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Abstract

Horizontally stoppable rotors are susceptible
to certain instabilities, particularly at high
advance ratios. This paper presents a
straightforward analytical model that consid-
ers the specific operating conditions as
strong parametric excitation (due to periodic
coefficients), reverse flow and low rotor
speed. Different mathematical methods have
been applied to determine the forced solution
and the stability. Most calculations have been
performed based on numerical iIntegration and
Floousr theory. Deriving the Fuouer transition
matrix from the perturbed nonlinear equations
proved to be quite effictent. This allows the
easy inclusion of the important influence of
the periodic trim solution.

First, the pehavior of the isolated degrees of
freedom is discussed, The lead-lag motion was
found tc be quite insensitive to parametric
excitation, even at very high advance ratios.
The filapping and torsional motion, however,
are strongly affected by parametric effects.
The results show the typical structure of
Strurt's stability diagram. Then, the modifica-
tion of the stability boundaries due to coupl-
ing effects s described. Flap-torsion
interaction degrades the stability of stop-
rotor blades. In the last part, some jdeas and
results are presented which show how to aug-
ment the flap stability and how to reduce the
flap amplitudes by active control.

Notation

Cpr Cv G equivalent hinge spring stiffness

m blade mass

r=xR blade radius coordinate

f time

F=2n/C2 time of one rotor revolution;

T rotor thrust

v,V tangential / normal velocity
at the blade section

V rotorcraft forward speed

Yeo v Yoor  location of biade section center
of gravity (c.g.) / normal flow
aerodynamic center (a.c.,) behind
the feathering axis (f.a.)

a blade section angle of attack
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5 flap angle

¥ LOCK number /2
&= wAQR) 1inflow ratio
¢ lag angle

9=3_+9 x+@ feathering angle, composed of
pitch, twist & torsion angle

A eigenvalue of the corresponding
system with constant coefficients

p=F/{QR) advance ratio

y= ¥ blade azimuth angle

nonrotating natural frequency
nondimensionalized by the
nominal rotor speed

Joid

nom

S Hr o __

Q= /Qem nondimensicnal rotor speed
() =& Yoy derivative with respect to

() =3&()/& derivative with resp.to the time

Further definitions and quantities can be
found in Table 1, Figure 2 or in the appendix.

Introduction

Aircraft which combine the take-off and land-
ing performance of a helicopter with the for-
ward speed capability of a fixed wing aircraft
have been studied for aimost three decades.
Beside the tilt-rotor, which seems to have
become the most successful variani, several
other concepts have been proposed since then.
One of them is the stop-rcior cemposite air-
craft, as described in Refs.[1], [1G), (131,
[16] and [17]. Although some theoretical and
experimental work has been done, none of those
projects has reached the prototype stage.

The concept is to compietely convert the ro-
torcraft inte a fixed-wing aircraft by stop-
ping, folding and stowing the rotor(s). First,
the vehicle accelerates to the transition
speed in helicopter mode. Then, ail of the
11ft i1s shifted from the rotor(s) to the wing,
and the necessary propulsive force is gener-
ated by switching a convertible engine from
shaft-power mode to fan-jet mode. Finally, the
unloaded rotor(s) can be stopped horizontaitly.
The stopped blades may be folded and stowed
or, as other concepts propose, be used as
fixed wings.
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while many fundamental investigations have
pbeen conducted concerning the stability of
helicopter blades, few publications discuss
the behavior beyond the typical helicopter
fiight enveiope at very high advance ratios,
see Refs.{12], {153, {171 and [19]. This paper
presents some basic results that have been
obtained from relatively simple blade models.
The primary aim is to show the structure of
possibie instabilities, the important influ-
ence of the forced (i.e. trim) solution, and
some detatts of rotor control.

The following table contains the data which
has been used for all of the presented cal-
culations. They are representative for a
smatler 9.6 ton aircraft with two rotors side
by side.

Roteor radius R = 5m
Blade chord i = {3m
blade mass per unit #o= T5kg/m
lenght

Aerodynamically ef- from A = (.25
fective blade range t¢ B = 100
Lift curve slope C,= 625
Profile drag coefficient (= 00
Equivalent hinge offset a/R= (.13
nominal rotor speed Q.= 50rad/sec
air density p = 1225kgm’

Table 1: Reference dafa

High rotor acceleration and deceleration rates
can suppress the occurrence of instabilities,
as discussed in Ref.[2], HNevertheless, this
investigation is based on the assumption that
stability and sufficiently small amplitudes
should be assured at each steady rotor speed.
This aliows the safe interruption and reversal
of the start/stop procedure in case of techni-
cal malfunction.

As will be shown later, the blade motion sta-
bility is dominated by parametric excitation.
It therefore proved suitable to plot the ei-
genvalues versus the advance ratio. Of course,
an equally important effect results from the
reduction of the roter speed. So it should be
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noted that the advance ratio in this paper is
not used synonymous with the forward speed,
but implicitly describes how the rotor angular
velocity is decreased.

Modeling of Blade Motion

For this dnvestigation, only one 1dsolated
biade has been considered, and all inierac-
tions with other blades, the wing or the fuse-
tage have been neglected. The considered
flapping, lagging and torsionhal biade motions
are described by rotations of the rigid blade
about fictitious hinges, see Fig.l. The equiv-
alent hinge offsets and spring stiffnesses
have been adjusted tc approximate the first
ejgenfreguencies and eigenmodes of a corre-
sponding hingeless rotor blade.

For the presented calculations, the rotor has
been assumed to be completely unicaded. Fur-
thermore, the rotor disk plane has no inci-
dence with respect to the free-stream
velogity, These assumptions correspond to the
optimal operating condition for the start/stop
procedure. Therefore, any sfop-rofor vehicle
should be able to meet this frim condifion
during the conversion (e.g. by using conven-
tional control surfaces).

Flapping Motion

The aerodynamic forces acting on the blade are
derived from dinear fwe-dimensional quasi-
steady strip theory. This leads to the tocal
flapping moment

Y

N )
mw:%cmm1j7+s}ﬂwux-ﬁmx

with the velecity components at the blade

section

va=RO[8-(x = ) - (oosy)p |
vp= RO + pusinyg .

Reverse flow c¢an he modeled by switching the
sign of the 1ift coefficient in the corre-
sponding blade section of the retreating
blade. Periodic blade integrais Dh(y) (see
Fig.3 and appendix) have been defined to re-
tain the straightforward analytical formuia-
tion of the differential equations. Neglecting
smatl quantities, we can write the Tlinearized
flapping equation of motion as
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R ‘f"}’ﬁD“(‘l’)Bf*{}’;iKl 1) + Koy, :lﬁ =
YB[EH(\II)SI +2204) 8 con +E15(\P)5} +Fo,

where the periodic coefficients Diy), K(y) and
E(y) describe the aerodynamic flap moments.
The Ko term represents the spring effect due
to centrifugal and elastic forces, while Fy
describes the effect of the blade weight. All
coefficients are listed in the appendix; for
more details see Ref.[2].

Torsional Motion

working condition with flow
from the leading edge, torsional moments can
be kept sufficiently small by Tlocating the
feathering axis and the blade section center
of gravity near the aerodynamic center at the
25% chord Tine. In the reverse flow region,
however, the 1ift acts at approximately the
75% chord line and exhibits considerable for-
sional moments L, leading to a negative aero-
dynamic  spring effect,  Therefore, the
torsional degree of freedom may be expected to
have an important influence on the blade me-
tion stability at high advance ratios (see
Ref.{12]).

for the normal

For this investigation, the blade model allows
for arbitrary location of the center of grav-
ity and the feathering axis, while the aerody-
namic center is assumed to coincide with the
25% or 75% chord 1ine respectively, see Fig.2.
As for the flapping motion, these two differ-
ent locations for normal and reversed flow can
be considered by analytical expressions, con-
sisting of bhoth constant and periodic blade
integrals D, and Diqw). To also include damp-
ing moments, the following approximation from
the classical unsteady aerodynamic theory has
peen applied:

dL = -ECuPREAT v ) + 5, )iedx
L:—%QJ%FQLWE?+ﬂ53+5msmwﬂd.

The damping depends on the Jocation of the
feathering axis 7. Neglecting small terms, we
can write the eguation for the 1solated tor-
sional motion as
O 4y Dy’ + I:"{@Kp_g(\lf) + Ko,y ]@ =

[YGEEE () + Eozl ]\9 |t [Y@EZE (y) + 15‘032 ]\9 con

+Yo L3 (4N8Lon + Eoy Slon +veE2s(y)S + Fo,

The coupled flap/torsion equation can be found
in the appendix.

Lead-Lag Motion

To analytically include reverse flow with the
same formatism in the tead-lag motion as well,
we must assume that the in-plane aerodynamic
force due to the tilt of the local 1ift vector
is smail compared to the profile drag. Of
course, this simplification is only applicable
if the rotor is completely unioaded, Then, the
aercdynamic in-plane moment becomes

dN = EC IR vl (r - £)dx

where the square of the tangential flow compo-
nent can be approximated by the Tinearized
expression

vilvel = (RE)Y x +psiny - 2x - £)7/
—Kuamwn]h+pﬁnwi

This yields the following equation for the
isolated lead-lag motion.

§”+NDENJg+[kKﬁN0+K%J;=YJﬁN0

The coupled equation complete with all defini-
tions is given again in the appendix, which
also contains some nonlinear coupling terms
that result from the coriolis forces. Beside
these explicit equations, a numerical, nonlin-
ear model has been used to study the influence
of stall and compressibility. It is based on
measured 360 deg. profile data and considers
all nonlinear kinematic relationships as well.

Methods of Stability Calculation

As long as the differential equations can be
kept 1inear, the c¢lassical Froaver theory is
directly appiicable to determine stability, as
has been well documented in many publications.

The methods that have been used for the non-
linear equations 1in this investigation are
summarized in Fig.4. The procedure consists of
twe parts: first, the determination of the
interesting periodic forced solution and se-
cond, the investigation of that solution re-
garding stability.
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Forced Solution

Since the periodic blade motions contain con-
siderable higher-harmonic components at high
advance ratigs, harmonic balance (j.,e. the
approximation through an 1€ expression) did
not prove to be feasible. Figure 5 gives a
typical exampie of the Fourier transform of the
flapping motjon at p=131 and p=10. On the
other hand, the numericat effort increases
rapidly if one tries to balance the necessary
number of harmonics.

A simpie alternative is numerfcal stepwise
integration. This is quite efficient as long
as the blade motions are sufficiently damped.
For weakly damped or even unstable solutions,
a periodic shooting method must be used.

L

Stability of Forced Solution

The equations of motion are usually linearized
about the known periodic solution by writing
the corresponding perturbation equations about
the equilibrium position, If the nonlineari-
ties not altlow for explicit derivation of the
linear equations, numerical stepwise lineari-
zation can be performed.

A rarely applied method is based on determin-
ing the Fuouer transition matrix directly from
the nontinear equations {(compare Ref.[11]).
The principle c¢an be explained using Fig.6.
The thin lines represent an equilibrium solu-
tion of the nonlinear periodic eguation

¥4 2D0% + (Ko + K cos QNP x 3 = uld cos(C + ) ,

which has o be determined in the first step.
Then, for each column ¢! of the transition
matrix, the numerical integration is repeated
with one of the state variables perturbed by a
small parameter & (thick Tlines), The devi-
ations at the end of the integration interval
correspond to the required matrix columns used
to form the transitien matrix @ = @(to+nl).
Since the periodic solution contains subhar-
monics of ¥4 in this example, the integra-
tion had to be performed over & time interval
of 47. This procedure, here called the modi-
fied Floourr method, has been used successfully
for some of the calculations presented below.

Figure 7 gives an fimpression of the numerical

behavior of this method. The diagram shows the
calculated damping of the flapping motion at
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p=35 versus the magnitude of the perturbation
parameter ¢. The solid line refers to the
trivial equitibrium solution, P=p/=0, which
one gets from the homogeneous eqguation with
ali forcing function terms canceied. The bro-
ken lines have been calcujated for a forcing
function that considers the effects of the
blade weight and twist.

First, it is obvious that the periodic solu-
tion has in fact an important influence on the
stability. Furthermore, the curves show that
in this example ¢ should not exceed values of
approximately O.0irad and 0.01™%.: otherwise
the nonlinearities deteriorate the stability
resuits,

On the other hand, the perturbations must be
considerably greater than the inaccuracies of
the examined forced solution. The standard
deviation between the discrete flap angles of
the last two rotor reveiutions has been used
as an error criterion. As the example indi-
cates, ¢ must be at least one corder greater
than this standard derivation. It i3 obvious
that the periodic solution should be caicu-
Tated only as accurate as necessary with re-
spect to the computation time.

tEvaluating the numerically integrated tran-
sient time history is a third method for cal-
culating the stability of periodic scliutions.
However, quite sophisticated procedures must
be applied to handie certain cases of parame-
ter excitation.

Stability Results

The following results are presented {n order
to improve the understanding of the blade mo-
tion stability at very high advance ratios.
Because of the applied simplifications, this
work does not intend to investigate one con-
crete blade design in detajl, Some resulis for
the influence of fundamental blade parameters
as Lock number, hinge offset, artificial damp-
ing, etc. can be found in Ref.[2].

Isotated Flapping

Since the stop-rotor 15 unloaded when it oper-
ates at reduced rpm, many of the classical
{coupled) blade 1instabilities will not occur.
On the other hand, the strong parameter exci-
tation at high advance ratios can drive even



the isolated flapping motion unstable. As can
be seen in Fig.B8, this flapping instability
can easily be avoided by providing for a cer-
tain Tevel! of flap-hinge spring stiffness.
With the data of Tab.l, a spring stiffness
equivalent to a nonretating natural frequency
of &g =0.1 was found to be sufficient to as-
sure stability. This Tow value is exceeded by
most hingeless rolors.

The dotted iines show resuits from the linear
equation, 1n which the periodic solutien has
no influence on the stability. The correspond-
ing curves for the nonlinear equation (solid
lines) describe the stability behavicr of the
equilibrium solution =R =0. Since not all
terms of the forcing function can be sup-
pressed, this optimal <condition 1is purely
thecretical. Even the blade weight will cause
a periodic response. However, the comparison
shows that the linear model is reasonable 1in
predicting the influence of reverse flow and
compressibility. Likewise, the 3ocal stall
effects at the boundary between the normal and
reversed flow region proved to have conly a
minor effect on the calculated stability.

The stabilizing effect of a high nonrotating
fiapping frequency (i.e. a stiff equivalent
flap spring) becomes more obvious in Fig.9. It
shows the typical structure of Sraurr's stabil-
ity diagram for the damped  MatHieu-Tyet
equation.

Figure 10 jllustrates what influence the trim
solution can have on the fiapping stability.
With @y =0.12, the evaluation of the homoge-
neous {nonlinear) flapping equation results in
highly damped motions for ail advance ratios
(dotted line). Evaluating the periodic equi-
Tibrium solution, we find the stabiiity behav-
ior considerably changed (solid Tline). The
applied forcing function again represents the
effect of the blade weight and & Tinear twist
(8 =-02rad).

As discussed in Ref.[2], the flap stiffness
which is required to restrict the steady am-
plitudes to reasonable values is considerably
higher than required for stability. So the
deviations in Fig.10 are mainly caused by the
high fiap amplitudes which, in turn, increase
the influence of aerodynamic noniinearities.
At pu=9, the amplitudes have reached such
high values that stall effects are dominating,
and the flapping motion becomes unstable.
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Flap-Torsional Coupling

A comprehensive description of the coupled
flap-torsion motion can be found fin Ref.{1Z2].
However, the autheors concentrate on high ad-
vance ratios due to high forward speed at con-
stant rotor rpm, which is different from the
stop-rotor problem investigated here,

Divergence

The first question is, under which conditions
the resultant spring effect due to elastic and
aerodynamic forces tend to be destabilizing.
For the coupled linear equations, the static
stability boundary is given by

det| diagyKw) + K, |=0 .

Solving this equation, we can plot the neces-
sary forsional stiffness over the blade azi-
muth and advance ratio, see Fig.1l. The chosen
filap stiffness of &3 =02 assures static and
dynamic stability for the 7isolated flapping
degree of freedom.

The left hand diagrams refer to the case in
which the feathering axis, the center of grav-
ity and the normal flow aerodynamic center
coincide at the 25% chord line. It s saen
that only the retreating blade is susceptible
to divergence. For the critical blade position
at y~240deg, the necessary torsional stif-
fness reaches approximately @l =2.5 at high
advance ratios. If one could optimize the
blade with respect to the static stability
alone, the necessary stiffness would reduce
slightly to &% =~2.1, see Fig.il right hand
side. The high dynamic pressure at the nominal
rotor speed (i.e. when the 1ift always acts at
the 25% chord line) prevents the shifting of
the feathering axis further towards the 75%
line in corder to reduce the torsional moments

in reverse flow.

1t should be noted, however, that for systems
with periodic coefficients this static stabil-
ity is not a necessary condition for dynamic
stability.

Dynamic Stability

The following results again refer to the lin-

ear equations, Since the coupling effects
proved to be relatively small, the filapping
stiffness was now set to &F =01, which



approximately represents the stability bound-
ary for isolated flapping. The four diagrams
of Fig.12 illustrate the dynamic stability of
the torsional motion fiseclated from flapping
(Teft hand side) as well as the coupling ef-
fects when f.a. and c.g. are Jocated in a.c.,
(right hand side). The calculated damping val-
ves for the torsional motion show the same
neriodic system characteristics that have been
ochserved for the flapping motion. The regions
of parametric resonance (i.e. the regions in
which the periodic coefficients have a desta-
bitizing effect), however, move close together
due to the high natural frequency in the tor-
sional degree of freedom,

For ©g =20 the isolated torsional motion
stays stable up to very high advance ratios,
while the coupled motions become unstable at
approximately u=10 (upper diagrams). Yet a
slight increase in fhe torsional stiffness (to
o5 =22) 1is sufficient to achieve stability
even in the coupled case (upper diagrams).

The stability diagram in Fig.13 gives a fur-
ther impression of how the torsional degree of
freedom influences the blade meiion stability.
The stabiiity boundaries are found to be domi-
nated by the flapping motion. Only for advance
ratios above p=9 1is the structure of the
stability regions obviously affected by the
torsional motion. Vice versa, Fig. 14 presents
the corresponding stability diagram showing
the influence of the torsional stiffness. For
isolated torsion the algorithm used here was
not able to resolve the close sequence of res-
cnance regions exactly. When the flapping mo-
tion is included, the typical structure again
arises, while the necessary torsional stif-
fress s stightly shifted to higher values,

As pointed out previously, the motion may be
dynamically stable even 1if static divergence
would occur within a certain azimuth range.
This 1s clearly demonstrated by the examples
shown here. Dynamic stability is assured with
@By =01 and &g =20, (at least up to p=10,
see Figs.i3 and 14), while static stabiiity
was found to reguire values of at least
oy =02 and @G =2.5 (for the same p range,
see Fig.11).

Further calculations have been carried out
with varicus locations of the feathering axis
and the profile section center of gravity. Two
examples are presented 1in  Fig.l5. Only

marginal improvements were found to be achiev-
abije (optimal configuration: f.a. and c.g. at
28% of blade chord}. Thus it appears that the
classical mass balanced blade design is also a
feasible choice for ihe stop-rotor.

Flap-lLag Coupling

In contrast to flapping and torsion, the iso-
jated lead-lag motion exhibits solely weak
parametric resonance. A lead-lag hinge spring
stiffness of only &7 =005 1s sufficient to
prevent any parametric destabiiization.

For the coupled calculations, a mechanical
damper providing 3% critical damping has been
modeied in the lag degree of freedom. The
presented examples refer to forced solutions
due to the aerodynamic and gravity terms Fn,
F, only. As was expacted, the coupling effects
were relatively smaii. For nonrotating fre-
quencies of @y =01 and & =10 (i.e. a
sfiff in-plane rotor), the stability of the
fiap mode deteriorates siightly, yet all
coupied motions stay stable, see Fig. 16. For
a soft in-plane rotor (& =01 and B7 =0.35),
stronger interaction occurs at advance ratios
above =35, and stability is lost at approxi-
mately u=7, see Fig.l7. However, it must be
stressed that the flap stiffness was inten-
tionally chosen quite small to provoke any
coupting effects. For the values that are re-
gquired to restrict the flap ampiitudes to
realistic values, almost no flap-lag interac-
tion was observed.

The calculations presented in Fig.17 were also
used to compare the results obtained from
linearization and the modified Fuoouer methed.
The agreement was found to be very good for
the least stable modes, while some deviations
were noted for the highly damped modes in re-
gions of stronger fiap-lag interaction.

Active Control

Because flapping turned out to be the most
important degree of freedom, the improvement
of its stability and the reduction of its re-
sponse amplitudes are important objectives in
the stop-rotor development., The following
straightforward examples show that the appli-
cation of active contrel technology may be a
possibie alternative to the otherwise recom-
mended stiff blade design.
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One Possible Concept

As mentioned above, the flapping motion con-
sists of considerable higher-harmenic portions
during the start/stop procedure. Moreover, the
blades increasingly undergo different externa?
disturbances when rotating at low roter speed.
Hence the qndividual blade control approach
seems to be the appropriate control concept in
this case.

Figure 18 shows the signal flow diagram of the
linearized flapping egquation. The main diffi-
culty arises from the periodic feed-forward
gain ypFi2(y) {(see Fig.19, upper left diagram)
which complicates the generation of stabiliz-
ing flap moments. The relationship between the
pitch angie 9., and the flap moments even
inverts during a certain part of the rotor
revolution. As a resuit of this, a control
structure has been chosen that is based on the
approximate compensation of this pericdic co-
efficient. Moreover it was investigated,
whether it is useful to suppress additionally
the periodicity o¢f the spring coefficient
vl {y) .

Stability Augmentation

In the first step, an exact F£»-compensation
was assumed to be realizable. Then, different
combinations of feedback Toops were modeled to
determine how effective they stabilize the
flapping motion.

* The compensation of the periodic term
of the damping coefficient was not
found to be efficient, since in most
cases even a periodic damping proved to
he stabilizing.

+ Adding some constant artificial damping
through (g» improves the stability,
however the siope of the real parts
with respect to the advance ratio does
not change.

+ The compensation of the periodic por-
tien of the spring coefficient proved
to be the most effective means for sta-
bility augmentation.

» To feed back the filap angle through Gy
corresponds to an additional artificial
hinge spring, and is just as efficient
as increasing the physical flap stif-
fness itself.

The effectiveness of the above mentioned Gp-
feedback 15 illustrated by fthe Teft hand side

of Fig.19. In this example, the unstable flap-
ping motion of an articulated blade (& =0)
was successfully stabilized at p=25. It is
obvious, however, that the realization of
Fiz(y) as part of the control law will impose
severe technical difficulties. The calculated
time history will hardly match the real one,
even 1f it is determined from a sophisticated
mathematical model. Moreover, the Zeros of
this periodic function temporarily drive the
feedback gain to infinity and Tead to unrea-
sonably fast pitch control inputs. For this
reason the simulations have been repeated with
a simple sguare wave approximation Eraly)
shown on the right side of Fig.l19. The stabi-
Tizing effect is almost the same, while the
control activity drops to practical values.

By defining a fictitious flap stiffness which
includes the mechanical stiffness &3 and the
artificial portion due to the Gg-feedback

2 N =zl
0_);«:2, = 1]63;;’ +(pr—

it turned out to be reasonable to increase the
feedback gain with the square of the advance
ratic. Figure 20 1illustrates the stabilizing
effect over the advance ratio for @3 =0. If
the optimal F» curve shape is applied, the
fictitious stiffness @g, =0.1 due to feedback
control is directly equivalent to a corre-
sponding mechanical stiffness {left hand dia-
grams). For the Ep-approximatien, the results
are siightly worse (middle diagrams), but with
Bh, =02, a sufficient damping level is
achieved at all advance ratios.

Amplitude Reduction

As pointed out previcusly, the rotor has been
assumed to be unioaded during the start/stop
procedure. As soon as the inevitable fercing
terms on the right hand side are included,
however, the blades exhibit a periodi¢c re-
sponse and a certain amount of thrust even in
pure tangential flow. Hence the rotor must be
trimmed through proper contre} inputs. A pos-
sible <c¢ontrel structure s illustrated 1in
Fig.2l.

The different approaches presented in Fig.22
have been investigated for the present. The
mechanical stiffness was set to & =0.1 and
only the biade weight term has been considered

as forcing function., As shown in the first
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row, the uncoentrolled rotoer dncreasingly ex-
hibits negative thrust and the flapping motion

reaches very high amplitudes 4, = Jai+b; .

The conventicnal approach would be to apply
appropriate collective and cyciic pitch input.
The pitch angles necessary to cancel the
thrust mean value are moderate, but the de-
crease of the flap amplitudes 1s not nearly
sufficient (second row of Fig.22). Regarding
the shown signal flow diagram, one may assume
that the compensation of Fi(y) through ap-
propriate feed forward control should improve
the thrust control. While this principle is to
some extent successful with the exact func-
tion, the Z)a(y)-approximation turned out to
be less feasible (third row of Fig.22).

The main reascn is the non-tangential flow
condition caused by the negative coning angle
due to the blade weight. So i% proved to be a
better approach to suppress the collective
flap coefficient a, even if this generates a
small positive thrust. From the fourth row of
Fig.22, it is seen that a¢ can be successful-
1y canceled by appiying the ﬁng-approximation.
A1l harmenics A, of the fliapping response
decrease considerably, while the remaining
thrust does not exceed 3% of the aircraft
weight,

The application of feedback control as de-
scribed in the previous section, however, was
found to be most efficient. The amplitudes are
considerably reduced, while the thrust remains
below 2% even without any additional feed-
forward trim control (last row of Fig.22). The
effectiveness of this approach becomes more
obvious 1in Fig.23. There, the relative sup-
pression of the maximum flapping angles has
been plotted versus the artificial stiffrness

e 1Y

ogy = JGp 3. With the approximated iy func-
tion, a reduction to 3.5% of the open Tloop
value is achievable. At very high feedback
gains, however, flap instability can be en-
countered, caused by & rising amplification of
the higher-harmenic components.

Conclusion

This investigation confirmed the importance of
the flapping motion for the stap-rotor behav-
ior. The dominating design criterion seems to
be the restriction of the flap response
amplitudes,
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The influence of the torsional motion was not
found as strong as expected. With respect to
divergence, a %torsicnal stiffness of only
g =25 (with ®F =0.2) proved to be suffi-
cient, which follows from the Tow dynamic
pressure at reduced rotor speed. For the dy-
nami¢ stability, the large 1ift moment arm 1in
reverse flow turned out to be less critical
than the possible inertial coupling due to &
displacement of the center of gravity from the
feathering axis. It 1s interesting to note
that locating the c.g. in front of the f.e.
even destabilizes the coupled fiap-lag motion
at reduced rotor speeds, while this is & com-
mon means to avoid flutier for conventionatl
rotors.

Similarly, the flap-lag coupling proved to he
gquite weak for the unicaded rotor. Consider-
able destabilizing interaction onily occurred
in connection with forced solutions that ex-
hibit unrealistic high flap amplitudes.

In the last chapter, some ideas on the active
control of the flapping motion were presented.
The investigated examples indicate that even
very simple feedback structures can success-
fully be used to restrict the flap amplitudes
and suppress any instabiiity.

The applied mathematical models, however, are
based on many simpiifying assumptions which
have to be examined in detail. It is obvious,
for example, that the occurrence of consider-
able higher-harmonic components in the fiap-
ping motion suggests the consideration of at
Teast a few higher-frequency elastic modes.

Appendix

Coupled flap/torsional equation of metion:
Jy + diag yD(y)y + [diagy_/g(q/) +K, }Z =
|diagyE(w) +E, J8 + £,

Q - (‘91 . ‘96'011,- 8{:0;)-. 82’;}!13 8)’]

B JPE _ JPE _
Jy =1 »]12_“‘}".‘-,}; Jz}m—ﬁ}; Jm=1
. })I) ~
T = Vcﬂ/'] B e Vool
B - Qnonf ‘:-) - glnﬂn'
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. JOP o JEC
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) JEC s (mg Y
Koy, JEE Koy =1+ EEN )
P _ Ve J_{‘_(: i B -f:i 7 . ﬂ;‘,r:
L0y = T‘j‘pp =0y ™ JPr “0pg = ;r_.'?
. Vea | L . ~
Eoy = —%577 Logy = -1 Eoyy =1
Fo = Sz, Fo. = SE &
0 Jpp glg Oy — JEE g}?

mgr=(R—-aym

SO = I rdm SE = J..l’d’” = Yeg Mol

m m

SP = J(r ~a)ydm
J = I ridm JEE . J.-dem =¥ 1yl omp

m n

PP fe-atdm I = e dm

m ™

JT = J. r(r - a)dm

w

JEC = J‘yrdm =y 8¢ S = J.y(f' —aydm = yep S°

H m

Lock numbers/Z:

_ pChIR?

PO PR
= "R

K jff i

Y&

Aerodynamic forces:

Duly) = CF - 2%

Dan(y) = ~Gs + 2G2 + Cipsiny
Da(p) = H(Ga+ 2D + Dy psin yn)p

Ky = C¥pcosy

Kia(yy = ~C% ~ CEpusiny

K2 () = ~Gapcosy + D uwsiny cos y
Kn(y)= G3—(Ds-G)usinyg D) }.Lzs'mzqf

En(yy = C¥+Clusiny

Era(y)=CH + C‘?p.sin\,u

EvsQy) = C§

Ean(y) = =Ga + (D3 — Ga)psiny + Dopsiny
Exn(y) = =G5 + (D - Ga)usiny + D psiny
Exa(y) = —£(Ga + 22 + Dypsiny)y

Eas(y) = =G + Dy psiny

G13

(}n = 4\75.3 - E;,

. ™ I3 —_ Yacl
(.-n :D);"'*‘;_;Dn..} Vo 1; +_i..

% =D, - 4D,y

B
Do(y) = J.x"“z |x +psinwidx
A

B
B, = j\} dx
A

Coupied flap/lag equation of motion:

bt
2(:"" +diagx[u_2(\p)2;’ +[diagg£(\|1) +A="0}Z+ 2 % -
pp’
diag yE(w)$ +diag y[(y) + £,
%=(B.....5)"
v= g ve)? 8= (91, com crey e T

inertial forces:

Yy 2 . J212
N sy A
)33 JPP .c_). = QH(IYH

JEP = j- alr—adm = ast
Lotk number/2:

S

Aerodynamic forces:
Das(y) = 2(C5 ~ ,—‘:C‘?) Ye
K3y = 28 ncosys

Fs(y) = CR + CF pusinyy

Matrix elements not mentioned above are equal
to zero or have been neglected.
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