to use it for time simulations. More precisely,
the basic helicopter model overestimates the damping of
the “Dutch-roll mode”. By modeling the aerodynamic
perturbations of the main rotor wake on the tail
components, the oscillations on the 3 axes (yaw-roll-
pitch) could be better predicted.

Model extension
For the computation of the induced velocities outside
the rotor, it is assumed that they are mainly due to the
convection phenomenon. The unsteady part of the
momentum equation is neglected. For our application,
this seems to be a reasonable assumption, since the tail
components are rather close to the rotor and the
convection time from the rotor down to these elements
may be negligible. For calculating the induced velocities
outside the rotor disk equation (15) is used for all
coordinate directions:

0

1 V

i
i

v d
V e

x
∞

∞

∂Φ= − ∂∫ (37)

The induced velocity at any point in space is calculated
by integrating the spatial derivatives of the pressure
function along a streamline parallel to the mean wake
line. This integration is performed from the considered
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point to the infinite upstream (in practice up to a
distance equal to 15 rotor radius).

Figure 13 shows the ellipsoidal coordinates associated
with the rotor-wind frame (the z-axis is along the rotor
shaft and the x-axis is in the wind horizontal direction,
the deviation from the x-rotor-axis is given by the
sideslip angle). The induced velocity components are
first calculated in the relative-wind frame ( ), ,x y zx x x  in
which the x-axis is in the direction of the relative wind.
Compared to the previous rotor-wind frame (figure 13),
a rotation is applied around the common y-axis with the
rotor angle of attack 2a p c= − .

Induced velocity components
The formulation of the induced velocity component in
the streamline direction xx  in the relative-wind-frame
does not require any integration of (37). The
acceleration potential tends to zero at the upstream
infinite and is discontinuous across the rotor. That is
why two kinds of calculations are performed if the
considered point is outside or inside the wake. Outside
the wake :

1 Vu
Vx x

∞
= − Φ (38)

Inside the wake, the pressure discontinuity through the
rotor disc must be taken into account :

0 0

1 V V Vu
Vx xx x− += =

∞

 = Φ − Φ − Φ   (39)

The induced velocity in yx  direction is obtained by
integrating the lateral component of equation (37):

( )
0 1,

3,..

1
2

V Vmc mc ms ms
n n n ny y

m n m
m

v v v
Vx t t

∞ ∞

= = +∞
+

= ⋅ + ⋅∑ ∑ (40)

where mc V
nt and ms V

nt are the convection parts of the
generalized forces. The coefficients mc

n yv  and
ms
n yv depend on the geometry of the problem:

( )( ) ( ) cosmc m m
n n nyv P Q i m d

yxx
n h y x

∞ ∂= ∂∫ (41)

( )( ) ( ) sinms m m
n n nyv P Q i m d

yxx
n h y x

∞ ∂= ∂∫ (42)

The expression for the cartesian derivative yx∂ ∂  in
the rotor ellipsoidal coordinate system is explained in
the appendix.

The same kind of formulation as in (40) is applied for
the velocity component in zx  direction:

( )
0 1,

3,..

1
2

V Vmc mc ms ms
n n n nz z

m n m
m

w v v
Vx t t

∞ ∞

= = +∞
+

= ⋅ + ⋅∑ ∑ (43)

with a similar approach for mc
n zv  and ms

n zv  as displayed
in (41) and (42). Compared to the vx -component, here
one more rotation (i.e. about the rotor angle of attack)
has to be performed to obtain zx∂ ∂ (see appendix).

Now the 3-components of the induced velocity by the
main rotor can be calculated at the center of each tail
elements (horizontal stabilizer, fin, tail rotor). They are
finally transferred in the appropriate frame.

Steady induced velocity fields
For the isolated main rotor of the Dauphin helicopter,
the induced velocity fields have been computed with the
extended Finite State Unsteady Wake model in hover
and forward flight. In hover, as can be seen on figure 7,
the main patterns of the rotor induced velocity field are
caught with only one inflow state 0

1a . The
axissymmetrical flow is accelerated downward through
the rotor leading to the well-known radial contraction.

Figure 7: induced velocity field of a hovering rotor

In forward flight, more inflow states must be used in
order to represent the changes in the induced flow due
to the fact that the wake is skewed backward. With the
following 6 inflow states 0 0 1 1 1 1

1 3 2 4 2 4, , , , ,a a a a b b , the
expected induced flow in forward flight is obtained as
shown in the following figure 8.

The downwash predominance inside the wake, makes
appear the skewed wake. The strongest downwash is
under the back part of the rotor, whereas a recirculation
under the front part leads to a small upwash tendency.
These characteristics are quite correlated with those

HOVER
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observed in experimental studies, as well as with other
numerical approaches like the vortex methods [12].

Figure 8: induced velocity field in forward flight

Dynamic simulation results
Most of the helicopter simulation codes underestimate
the oscillations around the 3-axes (yaw-roll-pitch)
associated with the “Dutch-roll” behavior [21]. A flight
test campaign dedicated to this problem was lead on a
Dauphin helicopter by the French Flight Test Center
(CEV) based in Istres. Here, only one example
illustrating the extensive comparisons performed
between the HOST code simulations and this flight data
base is shown.

The overestimation of the damping of the “Dutch-roll”

motions (following the doublet input on the pedals) can
be seen in figure 9 when considering the simulation
results (in red) obtained with the basic Finite State
Unsteady Wake model, for which as previously the 6
inflow states: 0 0 1 1 1 1

1 3 2 4 2 4, , , , ,a a a a b b  are used.

By adding the interference phenomena induced by the
main rotor wake on the tail rotor and the fin, the
oscillations on the yaw and the roll axes are better
simulated (curves in green on figure 9). However, they
are overestimated in magnitude and are in advance
compared to the test data. But this is mainly due to the
fenestron model. Its too high sensitivity to pedal inputs
appears clearly during the doublet excitation (see the
yaw rate RHEL).

On the pitch motion the oscillations are still
underestimated (see QHEL). When the induced
velocities by the main rotor wake on the horizontal
stabilizer are taken into account with the extended
Finite State Unsteady Wake model or the vortex rings
model [22], the pitch oscillations are not generally
better simulated. The predicted downwash produces
sometimes a pitch-up motion which makes the
simulation diverge after 15 sec.

Indeed the pitch oscillations are clearly correlated with
the roll motion and it appears that the pitch oscillations

FORE AFT

FORWARD FLIGHT (40 km/h)

Figure 9: Dutch-roll motions after a doublet pedal input for the Dauphin in level flight at 90 kts
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in the Dutch-roll are probably rather due to the roll-
pitch cross-coupling than to rotor wake interference on
the horizontal tail.

To take into account the linear longitudinal and lateral
inflow gradients due to tip path plane motion ONERA
uses a similar wake distortion approach as derived in
(34) to (36). In hover, the value of the coefficients pK
and qK  can be taken around 1.5 . But in forward flight,
they decrease due to the fact that the rotor wake is swept
backwards. If these new terms are interpreted as
representing the rotor wake distortion effects, they
should be neglected above 0.15µ =  according to the
study reported in [19]. Nevertheless, they provide an
efficient way to better simulate the pitch-roll coupling,
(even if their physical interpretation can not be reduced
to the wake distortion in forward flight).

A parametric study on the Dutch-roll database shows
that with 0.5 , 0p qK K≈ = , the coupling from the roll
to the pitch is generally better simulated. On figure 9,
the results (in blue) obtained with both: the
interferences on the fin and the tail rotor, and the inflow
coupling terms with 0.6pK ≈  and 0qK =  illustrate the
improvements especially on the pitch oscillations. They

are due to the change in the lateral inflow gradient 1
2β

produced by the roll motion.

As a by product of the improvement in the pitch axis,
the oscillations are also better calculated in magnitude
and phase in the yaw and roll axes. This interesting
corollary may be due to the change in the interferences,
since the pitch attitude and wake skew angle are
modified, as seen from figure 10.

Conclusion about the Dutch-Roll simulation
The Finite State Unsteady Wake model has been
extended to compute the induced velocities by the main
rotor wake anywhere in theory and in practice on the
tail components. New terms have also been introduced
in the main rotor dynamic inflow equations to account
for the effect of the pitch and roll motions on the
longitudinal and lateral inflow gradients.

A better prediction of the Dutch-roll oscillations can be
achieved by calculating the interferences on the fin and
on tail rotor with Finite State Unsteady Wake model,
and by representing the roll to pitch coupling with

0.5 , 0p qK K≈ = .

Figure 10: induced velocities on fin (ViV_FSW), tail rotor (ViTR_FSW) and main rotor, Dauphin at 90 kts
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Further improvements could be achieved by upgrading
the fenestron model and by using a parametric
optimization tool to determine the best couple of pK
and qK , on the Dutch-roll database.

Ground effect

The interference of the rotor flow with the ground
changes the velocity and pressure distributions around
the blades, and thus the airloads. Typically, for a rotor
hovering near the ground ( )altH R< , the mean down
wash is reduced due to the increase of the pressure
between the rotor and the ground. Therefore, the
induced power decreases and the required power is
lower compared to the case where the rotor is out of
ground effect.

In [10], [11], [23] an extension to the Finite State
Unsteady Wake model is proposed which allows to take
into account the ground effect not only on the mean
down wash, but also on the other inflow states. Indeed,
as soon as the rotor wake is not normal both to the rotor
and the ground, (e.g. in forward flight or when the rotor
and the ground are not parallel), the effects on the rotor
inflow distribution will not be uniform. This year
ONERA has implemented these extensions in HOST.

Model extension
The ground effect is represented as a second source of
perturbation of the pressure field, depending on the first
one coming from the rotor. In analogy to (6), the
additional pressure function can be written as:

( )
0 ,

2,..

1
ˆ ˆ( ) ( )

2

( )cos ( )sin

l l
G k k

l k l
l

lc ls
k k

P Q i

t l t l

n h

s y s y

∞ ∞

= =
+

Φ = − ⋅ ⋅

⋅ +

∑ ∑
(44)

where the hats indicate the states with respect to the
inclined ground frame, as shown in figure 11. The l c

ks
and l s

ks  denote the generalized forces due to the
ground. Further, it should be mentioned that in contrast
to (6) k l even+ = , thus , 2,k l k l= = + L . The
total pressure perturbation, which determines the rotor
inflow distribution, is viewed as the superposition of
both the rotor and ground contributions: R GΦ = Φ +Φ .
Here again it is assumed that only the convection part of
the pressure function plays a significant role, thus
neglecting the unsteady part. The pressure potential
must lead at the ground level to an airflow with a null
component normal to the ground surface.

Figure 11: helicopter-, wake- and inclined ground
frame

A matrix C  joins up the ground pressure coefficients
with those of the rotor. This matrix is calculated
through a double integration, and using the
transformations between the ellipsoidal coordinates in
the ground frame ˆˆ ˆ( , , )n h y  and in the rotor frame:

cl c l m m c
k k n nCs t= ⋅ (45)

sl s l m m s
k k n nCs t= ⋅ (46)

with:

( )
2 1

0 0

1 ˆˆ( ) cos ( ) ( )

ˆˆcos

cl m l m m
k n k n nC P l P Q i

m d d

p
n y n hdp

y n y

= − ⋅

⋅

∫ ∫ (47)

( )
2 1

0 0

1 ˆˆ( )sin ( ) ( )

ˆˆsin

sl m l m m
k n k n nC P l P Q i

m d d

p
n y n hp

y n y

= − ⋅

⋅

∫ ∫ (48)

The induced velocities due to the ground potential (44)
can then be expressed as:

1 1ˆˆ
2

cr r l l c
j G j k kV Da s−= ⋅ ⋅ (49)

1 1ˆ ˆ
2

sr r l l s
j G j k kV Db s−= ⋅ ⋅ (50)

The expansion of the matrix D elements is very similar
to the one given in (19) and (20).

Evaluation of equations (45) to (50) shows that matrices
C and D can be combined to a matrix G. The ground
effect extension can now be introduced in the overall
inflow formulation from (21) and (22):

( )* 1 1ˆ ˆ
2

cr r m c r m c
j j n j nM L G Va a t

−
⋅ + − ⋅ ⋅ = (51)

( )* 1 1ˆˆ
2

sr r m s r m s
j j n j nM L G Vb b t

−
⋅ + − ⋅ ⋅ = (52)

Results for ground effect in hover
For the case of hover above an inclined ground, the
model extensions have been compared with the results

Z

δδ

χχ

ααTPP

h

Rotor

GroundX̂

Ẑ
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presented in [11]. Since a good match with these results
could be achieved, the validation seems to be fulfilled.

Results for ground effect in forward flight
In order to reduce the computational time during the
trim process of the whole helicopter for a sweep on the
forward speed, the number of combinations describing
the airloads and induced velocity distributions on the
rotor and the ground is diminished, i.e. rotor states:

0 1 1 0 1 1
1 2 2 1 2 2, , , , ,c c st t t a a b . ground states: 0 0

0 0,c
Gs a

In forward flight, as proposed in [11], an effective wake
skew angle ec  is used to compute the G matrix in order
to account for the roll-up of the wake:

2

tan tan
4e

pc c= (53)

Figure 12 shows the evolution with the forward speed
of the induced power IGE (h=0.71). The induced power
is made non-dimensional by dividing its values by the
hover induced power IGE. The advance ratio is
normalized with the non-dimensional mean inflow in
hover according to the momentum theory:

* 2 tcm m= ⋅ (54)

Figure 12: induced power IGE (h=0.71)

As can be seen on figure 12, the reduction of rotor
inflow due to the ground effect is stronger in hover than
in forward flight. That is why the induced power IGE
increases at low forward speeds compared to the value
in hover. The drop down corresponding to the decrease
of the mean down wash with the forward speed becomes
more important, and thus the induced power falls down
as in the well-known OGE case. This non-linear
behavior is well correlated with the experimental data
from [24] and with the numerical results of [11].

Conclusion about the ground effect modeling
In hover above a flat or inclined ground, the validation
of the model seems to be fulfilled. In forward flight,
when using more refined combinations to the describe
the rotor and ground distributions, the model may

appear time consuming and some problems of
convergence may occur during the equilibrium process.
Nevertheless, the most important effects are caught by
the model when using the first states (mean terms and
first harmonic gradients), corresponding to the
combinations applied here.

General conclusions

The Finite State Unsteady Wake model has been
implemented in the helicopter flight dynamic
simulation codes at ONERA and DLR. The
implementation was verified using generic data
provided by NLR generated with the FlightLab
simulation tool.

ONERA concentrated on improving the prediction
capability for dynamic phenomena as Dutch Roll and
Ground Effect. For this, additional model extension to
account for the wake distortion effect and to calculate
the induced flow at an arbitrary point outside the rotor
disk were implemented. Validation with Dauphin
helicopter flight test data showed that improvement in
the Dutch roll oscillation prediction could be achieved.

DLR investigated aspects related to the application of
the model in the ACT/HS realtime, pilot-in-the-loop
simulation environment. An optimum number of
harmonics and states was derived which allowed for an
accurate inflow distribution calculation, but still
satisfied realtime constraints. Additional extensions for
parametric wake distortion and reference axis
transformation were implemented. Comparison of
simulation results with BO105 flight test data shows
that the Finite State Unsteady Wake model performs
well in hover as well as forward flight.

Although the model considers more dynamic inflow
states the performance, was not remarkably better than
the 3-state Pitt&Peters formulation. It seems that in
order to be fully effective, the sophisticated complex
model formulation demands to be equaled by equivalent
complex formulations for dynamic components as the
rotor system (e.g. elastic blade deformation), the
fenestron or wake distortion.
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Appendix

The appendix describes briefly the ellipsoidal
coordinate frame and several formulations which are
used in the paper.

Ellipsoidal coordinates
The ellipsoidal coordinate system as shown in figure 13
can be described by:

2 21 1 cosx n h y= − − ⋅ + ⋅ (55)

2 21 1 siny n h y= − − ⋅ + ⋅ (56)

z n h= − ⋅ (57)

with: 1 1n− ≤ ≤ , 0 h≤ ≤ ∞  and 0 2y p≤ ≤ .

Figure 13: ellipsoidal frame and relative wind frame

The non dimensional rotor radius at disk level ( 0)h =
then is:

2 2 21r x y n= + = − (58)

Further the expression of the cartesian derivative
yx∂ ∂  in the rotor ellipsoidal coordinate system is

obtained as:

( ) ( )

( ) ( )

1

2

1

2 1

sin

cos
sin

s

y s

s

s s

x
n y n

yh y h y

 ∂ ∂ = − ⋅ +  ∂ ∂ 
   ∂ ∂   + ⋅ +      ∂ ∂   

(59)

and

( ) ( )

( )

( )

2
1

2 2

2
1

2 2

1

1
sin cos cos

1
sin cos cos

sin sin

s

z s s

s

s s

s

x

nn a y h a n
hh a y n a h

a y
y

 ∂ ∂−  = − ⋅ + ⋅ +  ∂ ∂ 
  ∂+  + ⋅ + ⋅ +   ∂ 
  ∂ + −   ∂ 

(60)

where 2 2
1 (1 )(1 )s n h= − + and 2 2

2s n h= + .

Factorial expressions
In the following expressions the double factorial is used
which is defined as:

!! ( )( 2)( 4) (2)

!! ( )( 2)( 4) (1)

0!! 1!! 1

n n n n for n even

n n n n for n odd

and

= − − =
= − − =

= =

L
L (61)

Therewith:
( 1)!!( 1)!!

( )!!( )!!
m
n

n m n m
H

n m n m

+ − − −= + − (62)

and

1 2

, 2,..

( )
(2 1)

( 1) ( )!!

( )!!( )!!( 1)!!

m
mn
n

q m
n

q

q m m

P
n H

n q
r

q m q m n q

n
n

−
−

= +

= + ⋅

− +⋅ − + − −∑
(63)

In [15] analytical expressions for the gain matrices L
have been worked out:

0 0cm m m
j n j nL X= ⋅Γ (64)

( )( 1)
cr m m r i m r r m

j n j nL X X− += + − ⋅ ⋅Γ (65)

( )( 1)
sr m m r i m r r m

j n j nL X X− += − − ⋅ ⋅Γ (66)

with: tan 2X c=  and min( , )l r m= . The Γ function
is defined as:

2

2

2

( 1) 4 (2 1)(2 1)

( )( 2)(( ) 1)

n j r

r m
j n

r m even

n j

j n j n j np

+ −

+ =

− + +Γ = + + + − − (67)

; 1
( )

(2 1)(2 1)
r m
j n r m odd j n

sign r m

n j
+ = = ±−Γ = + + (68)

; 10r m
j n r m odd j n+ = ≠ ±Γ = (69)

Relation between harmonics and states
In general, for each harmonic m as many shape states as
wanted can be taken into account. It seems reasonable,
however, to limit the shape number n in relation to the
maximum harmonic number used: max max 1n m= + .
This corresponds to a maximum order of radial shape
function as used in (63) of maxmr . Now the following
relation between harmonics and states occurs:

m 0 1 2 3 4 5 6 7 8
states 1 3 6 10 15 21 28 36 45
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