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Abstract 

Horizontally stoppable rotors are susceptible 
to certain instabilities, particularly at high 
advance ratios. This paper presents a 
straightforward analytical model that consid­
ers the specific operating conditions as 
strong parametric excitation (due to periodic 
coefficients), reverse flow and low rotor 
speed. Different mathematical methods have 
been applied to determine the forced solution 
and the stability. Most calculations have been 
performed based on numeri ca 1 integration and 
FLOoun theory. Deriving the FLooun transition 
matrix from the perturbed nonlinear equations 
proved to be quite efficient. This allows the 
easy i ncl us ion of the important influence of 
the periodic trim solution. 

First, the behavior of the isolated degrees of 
freedom is discussed. The lead-lag motion was 
found to be quite insensitive to parametric 
excitation, even at very high advance ratios. 
The flapping and torsional motion, however, 
are strongly affected by parametric effects. 
The results show the typical structure of 
SrRun' s stabi 1 i ty diagram. Then, the modi fica­
tion of the stability boundaries due to coupl­
ing effects is described. Flap-torsion 
interaction degrades the stability of stop­
rotor blades. In the last part, some ideas and 
results are presented which show how to aug­
ment the flap stability and how to reduce the 
flap amplitudes by active control. 

Notation 

c,. c;. c"' equivalent hinge spring stiffness 

n1 blade mass 

r~xR blade radius coordinate 

time 

T~ 2n/Q 
T 

v 
Yc.£!- ' Yac l 

a 

time of one rotor revolution; 
rotor thrust 

tangential I normal velocity 
at the blade section 

rotorcraft forward speed 

location of blade section center 
of gravity (e.g.) I normal flow 
aerodynamic center (a.c. 1 ) behind 
the feathering axis (f.a.) 

blade section angle of attack 

flap angle 

y LOCK number /2 

o~ w,f(QR) inflow ratio 

s lag angle 

9~ 9,u"+9, x+G feathering angle, composed of 
pitch, twist & torsion angle 

'A/Q 

fl~ V/(QR) 

'!'~01 

_,, JCiJ 
(J) ~ --

Onom 

eigenvalue of the corresponding 
system with constant coefficients 

advance ratio 

blade azimuth angle 

nonrotating natural frequency 
nondimensionalized by the 
nominal rotor speed 

D.~QI0.,om nondimensional rotor speed 

()'~0()/0'!'derivative with respect to~~ 
• 
() ~8()/Dr derivative with resp.to the time 

Further definitions and quantities can be 
found in Table 1, Figure 2 or in the appendix. 

Introduction 

Aircraft which combine the take-off anc land­
ing performance of a helicopter with the for­
ward speed capability of a fixed wing aircraft 
have been studied for almost three decades. 
Beside the tilt-rotor, which seems to have 
become the most successful variant, several 
other concepts have been proposed since then. 
One of them is the stop-rotor composite air­
craft, as described in Refs.[1J. [10], [13], 
[16] and [17]. Although some theoretical and 
experimental work has been done, none of those 
projects has reached the prototype stage. 

The concept is to completely convert the ro­
torcraft into a fixed-wing aircraft by stop­
ping, folding and stowing the rotor(s). First, 
the vehicle accelerates to the transition 
speed in he 1 i copter mode. Then, a 11 of the 
lift is shifted from the rotor(s) to the wing, 
and the necessary propulsive force is gener­
ated by switching a convertible engine from 
shaft-power mode to fan-jet mode. Finally, the 
unloaded rotor(s) can be stopped horizontally. 
The stopped blades may be folded and stowed 
or, as other concepts propose, be used as 
fixed wings. 

G13 - 2 



While many fundamental investigations have 
been conducted concerning the stability of 
helicopter blades, few publications discuss 
the behavior beyond the typical helicopter 
flight envelope at very high advance ratios, 
see Refs.[12], [15], [17] and [19]. This paper 
presents some basic results that have been 
obtained from relatively simple blade models. 
The primary aim is to show the structure of 
possible instabilities, the important influ· 
ence of the forced (i.e. trim) solution, and 
some details of rotor control. 

The following table contains the data which 
has been used for a 11 of the presented ca 1-
culations. They are representative for a 
smaller 9.6 ton aircraft with two rotors side 
by side. 

Rotor radius R = 5m 

Blade chord 0.3m 

blade mass per unit iii = 7.5 k&'m 
1 enght 

Aerodynami ca 11 y ef- from A 0.25 
fective blade range to B = 1.00 

Lift curve slope c = 
'" 

6.25 

Profile drag coefficient C'a.l :::::: 0()] 

Equivalent hinge offset aiR= 0.13 

nominal rotor speed D. = "'m 50 rad/scc 

air density p = 1.225 kglm3 

Table 1: Reference data 

High rotor acceleration and deceleration rates 
can suppress the occurrence of instabilities, 
as discussed in Ref.[2]. Nevertheless, this 
investigation is based on the assumption that 
stability and sufficiently small amplitudes 
should be assured at each steady rotor speed. 
This allows the safe interruption and reversal 
of the start/stop procedure in case of techni­
cal malfunction. 

As will be shown later, the blade motion sta­
bility is dominated by parametric excitation. 
It therefore proved suitable to plot the ei­
genvalues versus the advance ratio. Of course, 
an equally important effect results from the 
reduction of the rotor speed. So it should be 

noted that the advance ratio in this paper is 
not used synonymous with the forward speed, 
but implicitly describes how the rotor angular 
velocity is decreased. 

Modeling of Blade Motion 

For this investigation, only one isolated 
b 1 a de has been considered, and a 11 i nterac­
tions with other blades, the wing or the fuse-
1 age have been neglected. The considered 
flapping, 1 agging and torsi on a 1 b 1 a de motions 
are described by rotations of the rigid blade 
about fictitious hinges, see Fig.1. The equiv­
alent hinge offsets and spring stiffnesses 
have been adjusted to approximate the first 
ei genfrequenci es and ei genmodes of a corre­
sponding hingeless rotor blade. 

For the presented calculations, the rotor has 
been assumed to be completely unloaded. Fur­
thermore, the rotor disk plane has no inci­
dence with respect to the free-stream 
velocity. These assumptions correspond to the 
optimal operating condition for the start/stop 
procedure. Therefore, any stop-rotor vehicle 
should be able to meet this trim condition 
during the conversion (e.g. by using conven­
tional control surfaces). 

Flapping Motion 

The aerodynamic forces acting on the blade are 
derived from linear two-dimensional quasi­
steady strip theory. This leads to the local 
flapping moment 

with the velocity components at the blade 
section 

v,. = Rn[ 6- (x- ~lB'- (~cos \V)Il J 
v, = RD(x +~sin 'l') . 

Reverse flow can be modeled by switching the 
sign of the lift coefficient in the corre" 
spending blade section of the retreating 
blade. Periodic blade integrals D~(~t) (see 
Fig. 3 and appendix) have been defined to re­
tain the straightforward analytical formula­
tion of the differential equations. Neglecting 
small quantities, we can write the linearized 
flapping equation of motion as 
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fl'' + Y 0[) II (~!)fl' + [ YllK 11 (lj!) + Ko 11 ]fl = 

Y0[ E11 (~1)S 1 + El2(~i)Sw, + E,s(\j/)8] + Fo 1 , 

where the periodic coefficients D(,l'). K(~1) and 
£'(~1) describe the aerodynamic flap moments. 
The Ko term represents the spring effect due 
to centrifugal and elastic forces, while F 0 

describes the effect of the blade weight. All 
coefficients are listed in the appendix; for 
more details see Ref.[2]. 

Torsional Motion 

For the normal working condition with flow 
from the 1 eadi ng edge. torsi on a 1 moments can 
be kept sufficiently small by locating the 
feathering axis and the blade section center 
of gravity near the aerodynamic center at the 
25% chord line. In the reverse flow region. 
however, the lift acts at approximately the 
75% chord line and exhibits considerable tor­
sional moments L. leading to a negative aero­
dynamic spring effect. Therefore, the 
torsional degree of freedom may be expected to 
have an important influence on the blade mo­
tion stability at high advance ratios (see 
Ref. [12]). 

For this investigation, the blade model allows 
for arbitrary location of the center of grav­
ity and the feathering axis. while the aerody­
namic center is assumed to coincide with the 
25% or 75% chord line respectively, see Fig.2. 
As for the flapping motion, these two differ­
ent locations for normal and reversed flow can 
be considered by analytical expressions. con­
sisting of both constant and periodic blade 

- -R 
integrals D, and D,('J'l· To also include damp-
ing moments. the following approximation from 
the classical unsteady aerodynamic theory has 
been applied: 

dL = -fC,a13R(4.v'lv,l +.i71•,)adx 

L = -fC,./3 R'n[ 4l'D~ +.VCDo + 73, f!Sin \jf) ]a 

The damping depends on the 1 ocati on of the 
feathering axis v. Neglecting small terms. we 
can write the equation for the isolated tor­
sional motion as 

e" +yeD,(~!)E-J' + [ y,.;Kd'l') + Ko,]e = 

[ yeE21 (\jf) +Eo,, Js I + [ reEd4') +Eo, ]scoH 
+yc~!E'23('41)3~011 + Fo2 .. (S~on + Yc0E2:>('41)8 + Fo2 . 

The coupled flap/torsion equation can be found 
in the appendix. 

Lead-Lag Motion 

To analytically include reverse flow with the 
same formalism in the lead-lag motion as well. 
we must assume that the in-plane aerodynamic 
force due to the tilt of the local lift vector 
is small compared to the profile drag. Of 
course, this simplification is only applicable 
if the rotor is completely unloaded, Then, the 
aerodynamic in-plane moment becomes 

dN = ~C""IR 2v,fv,l(x- ~)dx , 

where the square of the tangential flow compo­
nent can be approximated by the linearized 
expression 

v,fv,l = (RO)'[ x +f! sin~~- 2(x- ~ )~' 

-2(f! cos 'I')~ J lx + f! sin ~~I 

This yields the following equation for the 
isolated lead-lag motion. 

The coupled equation complete with all defini­
tions is given again in the appendix, which 
a 1 so contains some non 1 i near coupling terms 
that result from the coriolis forces. Beside 
these explicit equations. a numerical. nonlin­
ear model has been used to study the influence 
of stall and compressibility. It is based on 
measured 360 deg. profile data and considers 
all nonlinear kinematic relationships as well. 

Methods of Stability Calculation 

As long as the differential equations can be 
kept linear, the classical FLooun theory is 
directly applicable to determine stability, as 
has been well documented in many publications. 

The methods that have been used for the non­
linear equations in this investigation are 
summarized in Fig.4. The procedure consists of 
two parts: first. the determination of the 
interesting periodic forced solution and se­
cond, the investigation of that solution re­
garding stability. 
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Forced Solution 

Since the periodic blade motions contain con­
siderable higher-harmonic components at high 
advance ratios, harmonic balance (i.e. the 
approximation through an H2 expression) did 
not prove to be feasible. Figure 5 gives a 
typical example of the FouRIER transform of the 
flapping motion at 1-'~ 1 and J-1.= 10. On the 
other hand, the numerical effort increases 
rapidly if one tries to balance the necessary 
number of harmonics. 

A simple alternative is numerical stepwise 
integration. This is quite efficient as long 
as the blade motions are sufficiently damped. 
For weakly damped or even unstable solutions, 
a periodic shooting method must be used. 

Stability of Forced Solution 

The equations of motion are usually linearized 
about the known periodic solution by writing 
the corresponding perturbation equations about 
the equilibrium position. If the nonlineari­
ties not allow for explicit derivation of the 
linear equations, numerical stepwise lineari­
zation can be performed. 

A rarely applied method is based on determin­
ing the Fwoun transition matrix directly from 
the nonlinear equations (compare Ref.[ll]). 
The principle can be explained using Fig.6. 
The thin lines represent an equilibrium solu­
tion of the nonlinear periodic equation 

x + 2IXD: + (Ko + Kccos0t)0 2x 3 = un2cos(W + <p) , 

which has to be determined in the first step. 
Then, for each column sJ!~ of the transition 
matrix, the numeri ca 1 integration is repeated 
with one of the state variables perturbed by a 
small parameter c (thick lines). The de vi­
ations at the end of the integration interval 
correspond to the required matrix columns used 
to form the transition matrix ~.~~(to+nl). 
Since the periodic solution contains subhar­
monics of n/4 in this example, the integra­
tion had to be performed over a time interval 
of 4T. This procedure, here called the modi­
fi ed FcooUET method, has been used successfully 
for some of the calculations presented below. 

Figure 7 gives an impression of the numerical 
behavior of this method. The diagram shows the 
calculated damping of the flapping motion at 

J-1.= 5 versus the magnitude of the perturbation 
parameter s. The solid line refers to the 
trivial equilibrium solution, [l=!l'=O, which 
one gets from the homogeneous equation with 
all forcing function terms canceled. The bro­
ken lines have been calculated for a forcing 
function that considers the effects of the 
blade weight and twist. 

First, it is obvious that the periodic solu­
tion has in fact an important influence on the 
stability. Furthermore, the curves show that 
in this example c should not exceed values of 
approximately O.Olrad and 0.01'"'1,,: otherwise 
the non 1 i neari ties deteriorate the stabi 1 ity 
results. 

On the other hand, the perturbations must be 
considerably greater than the inaccuracies of 
the examined forced solution. The standard 
deviation between the discrete flap angles of 
the 1 ast two rotor revo 1 uti ons has been used 
as an error criterion. As the ex amp 1 e i ndi­
cates, c must be at 1 east one order greater 
than this standard derivation. It is obvious 
that the periodic solution should be calcu­
lated only as accurate as necessary with re­
spect to the computation time. 

Evaluating the numerically integrated tran­
sient time history is a third method for cal­
culating the stability of periodic solutions. 
However, quite sophisticated procedures must 
be applied to handle certain cases of parame­
ter excitation. 

Stability Results 

The following results are presented in order 
to improve the understanding of the blade mo­
tion stability at very high advance ratios. 
Because of the applied simplifications, this 
work does not intend to investigate one con­
crete blade design in detail. Some results for 
the influence of fundamental blade parameters 
as LocK number, hinge offset, artificial damp­
ing, etc. can be found in Ref.[2]. 

Isolated Flapping 

Since the stop-rotor is unloaded when it oper­
ates at reduced rpm, many of the classical 
(coupled) blade instabilities will not occur. 
On the other hand, the strong parameter exci­
tation at high advance ratios can drive even 
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the isolated flapping motion unstable. As can 
be seen in Fig. 8, this flapping instability 
can easily be avoided by providing for a cer­
tain level of flap-hinge spring stiffness. 
With the data of Tab .1. a spring stiffness 
equivalent to a nonrotating natural frequency 
of wW = 0.1 was found to be sufficient to as­
sure stability. This low value is exceeded by 
most hingeless rotors. 

The dotted lines show results from the linear 
equation, in which the periodic solution has 
no influence on the stability. The correspond­
ing curves for the nonlinear equation (solid 
lines) describe the stability behavior of the 
equilibrium solution 0=0'=0. Since not all 
terms of the forcing function can be sup­
pressed, this optimal condition is purely 
theoretical. Even the blade weight will cause 
a periodic response. However, the comparison 
shows that the linear model is reasonable in 
predicting the influence of reverse flow and 
compressibility. Likewise, the local stall 
effects at the boundary between the normal and 
reversed flow region proved to have only a 
minor effect on the calculated stability. 

The stabilizing effect of a high nonrotating 
flapping frequency (i.e. a stiff equivalent 
flap spring) becomes more obvious in Fig.9. It 
shows the typical structure of STRun's stabil­
ity diagram for the damped MATHIEu-mE 
equation. 

Figure 10 illustrates what influence the trim 
so 1 uti on can have on the flapping stabi 1 i ty. 
With wfl' =0 12, the evaluation of the homoge­
neous (nonlinear) flapping equation results in 
highly damped motions for all advance ratios 
(dotted line). Evaluating the periodic equi­
librium solution, we find the stability behav­
ior considerably changed (solid line). The 
app 1 i ed forcing function again represents the 
effect of the blade weight and a linear twist 
<S 1 =-(l2rad). 

As discussed in Ref.[2], the flap stiffness 
which is required to restrict the steady am­
plitudes to reasonable values is considerably 
higher than required for stability. So the 
deviations in Fig.lO are mainly caused by the 
high flap amplitudes which, in turn, increase 
the influence of aerodynamic non 1 i near it i es. 
At f.l = 9, the amplitudes have reached such 
high values that stall effects are dominating, 
and the flapping motion becomes unstable. 

Flap-Torsional Coupling 

A comprehensive description of the coupled 
flap-torsion motion can be found in Ref.[l2]. 
However, the authors concentrate on high ad­
vance ratios due to high forward speed at con­
stant rotor rpm, which is different from the 
stop-rotor problem investigated here. 

Divergence 

The first question is, under which conditions 
the resultant spring effect due to elastic and 
aerodynamic forces tend to be destabilizing. 
For the coupled linear equations, the static 
stability boundary is given by 

Solving this equation, we can plot the neces­
sary torsional stiffness over the blade azi­
muth and advance ratio, see Fig.ll. The chosen 
flap stiffness of w;;' =0.2 assures static and 
dynamic stabi 1 ity for the i so 1 a ted flapping 
degree of freedom. 

The left hand diagrams refer to the case in 
which the feathering axis, the center of grav­
ity and the norma 1 flow aerodynamic center 
coincide at the 25% chord line. It is seen 
that only the retreating blade is susceptible 
to divergence. For the critical blade position 
at ~Jz240deg, the necessary torsional stif­
fness reaches approximately w;': = 2.5 at high 
advance ratios. If one could optimize the 
blade with respect to the static stability 
alone, the necessary stiffness would reduce 
slightly to ffic;" 2.1. see Fig .11 right hand 
side. The high dynamic pressure at the nominal 
rotor speed (i.e. when the lift always acts at 
the 25% chord 1 i ne) prevents the shifting of 
the feathering axis further towards the 75% 
line in order to reduce the torsional moments 
in reverse flow. 

It should be noted, however, that for systems 
with periodic coefficients this static stabil­
ity is not a necessary condition for dynamic 
stability. 

Dynamic Stability 

The following results again refer to the lin­
ear equations. Since the coupling effects 
proved to be relatively small, the flapping 
stiffness was now set to 00'. = 0.1 , which 
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approximately represents the stabi 1 ity bound­
ary for isolated flapping. The four diagrams 
of Fig.12 illustrate the dynamic stability of 
the torsi on a 1 motion i so 1 a ted from flapping 
(left hand side) as well as the coupling ef­
fects when f.a. and e.g. are located in a.c. 1 

(right hand side). The calculated damping val­
ues for the torsional motion show the same 
periodic system characteristics that have been 
observed for the flapping motion. The regions 
of parametric resonance (i.e. the regions in 
which the periodic coefficients have a desta­
bilizing effect), however. move close together 
due to the high natural frequency in the tor­
sional degree of freedom. 

For ffie = 2.0 the i so 1 a ted torsi on a 1 motion 
stays stable up to very high advance ratios, 
while the coupled motions besome unstable at 
approximately fl= 10 (upper diagrams). Yet a 
slight increase in the torsional stiffness (to 
ffic; = 2.2) is sufficient to a chi eve stabi 1 i ty 
even in the coupled case (upper diagrams). 

The stability diagram in Fig.13 gives a fur­
ther impression of how the torsional degree of 
freedom influences the blade motion stability. 
The stability boundaries are found to be domi­
nated by the flapping motion. Only for advance 
ratios above J.' = 9 is the structure of the 
stability regions obviously affected by the 
torsional motion. Vice versa, Fig. 14 presents 
the corresponding stability diagram showing 
the influence of the torsi on a 1 stiffness. For 
isolated torsion the algorithm used here was 
not able to resolve the close sequence of res­
onance regions exactly. When the flapping mo­
tion is included, the typical structure again 
arises, while the necessary torsional stif­
fness is slightly shifted to higher values. 

As pointed out previously. the motion may be 
dynamically stable even if static divergence 
would occur within a certain azimuth range. 
This is clearly demonstrated by the examples 
shown here. Dynamic stability is assured with 
ffil\'=0.1 and ffie =20, (at least up to J.L= 10, 
see Figs.13 and 14). while static stability 
was found to require values of at least 
ffil\'=0.2 and 1ii 0~=2.5 (for the same fl range, 
see Fig.ll). 

Further calculations have been carried out 
with various locations of the feathering axis 
and the profile section center of gravity. Two 
examples are presented in Fig.15. Only 

marginal improvements were found to be achiev­
able (optimal configuration: f.a. and e.g. at 
28% of blade chord). Thus it appears that the 
classical mass balanced blade design is also a 
feasible choice for the stop-rotor. 

Flap-Lag Coupling 

In contrast to flapping and torsion, the iso­
lated lead-lag motion exhibits solely weak 
parametric resonance. A lead-lag hinge spring 
stiffness of only 1ii2'=0.05 is sufficient to 
prevent any parametric destabilization. 

For the coupled calculations, a mechanical 
damper providing 3% critical damping has been 
modeled in the lag degree of freedom. The 
presented ex amp 1 es refer to forced so 1 uti ons 
due to the aerodynamic and gravity terms E\~). 
Eo only. As was expected, the coupling effects 
were relatively small. For nonrotating fre­
quencies of ro(~r=O.l and rot=l.O (i.e. a 
stiff in-plane rotor). the stability of the 
flap mode deteriorates s 1 i ghtl y, yet all 
coupled motions stay stable. see Fig. 16. For 
a soft in-plane rotor <mil'= 0.1 and 1ii2' = 0.5). 

stronger interaction occurs at advance ratios 
above J.L=5, and stability is lost at approxi­
mately f!=7. see Fig.17. However. it must be 
stressed that the flap stiffness was inten­
tionally chosen quite small to provoke any 
coupling effects. For the values that are re­
quired to restrict the flap amplitudes to 
realistic values, almost no flap-lag interac­
tion was observed. 

The calculations presented in Fig.17 were also 
used to compare the results obtained from 
linearization and the modified FLoouET method. 
The agreement was found to be very good for 
the least stable modes, while some deviations 
were noted for the highly damped modes in re­
gions of stronger flap-lag interaction. 

Active Control 

Because flapping turned out to be the most 
important degree of freedom, the improvement 
of its stability and the reduction of its re­
sponse amplitudes are important objectives in 
the stop- rotor deve 1 opment. The following 
straightforward examples show that the appl i­
cation of active control technology may be a 
poss i b 1 e alternative to the otherwise recom­
mended stiff blade design. 
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One Possible Concept 

As mentioned above, the flapping motion con­
sists of considerable higher-harmonic portions 
during the start/stop procedure. Moreover, the 
blades increasingly undergo different external 
disturbances when rotating at low rotor speed. 
Hence the indi vi dua 1 b 1 a de contro 1 approach 
seems to be the appropriate control concept in 
this case. 

Figure 18 shows the signal flow diagram of the 
1 i neari zed flapping equation. The main diffi­
culty arises from the periodic feed-forward 
gain YBEd'lf) (see Fig.l9, upper left diagram) 
which complicates the generation of stabiliz­
ing flap moments. The relationship between the 
pitch angle Sea, and the flap moments even 
inverts during a certain part of the rotor 
revolution. As a result of this, a control 
structure has been chosen that is based on the 
approximate compensation of this periodic co­
efficient. Moreover it was investigated, 
whether it is useful to suppress additionally 
the periodicity of the spring coefficient 
rwl.·" (41) . 

Stability Augmentation 

In the first step, an exact E12 -compensation 
was assumed to be realizable. Then. different 
combinations of feedback loops were modeled to 
determine how effective they stabilize the 
flapping motion. 

• The compensation of the periodic term 
of the damping coefficient was not 
found to be efficient. since in most 
cases even a periodic damping proved to 
be stabilizing. 

• Adding some constant artificial damping 
through GB' improves the stability, 
however the slope of the real parts 
with respect to the advance ratio does 
not change. 

• The compensation of the periodic por­
tion of the spring coefficient proved 
to be the most effective means for sta­
bility augmentation. 

• To feed back the flap angle through GB 
corresponds to an additional artificial 
hinge spring. and is just as efficient 
as increasing the physical flap stif­
fness itself. 

The effectiveness of the above mentioned GB­
feedback is illustrated by the left hand side 

of Fig.l9. In this example. the unstable flap­
ping motion of an articulated blade <m[l =0) 
was successfully stabilized at ll = 2.5. It is 
obvious, however. that the realization of 
EJ2(41) as part of the control law will impose 
severe technical difficulties. The calculated 
time history will hardly match the real one, 
even if it is determined from a sophisticated 
mathematical model. Moreover. the zeros of 
this periodic function temporarily drive the 
feedback gain to infinity and lead to unrea­
sonably fast pitch control inputs. For this 
reason the simulations have been repeate~ with 
a simple square wave approximation E,,(41) 
shown on the right side of Fig.l9. The stabi­
lizing effect is almost the same. while the 
control activity drops to practical values. 

By defining a fictitious flap stiffness which 
inc 1 udes the mechani ca 1 stiffness m;;' and the 
artificial portion due to the Gp -feedback 

it turned out to be reasonable to increase the 
feedback gain with the square of the advance 
ratio. Figure 20 illustrates the stabilizing 
effect over the advance ratio for m;l'' =0. If 
the optimal E12 curve shape is applied, the 
fictitious stiffness m~;., = 0.1 due to feedback 
control is directly equivalent to a corre­
sponding mechanical stiffness (left hand dia­
grams). For the E12 -approximation, the results 
are slightly worse (middle diagrams), but with 
m;;~,=02. a sufficient damping level is 
achieved at all advance ratios. 

Amplitude Reduction 

As pointed out previously, the rotor has been 
assumed to be unloaded during the start/stop 
procedure. As soon as the i nevitab 1 e forcing 
terms on the right hand side are included, 
however. the blades exhibit a periodic re­
sponse and a certain amount of thrust even in 
pure tangential flow. Hence the rotor must be 
trirrrned through proper control inputs. A pos­
sible control structure is illustrated in 
Fig.21. 

The different approaches presented in Fig. 22 
have been investigated for the present. The 
mechanical stiffness was set to m;l' =0.1 and 
only the blade weight term has been considered 
as forcing function. As shown in the first 
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row, the uncontrolled rotor increasingly ex­
hibits negative thrust and the flapping motion 
reaches very high amp 1 i tudes A,= J a),+ b), . 

The conventional approach would be to apply 
appropriate collective and cyclic pitch input. 
The pitch angles necessary to cancel the 
thrust mean value are moderate, but the de­
crease of the flap amplitudes is not nearly 
sufficient (second row of Fig. 22). Regarding 
the shown signal flow diagram, one may assume 
that the compensation of E12 ('l') through ap­
propriate feed forward control should improve 
the thrust control. While this principle is to 
some extent successful with the exact func­
tion, the £,2(~1) -approximation turned out to 
be less feasible (tnird row of Fig.22). 

The main reason is the non-tangential flow 
condition caused by the negative coning angle 
due to the blade weight. So it proved to be a 
better approach to suppress the collective 
flap coefficient a0 even if this generates a 
small positive thrust. From the fourth row of 
Fig. 22, it is seen that ao can be successful­
ly canceled by applying the £,,-approximation. 
All harmonics .4, of the flapping response 
decrease considerably, while the remaining 
thrust does not exceed 3% of the aircraft 
weight. 

The application of feedback control as de­
scribed in the previous section. however. was 
found to be most efficient. The amplitudes are 
considerably reduced, while the thrust remains 
below 2% even without any additional feed­
forward trim control Clast row of Fig.22). The 
effectiveness of this approach becomes more 
obvious in Fig.23. There, the relative sup­
pression of the maxi mum flapping angles has 
been plotted versus the arti fi cia 1 stiffness 
w:;B = jGf:ri. With the approximated i:, func­
tion, a reduction to 3.5% of the open loop 
value is achievable. At very high feedback 
gains, however. flap instability can be en­
countered, caused by a rising amplification of 
the higher-harmonic components. 

Conclusion 

This investigation confirmed the importance of 
the flapping motion for the stop-rotor behav­
ior. The dominating design criterion seems to 
be the restriction of the flap response 
amplitudes. 

The influence of the torsional motion was not 
found as strong as expected. With respect to 
divergence, a torsional stiffness of only 
w(l; = 2.5 (with wf\' = 0 2) proved to be suffi­
cient, which follows from the low dynamic 
pressure at reduced rotor speed. For the dy­
namic stability, the large lift moment arm in 
reverse flow turned out to be 1 ess critical 
than the possible inertial coupling due to a 
displacement of the center of gravity from the 
feathering axis. It is interesting to note 
that locating the e.g. in front of the f.e. 
even destabilizes the coupled fl ap-1 ag motion 
at reduced rotor speeds, while this is a com­
mon means to avoid flutter for conventional 
rotors. 

Similarly, the flap-lag coupling proved to be 
quite weak for the unloaded rotor. Consider­
abl e destabilizing interaction only occurred 
in connection with forced solutions that ex­
hibit unrealistic high flap amplitudes. 

In the last chapter, some ideas on the active 
control of the flapping motion were presented. 
The investigated examples indicate that even 
very simple feedback structures can success­
fully be used to restrict the flap amplitudes 
and suppress any instability. 

The applied mathematical models, however, are 
based on many simplifying assumptions which 
have to be examined in detail. It is obvious, 
for example, that the occurrence of consider­
able higher-harmonic components in the flap­
ping motion suggests the consideration of at 
least a few higher-frequency elastic modes. 

Appendix 

Coupled flap/torsional equation of motion: 

lx" + diagy£2('l'l;>;,' + [ diagyf,;(~') + ~Jx = 

[ diagy/i('l') + ii;JQ +Eo 

X= (JH-J, ... ) T 

t = (YB, Y<cl, ... )1 

Inertial forces: 
jPE 

]p=--
- jPP 

jPE 
.121 ::::-JEE ;,.22 = I 

-nrJ •..;,;;.:::_ ol 0,=-,, 
:./.nom 
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mm = (R-a)m 

, sE f!. 
/•o, = -,,,.-, 

. J" n-

s·c = f rdm SE::: fyctm =Yc.gnlBf 

m m 

S~' = Jcr-a)dm 
m 

m m 

J''l'= J(r-a) 2dm Jss::: J (V ~ Ycg )2dm 
m "' 

J''' = J r(r- a)d 111 

"' 
R' f d c•C jlT f <P J = yr m=ycg•) ' = y(r-a)dm=yc.g•)' 

m 

LocK numbers/2: 

rC,olR 4 

'YP = lJl'P 

Aerodynamic forces: 

l . ( ) ('II a ('II 
:J11 \I'= -4 -n 3 

m 

D:1 (~1) = -G_3 + *G: + c~ ~sin I..J' 
I - - -

Doo{l!f) = R(Ci, +2D2 +D 1 f!Sil1~1),f' 

Kll(~!) = (~f!COS~/ 
K 12( \jl) = -C~ - C~ fl sin ~' 
K, (~1) = -G2f!cos ~' + 15, f! 2sin ~'cos~~ 
K 22 (~1) = G, - (15, - G, )fl sin~' -15, fl2 Sin 2 ~' 

E11(~1)= C',' +Gf!sin~' 
E12(\j/) = c',i + ~ f!sin"' 

E1s(~') = c',' 
E21 (~1) = -G4 + (15 3 - G,)fl sin~~+ 15 2fl 2Sin 2 ~1 

E22{1!f) = -G3 + (15 2 - G,)fl sin~~+ 15, fl 2Sin 2 ~1 
I - -

E21(~1) = -ii(G2 + 2D 2 + D 1 fl sin ~~).f· 

Ez;(~1) = -CJ, + D1 f!Sin ~' 

Cll - J-)11- £1511 
n- - n R n--1 

Cn ::::: Dn- *13n- l 

B 

-Fl. -
Gn = 4.VDn- Dn 

- Va c 1 l 
v= ·-,- +4 

li 

15~(~1)= Jx" 2 lx+f!Sinl!fldx Dn = f xn--·lctx 

A A 

Coupled flap/lag equation of motion: 

( 
-B~' J 

0" +diagyQ(I!f)'{,' +[ diagy~(l!f)+~o]"& +2 ... = 

B0' 

Inertial forces: 

jQP = J a(r- a)dm =aSP 

m 

Aerodynamic forces: 

/) (IJ!) = 2(c"1 - "-C11
) 33 4 R - .~ 

,';33(11') = 2C'"l1 flCOS~/ 

FJC~') = c;; + c~ fl sin 'I' 

diag yt:(\j/)l!_ + diag yE(~') +Eo 

LocK number/2: 

pCdO/R 4 

Ys = 2!~'~' 

Matrix elements not mentioned above are equal 
to zero or have been neglected. 
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Figure 4: Oi fferent procedures to determine 
the stability of periodic non­
linear equations of motion 
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