Paper So 76

EXPERIENCE VITH FREQUENCY-DOMAIM NETHODS II HELICOPTER SYSTEK IDENTIFICATIOH

C. G. Black
D. J. Murray-Smith
Department of Aeronautics \& Fluid Mechanics and
Department of Electronics \& Electrical Engineering University of Glasgow
GLASGOW G12 8QQ, UK
G. D. Padfield
Flight Research Division
Royal Aircraft Establishment
BEDFORD MK41 6AE, UK

September 22-25, 1986

Garmisch-Partenkirchen

Federal Republic of Germany

Deutsche Gesellschaft für Luft- und Raumfart e. V. (DGLR)
Godesberger Allee 70, D-5300 Bonn 2, F.R.G.

EXPERIEHCE VITE FREQUEECY-DOKAIH METHODS IE HELICOPTER SYSTEM IDEETIFICATIOE
 C. G. Black
 D.J. Murray-Smith
 University of Glasgow
 G.D. Padfield

Royal Aircraft Establishment (Bedford)

ABSTRACT

Kost applications of system identification techniques to helicopters have involved time-domin methods using reduced-order mathematical modele representing six-degree-of-freedom rigid-body motion. Frequency-domain techniques provide an interesting alternative appranch in which data which lies outside the frequency range of interest may be disregarded. This not only provides a basis for establishing reduced order models which are valid over a defined range of frequencies but also results in a significant data reduction in comparison with time-domain methods. This paper presents a syftematic approach to frequency-domain identification using both equationerror and output-error techniques. Results are presented from filight data from the Pum helicopter to illustrate the application of the frequencydomain approach to the estimation of parameters of the pitching moment and mormal force equations. These results are assessed both on a statistical basis and through comparisons with theoretical values.

Yonenclature

A, B, H	state motrix, control dispersion matrix, masurement transition matrix
b	vector of biases in measurements
b.	colums of matrix B in Eingular value decomposition
B	matrix with orthogonal colums in Eingular value decomposition
1	function relating states to their time derivatives
	function relating states to mensurements
Frotal, Fi	total and partial F-ratios
G(ω)	correction term for non-periodic window
I	identity matrix
In	inaginary part of
3	complex number such that $j^{2}=-1$
J	cost function
k	vector of trim constants for measurements
	position relative to centre of gravity in terms of fixed body axes components (x, y, z) of measurement devices
	pitching moment derivatives
P. q. ${ }^{\text {r }}$	angular rates
$Q(5), A_{z}(5)$.	Laplace transformed quantities
$\mathrm{R}^{\mathbf{F}}$	equared correlation coefficient
Re	real part of
5	Laplace variable
6.	Eingular values
5	square motrix having singular values in leading diagonal
Su, ${ }_{\text {c }}$	speed and incidence angle measurement scale lactors
t	time
I	record lengih
T_{θ}	time constant
u, \%,w	aircraft translational velocity components
0	motrix with unit orthogonal columis used in singular value decomposition
v_{e}, V_{e}, θ_{e}	formard speed, normal speed and pitch angle trim components
v	orthogonal matrix used in singular value decorposition
v	diagonal weighting montrix
$x(t), y(t), y(t)$	Etate, control and output vectors (time-domain)
$X(\omega), \bar{X}(\omega), Y(\omega)$	state, control and output vectore (frequency-domain)
X	matrix of independent frequency (or time) response data arranged in colums
y	dependent variable - equation error method
Zos,zut	observed and calculated responses
	normal force derivatives

B	
\underline{L}	
λ	
O. ${ }^{\text {c }}$ Y	
Q, ${ }^{\text {a }}$	
θ_{1}, θ_{2}, etc	
Γ	
1	
ξ	
$\omega, \omega=0$	
$*^{2}$	
${ }_{\Omega}^{\top, \top_{\theta}} \cdot \top_{a z}$	
Δt	
0.0	
11	1-『
$1{ }^{1}$	
exp	()
11	

flank angle
equation error term
eigenvalue
Euler pitch, roll and yaw angles
vector of parameters to be estimated, estimates of θ unknown parameters
rectangular matrix related to s
orthogonal parameter set obtained from θ
short period daxping
angular frequency, short period natural frequency
residual variance
time delays
orthogonal motrix related to B
Eampling interval
null vector, null matrix
inverse
transpose
complex exponentinl
determinngt of matrix

IfIRODUCIIOH

System identification techniques provide a formal mathematical basis for ectablishing a dynamic model of a system from measurements of its responses. This inverse modelling process involves both the identification of an appropriate model structure and the estimation of the values of parameters included within that structure. System identification and parameter estimation techniques have considerable potential in the context of helicopters, not only for the purposes of validnting or improving theoretical flight mechanics models but also an and to flight testing of new designs.

Essential requirements of any identification technique are robustness, especially in term of low susceptibility to noise, ease of use and clear interpretation of results through, for example, the provision of confidence intervals for estinated quantities. In any practical application of identification techniques uncertainties exist because of measurement moike, measurement offeets and process noise. Keasurement noise is a term which describes errors of a raddom nature in the measured data whereas offeets may arise from innccurate calibration of instruments or recording equipment. Process noise, on the other hand, arises from unnodelled features of the real system and can, for example, include effects of structural vibration associated with degrees of freedom which are not included in the model. Unexpected nonlinearities can also contribute to process noise.

Althougb moh experience bas been gained in the identification of fixed wing aircraft'. $\mathrm{F}_{\text {far }}$ fewer buccessful applicationg have been reported in the case of rotorcraft. This relative lack of success fs belfeved to be due to features such as the many coupled degrees of freedom in helicopters, the high vibration environment and Gevere limitations of test record length due to inherent instabilities.

Most published accounts of applications of system identification techniques to belicopters have been concerned with time-domin methods using a reduced-order mathematical model representing \quad ix degrees-offreedon rigid-body motions-o. The extension of such models to incorporate rotor degrees of freedom increases the bystem order bignificantly and introduces severe difficulties in terms of time-domain methods of identification. Ao alternative approach which may offer advantages both for the identification of Eix-degree-of-freedom models, and for the identification of rotor dypamics, involves the use of frequency-domain evaluation methods. In Euch methods the mensured response data is firgt translated into the frequency-domain using the Fast Fourier Transformation (FFT) so that all data which lies outside the frequency range of interest may be disregarded. As well as providing a basis for developing models which are applicable over a defined range of frequencies this approach also has the advantage of reducing the amount of data required for identification. By excluding data for zero frequency the frequency-domain approbch can eliminate the need to estimate the values of ndditive constants representing measurement zero shifts which have to be determined in the application of time-domain methods.

Interest in frequency-domain methods for aircraft parameter identification has increased during the past five years and a mumer of recent studies $-\rightarrow i z$ bave produced encouraging results. This paper describes aspects of a research programpe involving the development and application of general-purpose software tools for frequency-domin identification of rotorcraft. This work forms part of a more broadly based programme of research, introduced in Refs. 7 and 8, which is intended to produce a complete tool-kit of robust and easily used identification techniques involving both time-domin and frequency-donain opproaches.

Most of the identification techniques which have been ueed in recent years for the estimation of aircraft stability and control derivativen can be classified either as equation-erior or output-error methods. The equation-error mpproach is eseentially a procese of ordinary-least-gquares astimation carried out using data from ali of the syotem state variables. Output-error methods, on the other hand, involve the use of an observation equation and lead to nonlinear optimisation processes' ${ }^{\prime}$,

Equation-error methods have been applied conventionally in nircraft identification using time-domin data to provide first approximations to parameter estimates which may then be used, if mecessary, me initial values for output-error estimotion techniques. The equation-error approach can be implemented either using a conventional least-bquares algorithm, in which all of the aircraft stability derivatives are estimated siymitaneously, or using step-wise regreasion algorithms which provide a convenient and efficient menns of investigating different ilnear and nonlimear model structures.

It is possible to implement either a simple or stepwise regression procedure for an equation of the form

$$
\begin{equation*}
y=x a+z \tag{1}
\end{equation*}
$$

where the vector y is formed of the estimates of the dependent variable, the marix x involves values of the independent variables x arranged as colums, $\boldsymbol{\theta}$ represents the stability and control derivatives $\theta_{2}, \theta_{x}, \ldots \ldots \theta_{n}$, and where the residual error e(t) represents a combination of mensurement noise on the dependent state y and any additional process moise.

The least-squares solution for the parameter vector θ is

$$
\begin{equation*}
\hat{e}=1 x x^{3-1} x^{r} y \tag{2}
\end{equation*}
$$

These estinates of the stability and contral derivatives will be unbiased only if the independent variables, x, are free from measurement noise and any measurement noise associated with the dependent variables has zero man. Process noise components must also bave zero mean value for unbiased estimates.

For cases in which the residual vector c is white noise the parameter covariance motrix may be writted

$$
\begin{equation*}
\operatorname{cov}(\hat{\hat{\theta}}-\underline{\theta})=\sigma^{2}[\mathbf{x}]-1 \tag{3}
\end{equation*}
$$

where 2 is the variance of the equation error.
Flight data cannot generally satisfy the above condition in terms of measurement and process noise and the residual term $f(t)$ my include a deterministic component. However, provided the mensured response data can be filtered appropriately to eliminate noise representing unnodelled effects, useful results my be obtained by this type of method.

In the steprise implementation of the regression process a leastsquares fitting procedure is applied in a sequence of steps. At each stage independent variables are added to or deleted from the regression equation until a 'best fit' is found. The mitiple correlation coefficient, R, provides a direct mensure of the nccuracy of fit within this process and the total F-ratio indicates the confidence associated with that fit. Partial F-ratios provide individual confidence measures for individual parameters?.

In output-error identification a least-squares cost function is of ten used to provide a measure of the error between a sequence of F observed instrument readings, zos, which are corrupted by random noise, and the eequence of calculated instrument readings zoi determined from the equations of motion whicb have the general nonlinear form

$$
\begin{align*}
& \dot{x}=f(x, t) \tag{4}\\
& z=g(x, t) \tag{5}
\end{align*}
$$

The cost function therefore has the form

$$
\begin{equation*}
J=\sum_{i=1}^{\mathbb{I}}\left(z_{0 x}-z_{i x}\right) z \tag{6}
\end{equation*}
$$

where is the number of samples in the time-donain record. The quantities zei depend upon the values of the stability and control derivatives, the coefficients in the observation equation relating the measured output to the system states, the input time history and the initial state.
Kinimisation of this cost function, which is s nonlinear function of the unknown parameters, can be carried out by a number of methods such as the modified Iewton-Raphson approach.

In the case of a mitiple-output system it my be appropriate to multiply the sum of the equares of the fit error for each instrument by an associated weighting factor before suming to form an overall cost

$$
\begin{equation*}
\text { i.e. } J=\sum_{i=1}^{\sum_{i=1}\left(z_{0}-z_{01}\right)^{T} v\left(z_{01}-z_{01}\right), ~} \tag{7}
\end{equation*}
$$

where V is a diagonal matrix. This forms the basis of weighted leastsquares methods and represents a particular case of the more general maximum-likelihood formiation arrived at from Etatistical considerations*. Mininication of the negative log-likelihood function results in a cost function of the form

$$
J=\sum_{i=1}^{\sum}\left(z_{01}-z_{01}\right)^{+} v\left(z_{01}-z_{01}\right)+\log _{1}\left|v^{-1}\right|
$$

where the weighting motrix, V_{1} is estimated during the minimiention procedure. This is the form of cost function ueed for the output error results presented later in this paper.

The overall advantages of output-error methods in comparison with the equation-error approach generally are associated with the fact that outputerror methods take account of noise-corrupted instrument recordings to produce unbiased estimates and, through the equations of motion, allow known relationships between paraweters to be taken into account. The equation-error method does, however, provide a means of rapidly investigating questions of model structure and can provide the essential initial parameter estimates for use with the more robust output-error type methods.

TBATSEORHATIOH TO THE EREQUEFCY-DOBALK

Cost functions used for frequency-doman identification for parametric mels conventionally involve a Eumintion of frequency-dependent values. If all the values obtained from the application of the FFT to the measured response data were used in the estimation process there mould be a direct equivalence, by Pargeval's Theorem, between the cost functions in the timedomin and their frequency-domain counterparts". The time-domain and frequency-domin approaches are, however, no longer equivalent if the frequencies included in the cost function are restricted to include only those values within a given range. This selective process in the frequencydoman is, of course, equivalent to time-domin estimation after filtering to remove unwanted components but is computationally simplea in that it avoids the need to create a new data get for each different filter time constant.

Figures 1 and 2 show typical filight data records obtained using the RAE research Pum helicopter, a brief description of which may be found in Refs. 7 and 8. Records are Ehown for two cases which also provide the basis of the applications presented in later sections of the paper. The first of these two records, which involve representations both in the time-domain and in the frequency-domin, illustrates the Puna response to a longitudionl cyclic doublet input at 100 knote wile the second shows the response to a DFVIR '3211' longitudinal cyclic test input, again at 100 mots. The upper limit of frequency $(0.56 \mathrm{~Hz}$.) used in the identification studies is shown and reconstructed time-doman records, deternined from the truncated frequency-domain data sets using only efght frequencies, are superimposed upon the original time histories. These reconstructed records show very clearly that the higher frequencies hnve been filtered out by this truncation process. Figure 3 provides an illustration of the effect of using different frequency ranges in this reconstruction process and demonstrates clearly the degree of filtering achieved as the cut-off frequency is reduced.
A)thougb the min justification for introducing selectivity in the frequencies used for identification is connected with the need to obtain mode which are valid for specified frequedcy range, the resultant data reduction is also beneficial in computational terms. The availability of frequency-domain records also provides a very useful indication of the degree of excitation of the Eystem at frequencies of interest.

One problem in the application of frequency-domin methods to helicopter parameter estimation is that the measured quantities, and the quantities used in a state space description of the system are not,in general, related linearly. Practical difficulties are encountered in applying linear trangformations, such as the digcrete fourier transformation, to nonlinear equations of the form of (4) and (5), and innearisation is therefore necessary. Keasurement offsets relative to the centre of gravity also have to be taken into congideration in this context.
A general linearised model, valid for given flight condition and smal amplitude excursions, can be written in the form

$$
\begin{align*}
& \dot{x}(t)=\mathbf{X}(t)+\mathbf{B} \underline{u}(t) \\
& \dot{x}(t)=\mathbf{X}(t)+\mathbf{k}+\mathbf{b}
\end{align*}
$$

where A and B represent the Etability and control derivatives respectively, H is a motrix relating model outputs y to the state variables x, k is a vector of trim constants and $b i s$ a constant vector of biases. Traneformation to the frequency-domin gives

$$
\begin{aligned}
& \dot{X}(\omega)=A X(\omega)+B \mathbf{X}(\omega) \\
& Y(\omega)=H X(\omega)
\end{aligned}
$$

Ubing the relationship between the Fourier transform of a variable and the Fourier transform of the time derivative of that variable, it is possible to write

$$
\begin{align*}
& \dot{\dot{Y}}(\omega)=j \omega \mathbb{Z}(\omega)+G(\omega) \tag{13}\\
& \text { where } \quad G(\omega)=\frac{\sqrt{Z}}{T}\left[y \left(T-\frac{\Delta t}{2}-\frac{y(-\Delta t)]}{2} \frac{\exp (j \omega \Delta t)}{2}\right.\right. \tag{14}
\end{align*}
$$

and where I is the number of samples in the time-domin record, Δt is the sampling interval and T is the record length in seconds. The term $G(\omega)$ aribes from the integration involved in the Fourier transformation of ix (t) in equation (9)". The terys $y(T-\Delta t)$ and $y(-\Delta t)$ are obtained by linear
interpolation using two points not employed in the estimation. The quantity $G(\omega)$ exists for all cases involving non-periodic windows and is given here in term of the definition of the discrete Fourier transform used in the EAG library of computer bubroutinesis. Such cases are the norm for flight data Eince the values of output variables are seldon the same at the beginning and end of each test record (i.e. $y(0) * y(T)) \cdots$. The model may therefore be represented in the frequency-domain by the equations

$$
\begin{equation*}
\dot{I}(\omega)=j \omega \dot{X}(\omega)+G(\omega)=H \dot{X}(\omega) \tag{15}
\end{equation*}
$$

so that

$$
\begin{equation*}
j \omega Y(\omega)=E \Delta X(\omega)+E B I(\omega)-G(\omega) \tag{16}
\end{equation*}
$$

The frequency-domain quantities $X(\omega)$ and $\dot{X}(\omega)$ which appear in equation (11) may therefore be obtained from knowledge of $X(\omega)$ and $G(\omega)$ using equations (15) and (16).

These equations thus provide an alternative to the use of the Extended Kalman Filter/Smontheris in constructing time-domain and frequency-domain records of unmeasured states as a preliminary to the application of parameter estimation techniques. For example, states in the model and the masured quantities are directly related by equation (12) and so the frequency-domain records $X(\omega)$ may be obtained by directly transforming the raw flight data and effectively solving this equation for the small number of points normaliy used for frequency-domin estimation. Vith the output error type of approach elements of the measurement transition matrix H themselves my be included among the parmmeters for which estimates are sought. It must be recognised, however, that the Extended Kalman Filter/Smoother produces minimu variance estimates of the system states and thoi it can also provide a basis for valuoble kinematic consistency checks'. The Extended Kalman Filter/Smoother state estimation of the filight data does have a disadrantage in that the somewhat subjective and difficult selection of process noise statistics has to be made. The frequency-domain approach of equations (15) and (16) does not eliminate the need for state estination based upon Kalman filtering but provides an interesting alternative toal which can be applied with advaniage in certain cases.

4 EOUATIOF ERROR METHODS IN THE EREOUERCY-DOKALI

Frequency-domin data can be used to obtain a model of the form of equations (11) and (12) using either the least-squares solution (equations (2) and (3)) or the stepwise regression procedure where state variables are introduced to, or removed from, the model on the basis of statistical Gignificance tests. The frequency range over which data is used in the parameter estimation process, and consequentily for which the estimoted model is valid, must be selected on the basis of the intended application of the model. An appropriate frequency range can often be chosen by inspection of plots (e.g. Fig. 1) indicating the magnitude of transformed pairs at ench frequency.

In practical terms, the evaluation of the cost function in the frequency-domain involves both real and imaginary components at each frequency used. The process implemented in the work reported here is based
upon a cost function involving a Euclidean norm formed from elements representing the complex valued equation error terms wich follow from transformation of equation (1). This cost function may be expressed in the following form

$$
\begin{aligned}
& \omega_{1}
\end{aligned}
$$

One of the fundamental problems of helicopter parameter identification is associated with the breardown in the confidence in the estimates of certain parameters when there are Gignificant correlations between pitch, roll and yar rates". A possible appraach which may lead to successful results in such cases involves rank-deficient solutionsie in which emall eigenvalues are removed from the "informotion' mirix ITI in equation (2) so that the combinations of parameters which cannot be identified uniquely are effectively fixed. An alternative approach which has may attractive features is provided by the use of 'simgular value decompoition' 17 of the motrix X.

4.1 Singular-yalue Decomposition

The $\in i n g u l a r$ value decomposition of the independent variable matrix X of equation (1) involves representing the data history by mans of a new set of orthogonal variables. Solutions based upon a subset of these orthogonal variables can be shown to be equivalent ta rank deficient solutions in which the most insignificant eigenvalues of the information metrix are removed.

If the matrix X involves n independent varinbles ench having walues then it is possible to find an orthogonal nom matrix, V, which transforms the matrix X into another men matrix B whose colume are orthogonal.
1.e.

$$
\begin{equation*}
\mathbf{B}=\mathbf{X} V=\left(\mathbf{b}, b_{z} \ldots . \cdot b_{n}\right) \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
b_{z}{ }^{\top} b_{1} & =0 & & \text { if } i \neq j \tag{19}\\
& =G_{i} z & & \text { if } i=j
\end{align*}
$$

Here the terms involving $s_{s}=$ represent the squared magitudes of the mal colum vectors. The positive square roots of these terms are referred to as singular values of the marix X. For non-zero siggular values we my obtain unit orthogonal vectors un where

$$
\begin{equation*}
\mu_{1}=b_{4} / E_{1} \quad \sigma_{2} \neq 0 \tag{20}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathbf{B}=\mathbf{0} \mathbf{S} \tag{21}
\end{equation*}
$$

where S is an man diagonal matix with non-negative diagonal elements formed of the singular values and 0 is an man matrix whose columes are the unit orthogonnl vectors μ_{n}.

The orthogomalising matrix V upon which this approach depends my be obtained by plane rotations'T. From equations (18) and (21) it follows that

$$
\begin{equation*}
\mathbf{x} v=0 \mathrm{~S} \tag{22}
\end{equation*}
$$

and therefore, because of orthogonality of V, it follows that

$$
\begin{equation*}
I=0 \Sigma V r \tag{23}
\end{equation*}
$$

The motrix B contains the principal components of the motrix X with each colum of B representing a data history in terms of the new set of independent orthogonal variables constructed as linear combinations of the original variables.

If the man matix $0 S$ is rewititen $m s$ the product of an mom orthogonal matix Q, and an mon matrix r baving the singular values arranged in descending order of mgnitude down the leading diagonal with zero elements elsewhere, equation (23) way be rewritten as

$$
\begin{equation*}
\mathbf{X}=\Omega \Gamma \mathbf{V} \tag{24}
\end{equation*}
$$

The least-gquares solution is then obtained ns

$$
\begin{align*}
\Gamma+\hat{\mathbf{L}} & =Q^{\top} \mathbf{y} \tag{25}\\
\hat{\mathbf{L}} & =\nabla \cdot \hat{\mathbf{Q}} \tag{26}
\end{align*}
$$

where the matrix $I+$ has elements which are the anme as those of r but With those Gingular values which are smallex than a given threshold level elininated. This allows parameter estigates to be obtained which correspond only to a suberet of the dominant principal componente.

From equations (1), (23) and (26) it follows that

Agsuming that y is mot highly correlated with an orthogonal state yik associated with a smali singular value (i.e. the problem is not illconditioned) a solution can be coxputed based on Inrge singular values only. The relatively simple form of Eolution inherent in equations (25) and (26) also facilitates investigation of solutions using n number of different sets of singular values. It can be shown easily that the singular values of the motrix x are related to the eigenvalues of the information
 the information motrix). The acceptance of solutions corresponding to only a subset of the dominant principal components corresponds to the ramoval of the most insignificant eigenvalues of the information matrix.

The accuracy of estimates obtained by singular-value decomposition can be nssessed without difficulty. It may be shown that
and

$$
\begin{equation*}
\operatorname{cov}(\hat{1}-6)=5^{2} \tag{28}
\end{equation*}
$$(29)

Here the residual variance, $\quad 2$, my be estimnted from the fit obtained using the orthogonal variables. Similarly the multiple correlation coefficient, which is a direct measure of the accuracy of fit is given by

$$
\frac{\left(X \hat{\theta^{\prime}}\right)^{+}(X \hat{\underline{\theta}})}{\bar{X}^{\gamma} \mathbf{y}}
$$

The total F-ratio provides a measure of the the confidence which can be ascribed to the fit and is defined by the equation

$$
\begin{equation*}
\mathrm{F}_{\text {TOTAL }}=\frac{R^{2} /\left(p^{-1}\right)}{\left(1-R^{z}\right) /(\overline{I I}-p)} \tag{31}
\end{equation*}
$$

where p is the number of parameters in the fit and mis the number of frequency values used. The partial F-ratios for individual parameters. given by

$$
\begin{equation*}
F_{2}=\hat{\theta}_{1} z / \operatorname{var}\left(\hat{\theta}_{x}-\theta_{1}\right) \tag{32}
\end{equation*}
$$

provide individual parameter confidence measures.
The singular-value decomposition approach, involving only a subset of dominant principal components, thus provides a computationaliy convenient form of solution. The equations given above show that statistical measures of the accuracy of estimates obtained using this approach may also be determined without difficulty.

4.1.1 Application to the Pitching Kament Equation

In considering applications of the Eingular value decoxposition method in the frequency-domain a number of important factors have to be taken into account. Firetly, it is essential to ensure that the data records are of a duration which allows parameter estimates to converge. The choice of cutoff frequency for the truncated frequency-domin record is also of great importance for accurate estimation of the parameters of rigid-body models and conventional etatistical measures, such as the squared correlation coefficent and partial F-ratios, can provide useful guidance in this respect. It is essential also to establish the optimum number of orthogonal components in the Eingular-value decomposition and these statistical mensures again can provide valuable ingight. Deterministic measures of parameter significance also have a useful role in assisting in the interpretation of results of the parameter estimation process.

The pitching moment equation, for which parameter estimates were sougbt, may be written in normalised form in the frequency-domain as

$$
\begin{equation*}
\dot{Q}(\omega)=K_{\sim} \nabla(\omega)+K_{m} V(\omega)+K_{a} Q(\omega)+K_{\sim} V(\omega)+K_{\infty} P(\omega)+K_{\eta}-\eta \cdot=(\omega) \tag{33}
\end{equation*}
$$

where $\dot{Q}(\omega)=j \omega Q(\omega)+\sqrt{\frac{\pi}{T}}\left[q\left(T-\frac{\Delta t}{2}\right)-q(-\Delta t)\right] \exp (j \omega \Delta t)$
The data set used for identification in this case involved the response Ghown in Fig. 1 for the longitudinal cyclic doublet test input. Dota from a single manoeuvre with a time-domin record of 14 seconds duration mere trangformed into the frequency-domain for the range 0 to 0.56 kz , for a frequency interval of 0.07 Hz ., to give eight pairs of real and imaginary values, with the values at zero frequedcy excluded.

Table 1 ghows the parameter estimates and the associated statistical performance measures for six coses involving different mumbers of orthogonal components. It may be seen from these results that the squared correlation coefficient (R^{*}) increases as more orthogonal coimponents are included until with five orthogonal componedts any further improvement in R^{2} is found to be negligible. The sixtb component my well be nssociated mastly with noise. The standard deviation of the estimates reach their minimp for the Eolution found with five principal component. The large

4 Selected model.
Tableal Singular value decomposition solution for the pitching moment equation.
Puma, 100 Knots, longitudinal cyclic doublet input.

RO. OP ORTHOGONAL COMPORENTS	z。		T2 ${ }^{2}$	Frotme
	BSTIMATE	ERROR BOUND		
1	-0.450	0.58	0.764	4.85
2	-0.730	0.22	0.962	37.95
3	-0.743	0.21	0.970	48.00
4	-0.781	0.14	0.988	118.90
5 t	-0.882	0.096	0.996	339.28
6	-0.918	0.098	0.996	339.28
7	-0.956	0.102	0.996	346.00
HELISTAB YALUB	-0.696			

+ Selected nodel
Table 2 Singular valve decomposition solution
for the normal force solution.
for the nor wni force solution.
Puma, 100 Knots, Iongitudinal cyclic
doublet input.

Increase in $R=$ and the corresponding large reductions in the error bounds which are Ghown between steps 4 and 5 in Table 1 correspond to the emergence of physically more realistic estimates of parameters K_{a} and h_{p}. This improvement in the estimates of these two parameters following the introduction of the fifth orthogonal component is reflected in the matrix V by the appearance of elements of relatively large magnitude associated with h_{a} and K_{p} in the fifth row.

The effect of increasing the frequency range used for the estimation of parameters is shown in Fig. in terms of the squared correlation coefficient. These results show that R^{2} falls in a series of well-defined steps at frequencies of approximately $1 \mathrm{kz}, 5 \mathrm{~Hz}, 9 \mathrm{~Hz}$ and 13 Hz which correspond closely to frequencies associated with the rotor dynamics. Clearly the use of low frequency data in the estimation process eliminates these particular values and facilitates the accurate estimation of the stability and control derivatives in the six-degree-of-freedom model. Estimation of the parameters of a mine-degree-of-freedon model accounting for tip path plane dynamics as well as rigid body dynamice would, of courge, require use of a wider frequency range.

Figure 5 shows the partial F-ratios for the parametere K_{g}, Ka_{a} and $\mathrm{K}_{\boldsymbol{y}}=$ as a function both of the frequency range used for estimation and the number of orthogonal components. The results show clearly the benefits of using five orthogonal components rather than aix and also indicate that the partial F-ratios have a maximan in the low frequencies, thus confirming the bignificance of the low frequency range.

A large spread in the singular values can also provide an indication thnt some of the orthogonal components are of little importance and may be dibcarded as random noise. This may usually be confirmed by examination of the transformed parameter estimates corresponding to the orthogonal bet and their standard deviations. In this application all the evidence suggested that the parameter estimates for h_{o} and ha_{f} for six orthogonal components were greatly in error in comparison with those for five componente and Ghould therefore be discarded.

A number of measures of the $\operatorname{significance~of~individual~parameters~have~}$ been proposed for identification in the time-domain. One such meagure is based upon the integral of the absolute value of the variable associated with the chosen parameter mitiplied by the estimate obtained for that parameter and divided by the integral of the absolute value of the dependent variable of the equation'e. In the case of the pitching moment equation in the time-domin this leads to measures such as
(Lu) \int luldt/ $/$ lqt $d t$
and $\quad 1 \mathrm{~K} \|$! Iwldt/f|'q|dt
Corresponding measures may be derlved in the case of frequency-damin identification with the integration being carried out over the range of frequency values selected and the magnitude of the fourier transformed quantities being used in place of the magitude of the time-domain responses. These frequency-domain masures of parameter significance therefore take the form
| Khe $\int 10(\omega)\left|d \omega / \int \dot{Q}(\omega)\right| d \omega$ and $\quad 1 \mathrm{KL}\left|\int\right| v(\omega)\left|d \omega / \int\right| \dot{Q}(\omega) \mid \mathrm{d} \omega$

Figure 6 ghow parameter 6 ignificance values for each bet of principal components for frequency-domain data using the range $0-0.56 \mathrm{~Hz}$. Thege results show the importance of $\mathrm{K}_{\mathrm{h}}, \mathrm{K}$ and $\mathrm{Mg}_{\mathrm{ym}}$ in the first few principal component solutions. However, the solution obtained using the first five principal components, and accepted as the best least-squares solution, shows Eignificance values of Eitilar mognitude for $\mathrm{K}_{\mathrm{m}}, \mathrm{K}_{\mathrm{w}}, \mathrm{K}_{\mathrm{a}}$ and K_{g}. It should be pointed out that the colution corresponding to six orthogonal components is the one that would be obtained using the conventional leastequares appranch involving the direct application of equation (2).

Figure 7 shows the effect of the record length on parameter estimates for the frequency range used above. The estimates are ceen to reacb almost constant values as the record leagth approaches the 14 seconds duration which was used for all of the resulte given above. The standard errars clearly tend to lower values as the record length is increased. All of these findings support the choice of record leagth adopted and show very clearly the problems of occurate estimation from shorter records. Long records are also desirable in frequency-domain estimation from the point of view of resolution. It is of interest to note that the parameters in Table 1 estimated with greatest confidence ($\mathrm{K}, \mathrm{M}_{\mathrm{\eta}} \mathrm{~F}$) approach their final estimated values for much shorter record lengths than some of the other parameters euch as $\mathrm{Ka}_{\mathrm{a}} \mathrm{K}_{\mathrm{v}}$ and K_{s} and that these latter parameter estimates hove larger standard deviations.

Since actual experimental filght data have been analysed in this application tbere is mo cet of 'true parameters' to which estimates can be compared. The helicopter filght mechanics package HELISTAB:. .20 provides thearetical parameter values which my be considered alongside the estimates obtained from flight dota. HELISTAB predictions for the parameters of the pitching moment equation are included in Table 1 and it may be seen that the most Gigaificant discrepancy is in the parameter K_{a}.

	π		1.		\boldsymbol{H}^{\prime}		H/		π_{0}		H_{O}		Hi*				R2	Frotal
m. OP ORTHOCOTAL COMPOIENTS	ESTIMATE	$\begin{aligned} & \text { 10 } \\ & \text { RRROR } \\ & \text { BOUND } \end{aligned}$	ESTILATS		ESTITATB	ERKOR EROTID	ESTITMATE	Ir BRROR R BODID	RSTIEATB	$\begin{aligned} & 16 \\ & \text { ERROR } \\ & \text { BOUTD } \end{aligned}$	BSTITATE		ESTITATB		ESTIMATE	$\begin{gathered} \text { 10 } \\ \text { GRRUR } \\ \text { BOUND } \end{gathered}$		
6 7 8	$\begin{aligned} & 0.0014 \\ & 0.0015 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 0.0003 \\ & 0.0003 \\ & 0.0003 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.0041 \\ -0.0040 \\ -0.0036 \end{array}$	0.0010 0.0009 0.0009	$\begin{array}{\|r} 0.0005 \\ -0.0593 \\ -0.1370 \end{array}$	$\begin{aligned} & 0.185 \\ & 0.150 \\ & 0.151 \end{aligned}$	$\begin{aligned} & -0.0026 \\ & -0.0046 \\ & -0.0046 \end{aligned}$	$\begin{aligned} & 0.0008 \\ & 0.0007 \\ & 0.0007 \end{aligned}$	$\left[\begin{array}{c} 0.0002 \\ -0.1965 \\ -0.1728 \end{array}\right.$	$\begin{aligned} & 0.078 \\ & 0.0696 \\ & 0.070 \end{aligned}$	0.0075 0.0071 0.0077	0.0024 0.0022 0.0022	$\left[\begin{array}{l} -0.0302 \\ -0.0325 \\ -0.0335 \end{array}\right.$	0.0011 0.0037 0.0037	$\begin{array}{r} 0.0036 \\ -0.0002 \\ 0.0004 \end{array}$	0.0028 0.0025 0.0025	$\begin{aligned} & 0.771 \\ & 0.809 \\ & 0.810 \end{aligned}$	$\begin{aligned} & 29.78 \\ & 37.42 \\ & 37.73 \end{aligned}$
HELIETAB yalues	0.0024		-0.0051		-0.835		-0.0013		-0.210				-0.0376					

\& Selected model

Table 3a Singular value decomposition solution for the pitching noment equation. Puna, 100 Rnots multirun case, all four controls used

Fo. OF ORTHOGOEAL COMPONEETS	z.a		zoa		R ${ }^{2}$	Ftorac
	BSTIMATE	16 RRROR BOUFD	BSTIMATE	IV BRROR BOUWD		
8 9	$\begin{aligned} & -0.7950 \\ & -0.7093 \end{aligned}$	$\begin{aligned} & 0.120 \\ & 0.119 \end{aligned}$	$\begin{aligned} & -0.632 \\ & -0.689 \end{aligned}$	$\begin{aligned} & 0.253 \\ & 0.251 \end{aligned}$	$\begin{aligned} & 0.816 \\ & 0.820 \end{aligned}$	$\begin{aligned} & 33.69 \\ & 34.77 \end{aligned}$
$\begin{aligned} & \text { HRL,15TAB } \\ & \text { PALUB } \end{aligned}$	-0.696		-0.732			

+ Selected model

Table 3h Singular value decomposition eolution for the normal.
force equation.
Puma, 100 Knota, multirun case, all four controls used.

The Eingular value decompasition approach has been applied to the estimation of parameters of the normal force equation

$$
\begin{aligned}
\left(\dot{v}(\omega)-\delta_{e} Q(\omega)\right)=Z_{\omega} v(\omega) & +Z_{\omega} v(\omega)+Z_{0} \in(\omega)+Z_{\smile} V(\omega)+Z_{\infty} P(\omega) \\
& +Z_{a} Q(\omega)+Z_{D}(\omega)+Z_{\eta^{\prime}}=\eta^{i=}(\omega)
\end{aligned}
$$

Values for $\dot{\forall}(\omega)$ over the frequency range of intereat can be obtained from equations (15) and (16). Tbe quantity U_{e} represents the forward trim Felocity and the tern $J_{e} Q(\omega)$ arises in the linearisation of the equations of motion.

Results obtained from the test data relating to the response to a longitudinal cyclic doublet are given in Table 2. The data again relate to the regponse of the Pum to a longitudinal cyclic doublet for a forward trim speed of approximately 100 knots with a record length of 14 seconds. The upper limit of the frequency range was 0.56 Hz . with zerofrequency excluded and with eight values of frequency used at an interval of 0.07 Hz.. The results indicate that the only Eignificant paraneter on the right hand Eide of equation (35) is Z_{w} and examination of $\mathcal{R}^{=}$and the Etandard deviations of the estimated orthogonal parameters suggests that the use of only the first five orthogonal components produces the best results since parameters associated with the other singular values are estimated with a high degree of uncertainty. The slightly higher R^{2} values for the fits which are obtained by including the sixth and seventh orthogomel components involve parameters estimated with a higb degree of uncertainty and are therefore discounted. It is believed that the simpler model based upon the first five orthogonal components is to be preferred. Figure 8 shows parameter significance data for the parameters of the normal force equation and illustrates very clearly the dominance of the parameter z_{m}.

4.1.3 Parameter Estimation from Kultirun Data

Then only one control input is used to excite all of the rigid body modes poor estinates are of ten obtained for the parameters associated with states which play an insignificant part in the resulting aircraft motion. Such parameters show low values in terms of the parameter significance mensures (typically less than 0.1) and low partial f values.

Since it is impractical to apply more than one test laput at a time on more than one contral by manual methods, it bas been recognised thot data from a number of different manouvres must often be used for identification purposes. One approach involves stacking the data to produce a single long run from a series of shorter runs for different test inputs'e. Since regression is based upon the correlation between variables the diecontinuities at manoeuvre boundaries do not affect the results.

Results are presented in Table 3 for a combination of four manoeurres, as Ehown in Fig. 9. The inputs involved mil four controls and consisted of a collective doublet, a longitudinal cyclic 3211 input, a pedal doublet and a lateral cyclic step input. Compared with the previous single manouerre case for the pitching manent equation, the estimated standard errorb are smaller for the pitching moment cross-coupling terms M and H_{o}. The M_{o} estimate compares well with the theoretical HELISTAB value. The $K_{\text {- }}$ estimate, although different from the theoretical prediction, is consistent with the value found in the previous case of the longitudinal cyclic doublet input. The $\mathbf{H}_{\boldsymbol{\prime}}=$ estimates show a gimilar consistency for the two cases. The Ku value now obtained is much closer to theory than the value found from the single input case, although the estimated value of h_{a} is significantly different. For the normal force equation the z_{w} estimote compares very well with theory.

Solutions were obtained using seven orthogonal components for the pitching monent equation, nine components for the normal force equation, and ten components each for the rolling monent and yawing moment equations. The numbers of independent (non-ortbogonal) variables included in the original model in each of the above cases were eight, nine, ten and ten respectively. The $\operatorname{standard}$ errors of the estimates reached thefr minima for the chosen components.

The frequency range used extends to 0.5 Hz . with the estimation carried out at thirty five different frequencies. It should be noted that, although gome of the Gtandard errors are reduced in comparison with the case for the single manouvre, the Equared correlation coefficient value was also reduced. The benefits of maltirun estimation may have been reduced in this case by the fact that the lateral cyclic input involved a step rather than an input having a zero mean, such as a doublet or 3211. This choice of lateral input was dictated by the available test records for the chosed flight condition of noninaliy 100 knote.

$$
\dot{x}(t)=A X(t)+B u(t)
$$

into the frequency-doninin ubing the discrete Fourier transforn yields, ab already shown, an equation of the form

$$
\begin{equation*}
j \omega I(\omega)=\Delta X(\omega)+B I(\omega)-\frac{\sqrt{1}}{T}\left[x \left(T-\frac{\Delta t}{2}-\frac{x(-\Delta t)]}{2} \exp (j \omega \Delta t)\right.\right. \tag{37}
\end{equation*}
$$

Equation (37) may be rewritten in the form
where Re and Im indicate real and imaginary parts respectively, is the identity motix, 0 is the null matrix and $\Delta x=x(T-\Delta t)-x(-\Delta t)$

In general, in the time-domin, the states $m(t)$ are related to the measured quantities, $z(t)$, by an equation of the form

$$
\begin{equation*}
z(t)=H x(t)+x+b \tag{39}
\end{equation*}
$$

If the full mal output vector is defined in the frequency-domain as

$$
\underline{X}(\omega)=\mathbf{L}(\omega)
$$

$\omega * 0$
where

$$
L=\left[\begin{array}{lll}
\mathbf{H} & 0 \\
\cdots & \cdots & \\
\mathbf{O} & \mathrm{H} & \mathrm{H}
\end{array}\right]
$$

then a suitable choice of cost function has the form
where

$$
\begin{aligned}
& \underset{\mathbf{V}}{\mathbf{V}}(\omega)=\left[\begin{array}{l}
\operatorname{Re}[\underline{\eta}(\omega)] \\
\cdots \cdots \cdots \\
I \operatorname{In}[\underline{\eta}(\omega)]
\end{array}\right] \quad \text { and } \quad \overline{\mathbf{v}} \quad=\left[\begin{array}{lll}
\mathbf{v} & \cdot & 0 \\
\cdots & \cdots & \cdots \\
0 & \cdots & \mathbf{v}
\end{array}\right]
\end{aligned}
$$

V is a real valued diagomal weighting matrix and although this matrix can involve elements which remain fixed in value tbroughout, the current implementation is based upon the use of fixed elements for the first few iterations with subsequent estimation of the elements of from the expected and actual outputs. The values used for the initial phase, where the elements of are fixed, reflect the initial estimates of the relative noise levels on the masurements.

The frequency-domain approach facilitates the incorporation of timedelays within the model=,. These time delays my be present in botb the measured responses and in the control inputs. In the latter case the control term in equation (38) must be modified to give=2, for the case of r controls

 $\boldsymbol{O}_{2}(\omega), \ldots . . V_{r}(\omega)$, can then be included in the set of parameters for which
estimates are cought. Such time delay elemente may result from n muber of factorn Includimg time lag between initiation of a control bignai and the responce of the actuators, phase bhiftss due to filtering of the data. or unmodelled features af the real bystem (a. G . rotar dynamicsi.

In general J it function of the system matrix A, the control input matrix B, the measurement transition matrix H_{i} the time delays and the frequency range $\left(\omega_{2}-\omega_{1}\right)$ used for the estimation. Minimisation of this cost. function with respect to vector 2 of maknown parameters requires that the condition

$$
\begin{equation*}
\left[\frac{\partial}{\partial \theta_{1}} \frac{\partial}{\partial \theta_{x}} \cdots \cdots \cdots \frac{\partial}{\partial \theta_{m}}\right]^{T} j \neq a \tag{42}
\end{equation*}
$$

be satiafied.
Deing a line exarch modification ${ }^{27}$ to the basic Mewton-Raphsan method, an optimiantion technique bas been developed from mich parameter estimates are obtained in a computationnliy efficient maner over the selected frequency ramge. The transformon of the problem into the frequencydomin means that algebratc expressions can be found for each ctage of the mininication process where equivalent steps in the tima-domain implementation reguire pumerical integration. In adition, the parameter covariance matrix can be deterdined for the chosen frequency range ueing an mpproach annlogoug to that applitad in the time-domain ${ }^{24}$, the actual bandwidth of the mansurement being an important factor to be haken into account in modeliling the error ${ }^{* *}$.

5.1 Application of the Dutput-Errar Appronch to Identification of

 Longitucianal DyomuicsThe mathematical model given below in equation (43) has provided a basif for estimation of the longitudinal parameters of the six-degree-offreedom rigid-body model. In thig equation all of the fignificant longitudinal/ateral compling terns (ans determined from parameter eignificance masures of the type already defined) are incorparated in an extended cantrol vectar.

$$
\begin{align*}
& +\left[\begin{array}{ccc}
0 & 0 & I_{\eta}=- \\
0 & z_{x} & z_{\eta}=- \\
M_{k} & X_{\infty} & x_{\eta}+ \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
p(t) \\
p(t) \\
\eta \cdot-(t-\tau)
\end{array}\right] \tag{43}
\end{align*}
$$

The matsured varlables are related to the Gtate variabies by the additional equation
$\left[\begin{array}{l}V(t) \\ \sigma(t) \\ q(t) \\ \theta(t)\end{array}\right]=\left[\begin{array}{cccc}S_{v} & 0 & 1 \approx w & 0 \\ 0 & S_{k x} / U_{e} & -2 \omega_{m} / 0_{e} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}u(t) \\ w(t) \\ q(t) \\ \theta(t)\end{array}\right]$

A number af the coetificients in these equations are known to be very small for the conditione used in the test and, on the basis of their parameter significance values, several hove been exciuded frow the estimation process. Inttial parameter estimates far the output-error mathod must be provided from resulte obtained uging the equation-error approach or frow theoretical madel values, to ensure rapid convergence af the output-error algorithm.

Application of the output－error method to the flight data used in the equation－error applications of Bections 4．1．1 and 4．1．2 for the
longitudianl cycilc doublet input provided the results shown in Table 4. The frequency range used involved the eight spectral lines up to 0.56 Hz ， as before，with zero frequency again excluded．In this implementation of the output－error appronch the diagonal meighting matrix elemente were assigned initial values based upon estimated noise variances．This allowed some initial convergence of the estimation process to take place before the introduction of the updating of the weighting matrix elements at each subsequent iteration using actual and estimated model outputs．

PARAMETER	ESTIMATE	$\begin{gathered} 1 \% \\ \text { ERROR BOUSD } \end{gathered}$	HELISTAB value
Ku	0.00319	0.00021	0.0024
K	－0．00252	0.00070	－0．0051
Ka	－0．353	0.092	－0．835
Kot	－1．225	0.090	
H_{6}	－0．412	0.069	－0．210
Kinse	－0．0308	0.0017	－0．0376
20	0.0504	0.022	－0．0316
zw	－0．805	0.021	－0．696
そうに	0.699	0.14	0.618
X	－0．0384	0.037	－0．0265
$\mathrm{x}_{7}=$	0.599	0.33	0.180

$\mathrm{T}_{\mathrm{M}}=-0.00764$
Table 4 Parameter estimates obtained by output－error methas．
Figure 10 bhows comparisons of the actual and estimated power epectra with the number of iterations in the estimation process．The model results and the flight data match very closely in the frequency－domin after three iterations．Although Fig， 10 only shows the reaults for the case where incidence angie is the variable considered，similar resuits have been found for the pitch rate and pitch attitude variables．In the case of the forward speed the match between the measured and estimated spectra was less Eatisfactory，especially in the middle of the frequency range considered， but it must be recognised that this measured quantity shows relatively little power at the mid－range and upper frequencies in comparison with the other measurements．

Results bave also been obtained for the case where a time delay is postulated in the longitudinal cyclic input and these are shown in Table 5. Kost of the pitching monent terms，even those estimated with Emall error bounds，show some change in the estimated values when this time delay parameter 16 introduced and for parameters K_{0} and Ka these changes are significant．These alterations in the identified pitching mont
derivatives may be due partly to effects associated with rotor dynamics being lumped into the fuselage coefficients in the case where no time delay 15 incorporated in the model．

PARAKETER	ESTIMATE	$\begin{array}{cl} 1 & \sigma \\ \text { ERROR BOURD } \end{array}$	HELISTAB VAlUE
R．	0.00419	0.00040	0.0024
K／	－0．00022	0.0012	－0．0051
Ka	－0．823	0.18	－0．835
$\mathrm{K}_{4}+$	－1．306	0.10	
\mathbf{K}_{0}	－0．248	0.086	－0．210
M \dagger 仿	－0．0396	0.0034	－0．0376
2	0.0362	0.021	－0．0316
z_{0}	－0．796	0.019	－0．696
zヵに	0.520	0.12	0.618
\mathbf{x}	－0．0319	0.033	－0．0265
又gis	0.969	0.34	0.180
T	0.134	0.037	

$1 \mathrm{Hv}=-0.0081$
Table 5 Parameter estimates obtainec by outpit－error method．Time delay parameter included in langitudinal cyclic input．

The use of simgle-ipput, single-output transfer functions valid over a defined frequency range for chosen flight conditions provides an approach which has been found, by Tischler et al. 12 , to give good results, The claseical pitch rate and mormal acceleration regponges to a longitucinal cyclic input for the short period mode are given by the following equations

$$
\begin{align*}
& \frac{A=(5)}{\eta_{i=}(5)}=\frac{2 \eta^{1}=\exp \left(-E \tau_{A z}\right)}{E^{2}+2 \xi \omega+\omega_{m p^{2}}} \tag{46}
\end{align*}
$$

In equation (45) the tern $Q\langle s\rangle / \eta,=\langle s\rangle$ is the laplace-transformed pitch rate
 longitudinal cyclic pitch eensitivity and to is the effective time delay on the input for pitch rate. The paraveter To in given byまe

$$
\begin{equation*}
\mathrm{T}_{\theta} \quad=\frac{x_{\eta^{\prime}}=}{x_{\eta} z_{\eta}=-z_{w} K_{\gamma^{\prime}=}} \tag{47}
\end{equation*}
$$

while ξ and wop are the equivalent short-period mode dnmping and matural frequency respectively. In equation (46) the term Aw (5)/クi= ís the Laplacetransformed mormal acceleration response to a longitudinal cycilc input while $Z_{\eta}=$ is the longitudinal cyclic noran force semsitivity. The effectite tian delay on the ipput, Taz, Mas for this case, agsumed negligible. The denominator parameters are identical to those in the pitch rate transfer function.

Equations (45) and (46) may be written in state space form in the tine-domain as

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{q}(t) \\
\ddot{q}^{\prime}(t) \\
\dot{a}_{x}(t) \\
\ddot{a}_{x}(t)
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
-\omega_{m p} & -2 \zeta \omega_{m p} & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -\omega_{m=}= & -2 \zeta \omega_{m p}
\end{array}\right]\left[\begin{array}{l}
q^{2}(t) \\
\dot{q}(t) \\
a_{x}(t) \\
a_{x}(t)
\end{array}\right]}
\end{aligned}
$$

The estimation problem is now formiated in a way that allows use to be mode of the frequency-domain output-error approach outlized in the previous eections. The ease with which parameters within this model structure can be related when the output-error method is used is a
 all occur twice. By specifying the equalities existing among the elements in the Eecond and fourth rows of the state matrix of equation (48) we are effectively imposing equality in the denominator cofficients for the transfer functions shown in equations (45) and (46).

Ving the measured response dota from the flight test involving the application of a longitudinal cyclic test input, estimates were obtained by the method outiined above for $\omega_{m}{ }^{2}$, $2 f \omega_{m p}$ etc. The compleie set of parameter values, together with their error bounds and theoretical predictions obtained frow mELISTAB, nre presented in Table 6.

If a value of -0.8 is assumed for the parameter Z which is consistent with the estimates Tables $2,3,4$ and 5 , the relationships

$$
\begin{array}{ll}
& z_{\omega}+K_{a}=-2 \xi \omega_{=\infty} \\
\text { and } \quad z_{w} K_{a}-K_{\infty} U_{e}=\omega_{\infty}=
\end{array}
$$

my be uEed to give estimates of ha and k of $\mathbf{- 0 . 8 5}$ and -0.0012 respectively. If is of interest to compare these values with the corresponding figures in Tables 4 and 5 and to note the close agreement with the HELISTAB prediction in the case of Ka.

PARAXETER	ESTIMATE	EROR BOU\＃D	HELISTAB value
$\omega-\infty^{2}$	0.877	0.45	0.93
2\}心mo	1.655	0.29	
$\mathrm{K} \eta_{2}=\mathrm{fr}_{0}$	－0．0269	0.014	
Mグ心 Zクis	-0.0407 3.69	0.007 1.63	$\begin{gathered} -0.0376 \\ 0.618 \end{gathered}$
	0.195	0.08	

Table 6 Single input－single output transfer function values．

Although the resulte shown in Tables 1,2 and 3 for the equation－error method provide an indication of the quality of parameter entimates in terms of the standard deviation of the estimates thenselves，the squared correlation coefficient and F－ratio values，further evidence of the overall validity of an identified model can be obtained by comparing measured response spectra with the corresponding predicted spectra．Figure 11 shows frequency－domain comparisons of this type for the pitching mont and normal force equations for the longitudinal cyclic doublet input．In the case of the pitching mont equation the plots show the fit obtained using the parameter sets estimated with four，five and Eix orthogonal components． For five orthogonal components the fit obtained 16 good over the whole of the frequency range considered and this provides useful confirmation of the model selected earlier．The corresponding curves for the normal force equation are shown for up to six orthogonal components．Taken in conjunction with the statistical measures shown in Table 2 the results again support the eariier choice of a model based upon five orthogonal components．

Figure 12 shows actual and predicted frequency－domain results for the variables p, q and r ，together with the normal force for the milirun case． This comparison is pregented for the identification based upon the optimum Eet of orthogonal componente as given in Section 4．1．3．The number of frequencies at which comparisons can be made is，of course，much greater than in the previous two cases and the overall agreement is excellent． Reconstructions in the time－domain cobtained by integrating the identified state space model at each time step）can also provide a useful basis for the verification of model involving parameters estimated using a frequency－domain approach．Figure 13 gives an interesting illustration of this time－domain verification process，where the pitch rate response is shown for the parameter sets obtained using the output－error approach both with and without a time delay．The agreement between the masured and modej outputs is seen to be expecially close for the model that was identified witho time delay element included in the control input．The match is particularly good during the first Eix seconds of the record．In both cases the agreement is poorer towards the end of the record．This deterioration my be due to the fact that at the end of the record several variables are at their maimum excursion from the trim level and a linear model may be least appropriate at this point．

It is also important to verify models using inputs other than those upon which the parameter estimates are based．Figure 14 provides an example of this type of assessment where spectra are shown for the respanse to a longitudinal cyclic DFVLR＇3211＇，together with predictions based on the identified model using the longitudinal cyclic doublet described earlier． The response to a longitudinal cyclic doublet input，and predictions based on the malifrun model described earlier are also shown．The overall agreement between the measured and predicted response is good in both cases．

Figure 15 shows comparisons of parameter estimates from Tables $1-6$ with corresponding values predicted by the EELISTAB helicopter flight mechanics package．Error bounds associated with these parameter estimates are shown by means of dasbed lines．In the pitching moment equation，for exomple，the four estimotes obtained for the stability derivative kn he a mean value of 0,0029 which is very close to the HELISTAB prediction of 0.0024 ．For the derivative $\mathrm{X}_{\text {．}}$ it may be seen that the HELISTAB prediction represents a more stable aircraft than is suggested by the parameter estimates．Some correlation is also evident between the parameter estimates obtained for K and those for K_{a} ．

Estimates of the pitch damping parameter K_{a} differ Eignificantly from the predicted value in all cases except that for the output－error method with the delay incorporated．The value of K_{s} in Table 5 and the result calculated using the transfer function approach are both very close to the theoretical value fron the HELISTAB program．This ie encouraging in that
good estimates of this parameter are known to be difficult to obtain by conventional time-domain methods due to the contribution of rotor dynamice to the short terim pitch response to sharp edged cyclic control inputso. The derivative $\mathrm{H}_{\mathrm{o}} \mathrm{i}_{\mathrm{s}}$ also seen to be in close agreement with the predicted value for the output-error method with the time delay parameter incorporated in the model.

One parameter which shows considerable consistency in its estimates is Z. This derivative, which is the only significant parameier estimated in the normal force equation also shows gmall valves of error bound. The estimated values are close to the value predicted by HELISTAB.

It is important to note that the error bounds for estimates obtained from the equation-error method and the output-error appranch are not directly commensurable since the assumitions made in modelining the error are different in the two cases. In the equation-error methodit is assumed that there is no uncertainty in the independent states and biased estimates wilj reault if there 15 . In the output-error method, on the other hand, unbinsed estimates can in principle be obtained, to a first degree of approximation, from mensurements corrupted by noise.

Vith reference to the multirun approach discussed in Section 4.1 .3 it has been stated elsewhere that this approach does not alway lead to improved estimates". In some cases parameters which are estimated well in the single run case have degraded estimates when a combined or stacked data set is used for the estimation, although cross-coupling parameters may well be better estimated using multirun data. An alterative approach bas been proposed, known me the method of successive residualss, which involves a systematic process for combining estimates from single manouevres. Encouraging results have been obtained for the estimption of cross-coupling derivatives ubing this approach with simulated data from linear modele. Ho experience hos 60 far been gained in the current programe of research in the application of this method to real flight data.

Other major continuing topics of research include consideration of the range of validjty of six degree-of-freedor models across a much wider flight envelope. Estimation of model Etructures and parameters for rotor degrees-of-freedon f also being explored using simulation data and measurements from the RAE Puma. In a further development, control inpute aimed at minimising the number of singular values in the information matrix are being designed to increase the effectiveness of flight testing.

8 COHCLUSIOES

The results presented in this paper show that frequency-dowin techniques provide a useful basis for belicopter parameter identificatian, both in terms of equation-error and output-error methods. The flexibility of the frequency-domain approach in allowing a restricted range of frequencies to be considered in the identification of aix-degree-offreedom model bas been shown to provide important practical benefits using real flight dnta. Particularly encouraging are the good results obtained in cases where estimates by conventional time-domoin methods are known to be adversely affected by rotor modes not included in the rigid-body model.

Singular value decomposition has been shown to provide a useful alternative to rank deficient solutions, and exnmples using flight data have demonstrated the fact that improved parameter estinates may be obtained from solutions based upon appropriate subsets of the available orthogonal components. Software developed for the implementation of equation-error methods based upan the singular value decomposition approach now forms an important element of the integrated tool-irit for helicopter parameter identification which is being developed jointly by RAE (Bedford) and Glasgow Oniversity. This software for Eingular value decomposition allaws the user to explore rapidly, and with ease, the effect of varying the number of orthogonal components and to eelect, on the basis of appropriate statistical measures, the optimum set of components.

An output-error method, Epecifically for frequency-domin estimation, has been developed. A significant fenture of the method is the ease with which time delays can be incorporated within the estimation procedure. Initial results have suggested that the inclusion of these delay elements can lead to improved estimates for parameters such as Ma_{a} in the pitching moni equation.

The frequency-domain output-error method has been used successfully to estimate the damping factor, notural frequency and other parameters of single-input single-output trangfer descriptions. Preliminary resulis obtained by thic method are encouraging and have provided estimates of stability derivatives which are in close agreement with values predicted by the theoretical HELISTAB model.

The experience reported in this poper has served to increase confidence that robust and reliable methods can be established for helicopter system identification. TJ. K. research continues to strive to meet this objective.

9
 ACKIOVLEDGEXETI

The research on helicopter parameter identification carried out at the University of Glasgow is supported by the v. I. Kinistry of Defence (Procurement Executive) through Agreesent. Fo. 2048/028 XR/STR.

REFEREHCES

1.
2. R.E. Haine, X.Y. Iliff
3. J.A. Kolueig
4. U.E. Hall Jr., H.K. Gupta. R.S. Eanson
5. R.V. Duval, J.C. Vang, M. Y. Demiroz
6. J. Knletka
7. G.D. Padfield, R. Thorne, D. Kurray-Smith, C. Black A. E. Caldwell
B. G.D. Padfield
8. V. Klein
9. R. W. Duval
10. K.B. Fu, M. Marchand
11. M. B. Tischler, 1.G. M. Leung, D.C. Dugan
12. G. W. Foster
13.
14. V.E. Hall Jr., J.G. Bohn, J. H . Vincent
15. D.E. Stepner, R.K. Mehra
16. J.C. Mash
17. J. Kaletka
18. J. Smith
19. G. D. Padfield, J. Smith

Parameter Identification
AGARD LS-104, 1979.
Identification of Dymanic Systems
AGARD AG-300-Vol.2, 1985.
Rotorcraft Derivative Identification from Analytical hodels and Fligbt Test Data.
AGARD CP-172, 1974
Rotorcraft System Identification
Techniques for Handling Qualities and Stability and Contral Evaluation. 34 th. AHS Fational Forum, Vashington Kay 1978.
A Practical Approach to Rotorcraft
System Identification.
39th. AHS Yational Forum, St. Louis, Kny 1983.
Practical Aspects of Helicopter
Parameter Identification.
AlAA Atmospheric Flight Mechanics
Conference, Seattle, August 1984.
UK Research into System Identification
for Helicopter Flight Kechnnics.
11th. European Rotorcraft Forum, London, September 1985, Paper 82.
Integrated System Identification
Methodology for Helicopter Fiight
Dypamics.
42nd. AFS Yational Forum, Vashington, June 1986.
Karimum Likelihood Kethod for Estimating Airplane Stability and Control Parameters from Flight Data in Frequency Domain.
HASA TR-1637, 1980.
The Use of Frequency Ketbods in
Rotorcraft System Identification.
AIAA let. Flight Testing Conference, Las Vegas, lovember 1981 (A1AA-81-2386). Helicopter System Identification in the Frequency Domin.
9th. European Rotorcraft Forum, Stresa, 1983, Paper 96.
Frequency Domain Identification of IV-15 Tilt Rotor Aircraft Dynamics.
AIAA 2nd. Flight Testing Conference, Lons Vegas, Tovember 1983 (AIAA-83-2695).
A Description of the Veighted least
Squares Output Error Method of Parameter Identification.
RAE Technical Memorandum FS 215. 1978.
EAG-Fortran Library Kanual, Knrk 11,
Vol. 1, Iumerical Algorithms Group Ltd., Oxford, 1984.
Development of Advanced Techniques for Rotorcraft State Estimation and Paraneter Identification.
FASA CE 159297, 1980.
Kaximum Likelihood Identification and Optimal Input Desigo for Identifying Aircraft Stability and Contral Derivatives.
1ASA CR 2200, 1973.

- Compact Fumerical Kethods for Conputerg: Linear Algebra and Function Minimieation'.
Hilger, Bristol, 1979.
Rotorcraft Identification Experience. AGARD LS-104, 1979, Paper 7.
An Analysig of Helicopter Filight
Mechanics: Part 1 - Users Guide to the Software Package HELISTAB.
RAE Technical Memo. FS(B) 569, 1984.
An Analysis of Helicopter Filight
Mechmaics: Part 2 - Theory for the
Software Package HELISTAB.
RAE Technical Report (in preparation).

21. M. Marcband, K.H. Fu
22. C.G. Black
23. G. V. Foster
24. V. Klein
25. R.E. Maine, K. V. Iliff
26. G.D. Padfield

Frequency Domain Parameter Estimation of Aeranautical Systems without and with Time Delay.
In B.A. Barker, P.C. Young (editors), -Identification and System Parameter Fistimetion 1985', Pergamon Press, 1985, pp. 669-674.
A Frequency-Domin Output-Error Kethod of Parameter Eistisation: Development of Kethod and Coxputer Implementation. University of Glasgow, Department of Aeronautice and Fluid Nechnnics, Report 8603, 1986.
The Identification of Aircraft Stability and Control Parameters in Turbulence.
RAE Technical Report 83025, 1983.
Identification Evaluation Methods. AGARD LS-104, 1979, Paper 2.
The Theory and Practice of Estimating the Accuracy of Dyammic FlightDetermined Coefificients. IASA Reference Publication 1077, 1981. On the Use of Approximate Models in Helicopter Filight Mechanice.
6th. European Rotorcraft and Powered Lift Aircraft Forum, Bristol, September 1980, Paper 57.

Figure 1. Reasured time histories and corregponding power spectra in response to longitudinal cyclic doublet test input. Cut-off frequency $f_{c}=0.56 \mathrm{~Hz}$. Run R0201A.

Figure 2. Neasured time histories and corresponding power spectra in
response to longitudinal cyclic 3211 test input.
Cut-off frequency $\mathrm{f}_{\mathrm{c}}=0.56 \mathrm{~Hz} \ldots$ Eun R 0501 A .

Figure 3. Forward velocity records in timedomain showing effect of number of spectral lines in frequency-domaid representation. Rud R0201s.

Figure 4. Dependence of squared correlation coefficient in identification of pitching moment equation on frequency range used and number of orthogonal components. Rud RO2014.

Figure 5. Partial F ratios for parameter estimates showing dependence upon frequency range and number of orthogonal components used. Run R0201s.

Figure 7. Variation of estimates with length of time-domin record. Run R0201A. Broken iines indicate 1 ertor bounds.

Figure 6. Parameter eignificance values, pitching monent equation. Run ro201A.

Figure 8. Parameter aignificance values, normal force equation. Run R0201s

Figure 9. Nultirun time-domin records with reconstructed records fron frequency-dosain superimposed ($\left.f_{c}=0.56 \mathrm{Bz}.\right)$.

Figure 10. Convergence of incidence angle power spectra in output-error method.

Figure 11a. Frequency-domin verification, pitching moment equation.

Figure 11b. Frequency-dionain verification, nornal force equation.

Figure 12. Frequency-domin verification, mitirun case.

Figure 13. Tine-domain verification, whout and with time delay parameter.

Figure 14a. Frequency domain verification. Mansured values obtained from response to longitudian eyclic doublet. Fredicted values bused on model ideutified from mitirun data.

Figure 14b. Frequency-domain identification. Haseured values obtained from rebponse to longitudinal cyclic 3212 input. Predicted values based on wodel identified from regponse to longitudimal cyclic doublet input.

Figure 15. Parameter estimates obtained by 7 different methods uced, together with HELISTAB values.

