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Summary 

Stability analyses of rotorcraft systems require Floquet transition matrices (FTMs) 
which are the state transition matrices at the end of one period. The FTM of such an 
N dimensional system is computed either by the N-pass approach as an N x N matrix, 
by integrating the state equation N times, or by the single-pass approach as an N2 x 1 
vector by integrating the modified state equation only once. There appear to be conflicting 
claims concerning the efficiency of different schemes of computing rotorcraft FTMs 
Accordingly, both analytical .and computer generated data are presented on comparative 
efficiency ,of four classes of methods-i) Runge-Kutta one step type, ii) Hamming's 
predictor-corrector multi-step type, iii) Bulirsch-Stoer extrapolation type and iv) hybrid 
or Variable-step Variable-order type, embodying the special features of one-step and 
multi-step methods, such as the Gear type, and the Shampine and Gordon type. 
Data with respect to single-pass and. N-pass schemes are presented for four helicopter 
models except teetering-a rotor having one (N -4) to five (N ~20) blades. Each 
rigid blade executes flapping and lead-lag motions. The analytical treatment provides 
a useful approximation to machine time in N-pass and single-pass and is economical 
to use. Though illustrated with reference to a specific scheme, it is adaptable for 
comparing different algorithms with respect to machine time. Data demonstrate that 
Hamming's fourth order predictor-corrector method in single-pass is the most economical 
with respect to three significant figure accuracy. 
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1. Introduction 

,stability of a lifting rotor system is generally analysed by finding the largest 
eigenvalue of the Floquet transition matrix (FTM)l. The crux of the problem boils 
down to generating the FTM, a process which is computationally lengthy. After 
all, the state equation, say of dimension N, has to be solved for discrete time values 
over one period, the solution being repeated N times for N initial states. This 
computational process is referred to here as the N-pass approach and is used in the 
solutions of many helicopter problems•·'. The use of the Floquet theory in such solutions 
is due to Peters and Hohenemser 1 who initiated the FTM concept via the N-pass 
approach. 

An alternative to the N-pass is the single-pass approach in which the N x N 
FTM is computed only once as an N' x I vector, the N2 x N2 modified state matrix 
bdng identified with the initial state [ I ,0,0, . .,.0; 0,1 ,0,0 ...... .,0; 0, ........ ,0,0, I ] No 
matter which algorithm is used, computational advantages of the single-pass over the 
N·pass con~e from three main sources. First, the number of function evaluations are 
reduced by N, a noteworthy feature for rotorcraft whose state matrices involve lengthy 
periodic functions. Although the time for function evaluations is longer in the single-pass, 
it is more than offset by the reduced number of evaluations. Second, only the 
original N x N state matrix is dealt. with in the computer program, although the modified 
state matrix is of dimension N2 x N2. Third, the same algorithm applicable for the 
N-pass with the N x 1 state vector is directly applicable for the single-pass with the 
N' x l modified state vector. 

While computing the FTMs, the machine time saving through the sing]ecpass approach 
is well attested4 - 9 • Hammond <,s et al. use the O(h4 ) Runge-Kutta-Gill (RKG) method 
in N-pass and single-pass. Friedmann and Silverthorn• propose the O(h') Hsu method 
in which the periodically varying coefficient' between the two knots or azimuth discreti­
zations are replaced by the trapezoidal constant parameter approximation. FTM data from 
this method in single-pass are compared with those from the O(h4 ) RKG method in 
N-pass. Further elaborations of the single-pass approach through the 0(h2 ) Hsu method and 
the 0(h4 ) RKG method are given by Friedmann, Hammond and Woo 7• Von Kerczek and 
Davis' provide the FTM data of a P'riodic flow problem in single-pass using three O(h4 , 

methods: Runge-Kutta-Classic", 'Adams-Moulton Method', and 'Second Derivative 
Method'. The last two methods are special methods in that tbey use multistep formulae, 
the usual combination with an appropriate predictor formula being replaced by a Gaussian 
elimination formulation at each knot. Although the third method is favoured in reference 
8, generating a set of derivatives of a state matrix is likely to increase the machine time and 
to decrease the accuracy. The data concerning the use of these three methods for computing 
FTMs are not comprehensive enough to allow any general conclusions to be drawn, nor is the 
state matrix of the linear flow problem (N ~5) typical of rotors. Chen' compared the O(h') 
Hsu method in single-pass with the O(h2

) Runge-Kutta-Classic in N-pass, and the O(h4 J 
RKG and Hamming's predictor-corrector method in N-pass with the O(h4 ) RKG method in 
single·pass. In reference 9 the O(h4 ) RKG method in single-pass is also referred to as the 
"Friedmann-Hammond-Woo method of order 4". Chen9 also used an O(h') spline function 
approxinmtion which is shown to be competitive for single bladed cases and is still in 
developmental stages. 
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The emphasis thus far has been mostly on the computational advantages of the single­
pass over the N-pass with reference to one or two existing or proposed algorithms. 
There also appear to be conflicting claims as to the reliability and machine time savings 
of different algorithms. There still is much research needed, not so inuch in devising special 
methods for non-stiff initial value problems, but rather, in comparing effectiveness of known 
methods10- 13• The present study concerns such a comparison of methods used to compute 
rotorcraft FTMs. Compared to preceding related studies it is comprehensive in several 
respects : 

l. An objective comparison of different methods is achieved through computational 
viability-machine time saving for a priori stipulated significant figure accuracy. An accuracy 
of three significant figures is considered adequate, which is generally maintained in most of 
the earlier studies with O(h4 ) type methods. 

2. The most viable method is determined both by single-p>Ss and N-pass schemes 
with respect to a single~bladed (N ~4) model. It is further assessed through single-pass and 
N-pass computations with respect to three higher dimensional systems-a rotor having three 
(N = 12) to five blades (N = 20). Each rigid blade exec:utes flapping and lead-lag motions. 
For reasons of checking numerical and programming errors, inter-blade coupling effects 
are intentionally suppressed so as to have the same N/4 repeating sets of eigenvalues of 
the single bladed model. 

3. For each helicopter model machine-time data are generated by using and ignoring 
the sparseness of the state matrix so as to illustrate the sensitivity of machine-time data to 
programming efficiency. 

4. The state of the art for non-stiff initial value problems is established t0-13 and the 
numerical methods are conventionally grouped into four categories11 -i) one,step (Runge­
Kutta typel1) ii) multi-step (predictor-corrector typel1), iii) extrapolation (Bulirsch-Stoer 
typel1•12), and iv) hybrid or variable-step variable-order (Gear typel1, 12 and Gordon 
and Shampine type11 •13). Widely used methods in engineering from each of these categories 
are selected for comparative testing. 

5. An analytical formulation is suggested which provides useful approximations to 
the observed machine-time results and which is economical to use. Although the estimated 
machine-time data are based on Hamming's predictor-corrector algorithm, the formulation 
is adaptable for comparative testing of different algorithms with respect to machine time. 

2. Data Genesi• 

Data including machine times concern FTMs, and damping levels which are the 
rent parts of logarithms of characteristic exponents. All the eigenvalues of FTMs or 
the characteristic multipliers are computed using the subroutine of reference 14. These 
data are generated with respect to four helicopter models except teetering -a rotor 
having one (N =4) to five (N =20) rigid blades. Each blade executes flapping and 
lead-lag motions as treated in reference 15 for the single bladed case and in reference 16 
for the multibladed case. Inter-blade coupling effects due to dynamic inflow17 etc. 
are intentionally suppressed so as to have N/4 repeating pairs of eigenvalues of the 
single-bladed model. The absence of repeating pairs indicates presence of numerical 
or programming errors. Following Lambert11 , numerical methods for initial value 
pro.blems are classified into four groups, as noted in table I (and table 2, column 1), 
which also includes tho six methods selected for final comparison. 

45-3 



The first group refers to one-step methods among which Runge-Kutta type methods 
are the best known. The literature concerning Runge-Kutta type methods is extensive10- 13, 

e.g, error estimates with step-doubling1s.t9 and modifications due to Gill, Fehlberg1t. 12 

Verner12•14 and others10 - 13• However in rotorcraft solutions, Gill's version through the 
IBM package DRKGS is probably the ,most widely used'•4-M·16•17. In table 1 only 
two Runge-Kutta type schemes due to *Gill, and Fehlberg are included. The one 
due to Verner12•1 4 is found to be almost identical to tnese two with respect to machine 
time and accuracy. The second group refers to multi-step methods among wnich the 
ABM method11 (Adams-Bashforth predictor with Adams-Moulton corrector) and the 
Hamming predictor-corrector (Hamming) method1-M· 10 are widely used. The difference 
between the ABM and Hamming does not seem to be of much significance with 
respect to machine time and accuracy, and only the O(h4J Hamming method based on 
IBM package DHPCG is used here. The tnird group reLrs to extrapolation methods 
among which the Bulirsch-Stoer scheme is well appraised in the literature 11 • 18 for 
cases involving high accuracy and cheap function evaluations For this scheme well 
tested computer packages are given in references 12 and !4. The package used in 
the present study is from reference 14 called DREBS. The fourth group refers to 
the variable-step variable-order (VSVO) schemes10 - 13 which received increased atrention 
in the numerical analysis literature. Since VSVO schemes are of recent origin and 
they are extensively covered in the literature two 'schemes-one due to Gear12 and 
another due to Gordon and Shampine13 -are selected. 

3. Approximate Estimation of Execution Time 

An exact analytical estimation of the time taken for the computation of a FTM 
by the N-pass and single-pass approaches is impossible. There are several factors 
which are not amenable to simple treatment ; these can be classified into three broad 
categories : 

I. programming details such as branching, loops, information flow between subprograms 
and book-keeping operations. 

2 difference between integer and floating point operations. 

3. an exact a priori count of steps or discretizatious for the stipulated tolerance. 

Of these, the first category is the most difficult to treat. As for the second, 
although it is possible to include an exact count of integer mode operations, it will 
complicate the expressions. In the analysis to follow, all the integer mode operations 
are neglected since the hulk of arithmetic operartons is in floating point and since any 
arithmetic operation takes considerably shorter time in the integer mode than in 
floating point. Finally, the third factor can not be estimated. But it can be 
controlled in that the step-size remains essentially unaltered by appropriate combi­
nations of step-size and tolerance. In general, sophisticated computer codes for 
initial value problems choose the step-size automatically in such a way that an estimate 
of the local truncation error is less than the specified tolerance. It must be noted, 
however, that in most of the widely used computer packages the truncation error is 
estimated at each step whether or not thi~ information is used to alter the step-size. 



In the sequel the computation time is estimated for the O(h4) Hamming method only. 
A formulation for estimating machine times for other methods could be developed on similar 

, lines, The accent here is on explaining the observed trends rather than on precise estimation. 
The analysis shows in quantitative terms the factors going into the superiority of the single­
pass approach over the N-pass, However, in view of the three factors mentioned above, the 
actual computation times are expected to be somewhat greater. 

Consider the state equation for theN x 1 state vector X(t) : 

X - A(t)X (1) 

with initial state X( to) - Xo. By-passing the details of starting values, Hamming's 
predictor·corrector sequence runs as follows 9 ' 10 : 

Predictor : 

Modifier : 

(2) 

(3) 

(4) 

(5) 

Final value: X;. 1 - C;. 1 + ,;, (P;., - C;+l) (6) 

(7) 

Control of accuracy and adjustment of step-size is done by generating the following 
test value : 

(8) 

where the coefficients a' (i-1,2," .. ,N) are specified error weights and p;. 1,; and c;. 1,; are the 
i·th components of P;.t and C;.t. 

Following Ralston and Wilf20 , if we denote by -r the time required to compute A(t)X 

(that is one function evaluation), then the approximate time to compute (2) to (6) and Xi+t is 
given by 

2-r + N (16a + 5p) (9) 

where a is the time for one addition and p is the time for one multiplication. Further the 
time required to compute (7) and (8) is given by20 

N (2a + p) . (10) 

Ignoring all the book-keeping operations in the flow, we arrive at the estimated time per 
step of the integration as20 

2-r + N (18a + 6p) 
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If n denotes,the.number ·oro blades and a, the' total Ilumber of steps taken, then we obtain 
the execution times as follows : · 

N-pass: . ~N=,4n); 

Total time - 4na[2-rN +4n(18a+6Jt)] 

- a[8n-rN +96n2(3a+ Jl)] 

Single-pass: (N = 16n2 ) 

(12) 

Total time = a[2-rs +96n2(3a+ Jl)]. (13) 

In equations (12) and (13), iN and rs are times for a. single function evaluation in N-pass 
and single-pass approaches respectively. 

It is possible to estimate '~"N and '~"s analytically for SfJecial cases. However, they are 
problem-dependent and hence, are of no general utility. In the present study they are taken 
directly from computer experiments (table 4), and are then introduced into (12) arid (13) to 
obtain the execution times for 1,3,4 and 5 bladed rotors (table 5 and figures 1 and 2) 

For the system treated, matrix A(t) is banded, the larger the nup1ber of blades aud Jess 
the inter-blade coupling effects, the greater is the sparseness in the state matrix. Results 
exploiting this sparseness are also included in tables 3 anc;l 5 and in figures 3 and 4, as 
elaborated in the next section. 

4. Discussion of Data 

The data are presented here with reference to two a priori criteria: i) economy as 
assessed through the C.P.U. time for program execution (execution time) and ii) accuracy 
as assessed through the number of significant figures computed from the formula" 

1 x-x* I 
.IXT 

(14) 

In relation (14), x* is the computed value, x, the reference value, and r, the number of 
significant figures. Values <>ht'lined through the O(h8) Bulirsh-Stoer scheme9 with a starting 
step-size of 27T/l00 are taken as exact, since this scheme is known for its high a.ccl)r~cy9 •1M 1 • 
The execution times are routine computer data. Similar data pertaining toC.P.U. tip1e for 
completion are not reproduced here since they qualitatively confirm the comfarisons 
established through execution-time data. 

The six numerical schemes identified in table. 1 are taken up again in table 2 which 11lso. 
includes characteristic exponents, significant figures, modulus error, execution time. etc. 
More than 90% of the total execution time to compute damping levels is for FTM compu­
tatiO!lS· Spot checks with respect to randomly selected elel!lel)ts of FTM provide the same 
significant figure accuracy as observed through damping values. Since it is more realistic to 
CO!Dpare d&ta with respect to 11nique d11mp.ing levels of engineering in teres!, the significant 
figure accuracy, as in reference 9, is computed with respect to damping. Considerable trial 
and error is expended for selecting as large a tolerance value as possible to achieve an 
accuracy of atleast three significant figures. All the algorithms have built-in mechanisms of 



altering the step-size;in response' to the: stipulated tolerance. However 'these,, mechanisms of 
,automatic step~size control vary from ,algorithm to algorithm,, :being based, on ,"heuristic 
:tuning" ofdiffer,enterror:control,cdteria, for det<1ils see Uambert". Though quantitatively, 
the results •to be presented here may require some correction due :to using non-optimal 
combinations of step-size and tolerance for the required accuracy, ·the established comparative 
trends .ofviability of different methods should remain valid. 

From the data in table 2, it is seen that all the six methods provide an accuracy of 
atleast three significant figures. Regarding execution time, the Hamming method takes the 
least amount and the Bulirsch-Stoer methorl, the highest. The next "best" ·method is due 
to Gordon and Shampine, followed by the three Runge-Kutta methods due to Gill, Fehlberg 
and Verner (not shuwn in table 2) . . Observe that the Gorden-Shampine method, inspite of its 
overhead costs of self-starting, automatic selection of step-size and order, is competitive to 
Runge-Kutta type methods. This is due to increased number offunction evaluations in 
Runge-Kutta type methods, whereas the Gordon-Shampine method is basically a prei:lictors 
corrector type method as far as the number of 'function evaluations per step is concerned. 
The Gear method is not found to.be competitive. 

Of particular significance is the execu~i·on-time data of table 2 in singlecpass 'and 'N-pass 
approaches. 'The substantial saving through single-pass is clearly seen. It is consistent with 
the physics of the problem 'Since lifting rotors do involve lengthy1Jeriodic functions. For the 
single-bladed case (N -4) the saving through single-pass is close· 'tb '59% 'in the Hamming 
schemes and to 53% in the RKG scheme. Similarly, the saving through the two VSVO 
schemes is about 40%. Further elaborations of the single-pass approach with Hamming's is 
discussed in tacbJes 3 to 5. The data pertaining to '"Full" indicate that sparseness of the 
state matrix is not taken into account in 'function eva'luations, whereas, data pertaining to 
"Sparse" indicate that o'nly non-zero elements are included tn the tun:c'tion evaluation. 

As seen from table 3, the higher the system 'dimension, the greater is 'the saving through 
. the single-pass approach. This saving increases from 59% (17 seconds compared to 7) for the 
single-bladed case to about 71% (160 seconds compared to 55!) for the five-bladed case, 
without exploiting sparseness. When sparseness is exploited, a token of efficiency in program­
ming, the saving for the five-bladed case is close to 79% (i.e. 99 seconds compared to 482). 
It is worth observing the significant saving both in N-pass and single-pass by exploiting 
sparseness, for the five-bladed case, 482 seconds compared to 551 (13% in N-pass; and 
99 seconds compared to 160 (38%) in single-pass. It is mentioned in passing that sparseness 
decreases with the inclusion of inter-blade coupling effects such as dynamic inflow feedback, 
etc.t6,17, 

Data in tables 4 and 5 concern an analytical formulation of estimating execution time. 
As stated earlier, the time for one function evaluation is obtained as computer data which in 
conjunction with formulas (12) and (13) give the execution time to compute the FTM. In 
single-pass the time for one function evaluation is higher since the modified state matrix is of 
dimension N 2 xN2, whereas inN-pass it is of dimension NxN. For example, for the five­
bladed model the times for one function evaluation are 0.124 and 0.378 seconds respectively 
for theN-pass and single-pass approaches without exploiting sparseness. When sparseness is 
exploited the time for one function eyaluation is 0.148 seconds it~ single pass-:-a reduction of 
approximately 2.6 times (0.378 compared to 0.148) ; and it is 0.094 seconds in N-pass-a 
reduction of approximately 1.3 times (0.124 compared to 0,094). As expected sparseness has 
more pronounced effect hi single-pass than in N-pass. 
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Given the simplifications made in deriving equations (12) and (13), data in table 5 
correlate reasonably well with the data in table 3, as graphically presented in Figure I. 
Figure2 concerns the ratio of machine times for FTM as obtained through computer (last 
but oiie column in table 3) and from formulas (12) and (13) (last but one column in table 5). 
Note that concerning data presented in Figures I and 2 sparseness of the state matrix is not 
exploited. Similar sets of data, when sparseness of the matrix is exploited, are graphically 
presented in Figures 3 and 4. 

5. Concluding Remarks 

The intent of the preceding study is to establish comparative trends concerning the 
viability of different numerical methods to compute rotorcraft FTMs. Main assumptions 
and stipulations of this study are: i) Double precision arithmetic on IBM 360/44 is 
adequate to provide at least an accuracy of four significant figures ii) The C.P.U. time for 
execution is a rational basis of comparing different methods with respect to saving in machine 
time iii) While computing eigenvalues according to reference 14, the computational errors 
are equally distributed with respect to all the numerical methods iv) The selected computer 
packages are equally"eflicient with respect to all the methods v) The reference values agree 
with the "exact'' at least up to four significant figures vi) It is rational to compare 
different methods with built-in step-size control by selecting by trial and error the largest 
tolerance value to achieve three significant figures accuracy. 

Subject to the correctness of the above assumptions and stipulations, the data 
demonstrate the following: 1) Hamming's predictor-corrector method in single-pass is the 
most viable with respect to three significant figure accuracy 2) The analytical formulation 
reveals the advantage of the single-pass approach over 'the N-pass, provides useful approxi­
mations to machine-time data, and is an economical and feasible approach of comparing 
different methods with respect to machine tim<;. 
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1. 

-
2. 

3. 

-
4. 

5. 

6. 

Name 

Runge-Kutta-Gill 

Runge-Kutta-Fehlberg 

Hamming predictor-corrector 

Bulirsch-Stoer 

Gear 0 0 

I 
I. 

Gordan-Shampine I 
I 

TABLE 1 

Selected Methods and Grouping 

Generico group 
Order in terms of 

step-size h 
0 -

Single-step 4 
0 

Runge-Kutta type 0 

" " 
4 

Multistep 4 
0 

,,~ 

Extrapolation 4 

VSVO (Variable-Step automatic order 
Variable-Order) selection 

I 
' 

" " " " 

Remarks 
i 

0 

IBM-SSP package 
DRKGS 0 

Following references 
12 and 22 

IBM-SSP package 
DHPCG 

Following reference 
9 for 0(h8 ) and!MSL 
package D REBS for 
O(h4) from reference 
14 
~ ,..,. 

Following reference 
12 (for most ofthe 
calculations tbe au-
tomatically selected 
order was 7). 

Following reference 
13 (for rno~t of!l;t<l 
calculations the au-
lorna tically selected 
order was 9). 

0 -



.... 
'(' .... .., 

I 

TABLE 2 

Viability of different methods with respect to a single bladed model 

Method Eigenvalues I I x-x":_l t 
Significant Modulus I CPU time in secondst 

I X I figurestt errors N-pass \Single pass 

Bulirsch-Stoer9 O(h8 ) 
-0.003531 ± i 0 389068 - - -
-0.308186 ± i 0.107021 - - --

Runge-Kutta-Gill Q(h•) -0.003519 ± i 0.388323 0.0034 3 0.00075 
-0.308026 ± i 0.106284 0.00052 3 0 00039 36 

--

Runge-Kutta-Feh1berg O(h•) -0.003519 ± i 0.388323 0.0034 3 0.00075 
-0.3')8026 + i 0.106284 0.0005?. 3 0.00039 36 

Hamming O(h4 ) 
-0.003519 ± i 0.388323 0.0~34 3 0.00075 
-0.308026 ± i 0.106284 0.00052 3 0.00039 . 17 

· . 

-
Bulirsch-Stoer +tO(h<) -0.003519 ± i 0.389037 000'4 3 0 00003 

-0 308611 ± i 0.107318 0.0014 3 0.00050 442 

Geartt -0.003516 ± i 0.389381 0_0042 3 0.00031 
-0308968 ± i 0.107751 0.0025 3 0.00098 89 

Gordon-Shampine I -0.003519 ± i 0.388323 0.0034 3 0.00075 
-0.308026 ± i 0.107284 0.00052 3 0.00039 

27 
. 

t With res:Ject to real part of eigenvalues (damping levels) 
tt With x and x* representing respectively the reference and calculated values, the number of significant 

figures (r) is calculated from the formula I x-x• I f I xI '"'i· 101-• 

t Computati<>n of FTM only 
++ Results correspond to N -pass. Single -pass results are marginally better 

-
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Number 
of 

blades 

1 

3 

4 

5 

T A B'L'E 3 

Comparison of N-pass and single-pass approaches 

using Hamming's predictor - corrector algorithm 

(From Computer) 

I CPU time in seconds 
j 

Single-pass 

I 
N- pass 

N-,pass single-pass 

Full I Sparse I Full Sparse I Full Sparse 

17 * 7 * 0.412 * 

168 !52 54 40 0.322 0.263 

317 281 98 66 0.310 0.235 

55! 482 160 99 0.291 . 0.205 

-

* No appreciable sparseness 
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TABLE 4 

Time for a single function evaluation in seconds 
(From Computer) 

Number 
N-pass I Single-pass 

of 

I I I blades Full Sparse Full Sparse 

1 0.128 0.0124 0.0156 0.0144 

- -
3 0.0496 0,0476 0.1136 0.0668 

4 0.0728 0.0672 0.2152 0.1008 

-
5 0.1240 I 0.0940 I 0.3780 0.1480 

-
TABLE 5 

Comparison of N-pass and Single-pass approaches using 
Hamming's ~predictor-corrector algorithm 

(From analysis) 

I CPU time in seconds 
Single-pass 

Number 

I 
N- pass 

of N-pass single-pass 
blades 

Full I Sparse I Full Sparse Full I Sparse 

-' I 1 (N~4) 10.32 • 3.20 * 0.310 * 

3 126.65 121.86 30.33 20.98 0.240 I 0.172 

4 246.50 228.58 56.58 33.70 0.230 0.147 

5~(N=20) 517.15 397.15 96.75 50.75 0.187 0.128 

-
* No appreciable sparseness 
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