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Abstract 

NOTES REGARDING FUNDAMENTAL UNDERSTANDINGS OF 
ROTORCRAFT AEROELASTIC INSTABILITY 

by 

Richard L. Bielawa 
Associate Professor 

Department of Mechanical Engineering, 
Aeronautical Engineering & Mechanics 

Rensselaer Polytechnic Institute 
Troy, New York 12180-3590 

An expanded description of the Force-Phasing Matrix (FPM) technique 
for understanding the physics of instabilities of linear dynamic systems 
is presented. The technique is a mathematically formalized procedure for 
identifying those forces acting on the system's component degrees-of­
freedom which are in-phase with the velocities of these degrees-of­
freedom. Tbe FPM technique, originally defined only for the case of 
linear systems with constant coefficient, is expanded to the case with 
periodic coefficients. The technique is thus particularly well-suited to 
rotorcraft instability problems. Application of the technique is made to 
the cases of air resonance and blade flap-lag instabilities. Significant 
differences between ground resonance and air resonance instabilities, as 
identified using the FPM technique, are discussed. Finally, results 
obtained from applying the technique to the problem of flap-lag instability 
of a rotor in forward flight are also discussed. 

1. Introduction 

1.1 Background 

In recent years considerable effort has been spent in the develop­
ment of analyses for predicting aeroelastic and aeromechanical instabili­
ties of helicopter rotor blades. To a great extent this cumulative effort 
has been well-directed; several aeroelastic stability analyses [1-3] have 
been formulated which successfully identify and model various types of 
rotor instability. Such analyses generally involve the derivation and 
solution of sets of linear differential equations describing the motion of 
the several degrees-of-freedom defining the total dynamic system. These 
multi-degree-of-freedom equations of motion are generally written in 
matrix form as: 

[M][x} + [c][i} + [K][x} = [F(t)} 

A recognized hallmark of rotary-wing dynamics is an abundance of 
nonconservative forces (usually involving rotor speed). Consequently, 

(1) 

the resulting analyses produce equations of motion of the above type 
wherein the M, C and K matrices (mass, damping and stiffness matrices, 
respectively) are square, real-valued, highly nonsymmetrical and often 
periodic in time. The universal starting point for rotary-wing stability 
analysis is to solve Eq.(l) as some form of an eigenvalue problem with the 
applied loading description (the right-hand side) set to zero. 

62-1 



The principal mathematical result of such an eigenvalue analysis is 
the eigenvalue itself which gives a quantitative measure of the stability 
level of the dynamic system as a whole. Hence, a ubiquitous characteristic 
inherent in all such aeroelastic analyses is a wealth of stability bound­
aries, as gleaned from the interpretations of the eigenvalues obtained, 
showing trends with respect to a multiplicity of system parameters. All 
too lacking, however, is a unifying exposition of the destabilizing 
mechanisms involved. Knowledge of such mechanisms has the potential for 
providing general insight into the physics and, thereby, enabling an 
efficient remedy to the instability to be devised. In addition to the 
system of equations and the resulting eigenvalues, recourse must be made 
to the eigenvectors to achieve this objective. It should be noted that 
as a rule, eigenvector information is typically discarded as a useless 
by-product or, at best, underutilized in most rotary-wing aeroelastic 
stability analyses. The primary tool advanced herein for providing 
insight into the destabilizing mechanisms is the "Force-Phasing Matrix" 
(FPM) methodology, as originally proposed in Ref.4 and later in Ref.5 

1. 2 Objectives 

The primary objectives of this paper are twofold: First, since the 
original exposition of the force-phasing matrix technique little use has 
been made of the method. This has been due in part to the fact that it is 
not widely known and in part because it was originally formulated for the 
limited class of eigenvalue problems wherein the M, C and K matrices are 
constant. Thus, the first objective of this paper is to reacquaint the 
rotary-wing dynamics community to the method with appropriate reformula­
tions, including the extension to Floquet type problems. The second 
objective of this paper is to provide new insights into contemporary 
rotary-wing instability issues as obtained using the reformulated Force­
Phasing Matrix technique. As originally described in Refs.4 and 5 the 
FPM technique successfully identified the destabilizing elements in the 
matrix equations of motion only for the important but already well­
understood problems of blade bending-torsion flutter and divergence, 
Results presented herein include applications of the FPM technique to 
helicopter air resonance and blade flap-lag instability. 

2. Theoretical Development 

2,1 Basic Ideas 

The theoretical development of the FPM technique follows from three 
simple ideas governing the unstable motion of any linear;multi-degree-of­
freedom system: (1) The nature of any unstable system is that it has 
destabilizing forces acting on it which have components in-phase with 
velocity. Thus, for unstable motion these forces produce work on the 
system. (2) Within any such unstable dynamic system each degree-of­
freedom has a multiplicity of forces which have components correspondingly 
in-phase with the velocity of that degree-of-freedom. Such forces are 
herein denoted as "driving forces." That each degree-of-freedom has 
drivers in a condition of instability is presented without proof, but 
follows heur<is tically from the properties of linear differential equations. 
(3) For any instability involving two or more degrees-of-freedom there 
will exist a multiplicity of energy-flow paths (i.e,, vicious circles) 
wherein the two or more degrees-of-freedom will mutually "pump" energy 
into each other. 
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The principal function of the FPM technique is to identify those 
force terms in the equations of motion which, for an unstable mode, are 
so phased by the mode shape (eigenvector) as to be "drivers" of the 
motion. The technique is perhaps nothing more than a formalization of the 
intuitive use an experienced dynamicist would make of the eigenvector 
information. The basis of the technique can be seen by considering the 
eigensolution of Eq.(l) wherein theM, C and K matrices are assumed to be 
constant and the right-hand side is equated to zero. For this case the 
general solution to the homogeneous differential equation is: 

[x} =I [~(k)} e~t 
k 

(2) 

where Ak denotes 

kth eigenvector. 

the kth eigenvalue and [~(k)J denotes the corresponding 

In general, both Ak and ~(k are complex-valued. The 

eigenvalues A(= cr±iw), which give stability level (cr) and natural fre­
quency (w) information, are obtained from any of a current variety of 
standard eigensolution techniques. Upon inserting the general solution, 
Eq.(2), into the eigenvalue equations, each row of the resulting equation 
set represents ·the equilibrium of forces acting on a corresponding degree­
of-freedom. Each such equation can be written as the sum of the mass, 
damper and spring forces ·of the nth diagonal element degree-of-freedom 
along with the remainder of the terms lumped together as a combined excita­
tion force, f : 

n 

m A 2 (k) + c l.. (k) + k (k) 
nn k~n nn·K~n nn~n 

2 (k) 
(m .Ak+c .l.. +k .)~. = 0 nJ nJ'K nJ J 

f 
n 

(3) 

For the usual, nonpathological case m , c and k are all posi-
nn nn nn 

tive numbers; that is, each autogenous mass (i.e., when uncoupled from 
the others) is generally a stable spring-mass-damper system. Since the 
eigenvalue Ak is generally complex, Eq.(3) can then be interpreted as the 
sum of four complex quantities or vectors in the complex plane which must, 
furthermore, be in equilibrium. Assuming that for any complex pair the 
eigenvector with the positive imaginary part is used throughout, the argu­
ment of the eigenvector ~ is the angle by which the inertia force vector 
is rotated (counterclockwise) relative to the damper force and the damper 
force is rotated relative to the stiffness force. For unstable motion 
the real part of A~ (crk) is a positive number and, hence, ek will be less 

than ¥ (i.e., 90 degrees). If a point in time is taken when the velocity 

of the nth degree-of-freedom is pure real and positive, then the auto­
genous damper force (-Akc ~(k))will correspondingly also be pure real 

nn n 

but negative. Further, if it is recalled that the four vectors are in 
equilibrium and governed by the constraint on ek, then the real parts of 

the autogenous spring, damper and inertia forces will all be negative and, 
hence, the remaining lumped off-diagonal terms must always have a positive 
real part. 
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Figure 1, which demonstrates this argument, shows the four force 
vectors in the complex plane for an unstable oscillatory mode [Re(Ak) = 

crk > 0; ek < n/2] and unit negative real damping. Since the f vector is 
n 

a sum of all the off-diagonal terms for the nth degree-of-freedom, any of 
the individual terms within f which has a positive real part must be deemed 

n 
a "driver" for that degree-of-freedom. Conversely, any of the individual 
terms within f which has a negative real part can be deemed a "quencher" 

n 
for that degree-of-freedom. This fact thus provides the dynamicist with the 
complementary information as to which parameters might be increased to 
stabilize an instability. 

J. c cp(k) 
"'k nn n 

k (k) 
nn'Pn 

(SPRING FORCE) 

(DAMPER FORCE) 

f (DRIVING FORCE) 
n 

Figure 1 Force Vector Diagram for nth Degree-of-Freedom, kth Mode 

The above interpretations of unstable motion can be quantitatively 
implemented by forming herein defined "force-phasing matrices. 11 For any 
unstable eigenvalue Ak these matrices have a one-to-one correspondence 

to the original M C and K system matrices defining the equations of 
J ' . motion [Eq.(l) : Any positive real element in one of the force-phas~ng 

matrices signifies that the corresponding system matrix element is a 
driver. 
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2.2 Mathematical Implementation-Constant Coefficient Case 

Force-phasing matrices are essentially formed by dividing each row 
of the original system of equations by a number which renders the diagonal 
damping term pure negative real. For the case of constant coefficient 
matrices this can be easily accomplished using the eigenvalue and eigen­
vector information. The force-phasing matrices corresponding to the M, C 
and K system matrices, for the kth eigenvalue can be written, respectively 
as: 

[P(k)J [p(k)] =-
Cl!(k) 

= Re[[mij] ® [ (k.) J J M M .. 
l.J i3i cii 

(4) 

[P (k)] [p(k)]=- Re[ [cij] ® 
s ~k) 

J J = [S~~)c .. c c .. 
l.J 

l. "1.1 

(5) 

(k) 
[P(k)] (k) [ [ Yj J J = [pK .. ] =- Re [kij] @ (k) K 

l.J i3i cii 

(6) 

where the@ symbol denotes a Hadamard matrix multiplication (Ref.6). 

The Cl!(k)' 13(k) and y(k) vectors are formed from the results of the 
basic eigensolution: 

(13(k)} = ~(cp(k)} 

[ /k)} = [cp (k)} 

(7) 

(8) 

(9) 

Note that this formulation is general in that it covers both oscillatory 
and aperiodic instabilities. Although not strictly required for the 
methodology, the division by c .. in Eqs.(4), (5) and (6) serves the useful 

1.1. 
normalization of the matrices relative to the diagonal damping terms. 

Clearly, this division will render all diagonal terms in [Pdk)] equal to -1. 

2.3 Mathematical Implementation - Periodic Coefficient Case 

The extension of the FPM technique to the case wherein the system 
matrices [M, C and K of Eq.(l)] are periodic in time (Floquet theory) 
requires again a basic eigenvalue solution. In this case, however, the 
appropriate eigenvalue quantity is denoted the characteristic multiplierAk 

which can be efficiently obtained using a transition matrix approach (see 
Ref.7). For present purposes the Floquet theory problem is given in non­
dimensional form as: 

*' (y} = [A<w)J{yJ (10) 
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* where ( ) denotes differentiation with respect to nondimensional time 1J! 

(= Ot, where 0= 2n/T), and [A(~)] and (y} result from an augmented state 
vector representation of the basic dynamic equation: 

* * LyJ = Lx:xJ (11) 

[A<w)J = [-=~~J==1gi~lJ_!_-_1t~J==1~i~lJj 
I : 0 

I 

(12) 

The Floquet theory transition matrix approach generally involves 
the formation and eigensolution of a transition matrix [pA(T,O)], as 

typically obtained using some form of numerical integration scheme (with 
step size h) over one period, T: 

(y(T)} [H(T-h)][H(T- 2h)] ... [H(O))[y(O)} 

= [PA(T,O)](y(O)} = A(y(O)} 

(13a) 

(13b) 

where (y(O)} is both the arbitrary state vector at the start of the 
period and the resulting eigenvector of the transition matrix. As shown 
in Appendix A, the H matrices of Eq.(l3a) together with the eigenvector 
(y(O)} enable the characteristic (nondimensional) acceleration, velocity 
and displacement vectors at 1J! = 1J! to be represented as follows: 

m 

[*i<wm)} = [U(A))[y(O)} 
m 

(14a) 

*' [U(B)](y(O)} [x(IJ!m)} = m 
(14b) 

[x(IJ!m)} = [u(C) ](y(O)} 
m 

(14c) 

(A) (B) (C) . 
Using these U , U and U matr1ces the force-phasing matrices m m m 

for the kth eigenvalue can then be written as: 

N p . (k) 
[P(k)] =- 1 I [ [ ajm J J M N· Re [mij ( ~m)] ®, (k) o 

p m=l !3im \i 

(15) 

Np !3~k) 
[p(k)] =- 1 I Refcc .. q )J ® [ Jm J J c N L l.J rn !3~k\~. p m=l ~m J.l. 

(16) 

Np (k) 
[P(k)]=- 1 L Re[ [kij (IJ!m)]@ [ (~~mo J J K N p m=l !3im cii 

(17) 
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where N is the number of intervals into which the period, T, is divided, 
p 0 

as per Eq. (13a), c.. is the constant part of the ith diagonal damping matrix 
LL 

element and where: 

(18) 

(19) 

(20) 

2.4 Use of Force-Phasing Matrices - Energy-Flow Paths 

Using the above formulations force-phasing matrices can be written 
for either the constant coefficient case [Eqs.(4)- (6)] or the periodic 
coefficient case [Eqs.(l5)- (17)]. In either case the force-phasing 
matrices constitute one-to-one correspondences with their respect~ve 
dynamic system M, C and K matrices. The interpretation and usage .of the 
force-phasing matrices can be summarized as follows: 

(1) Identify the most active degrees-of-freedom from the eigen­
vector information for the unstable mode in question. 

(2) Look for relatively large positive (+) values in the force­
phasing. matrices involving the most active degrees-of-freedom 
as identified from the eigen~ector. Such elements are the 
"drivers" for the unstable motion. 

(3) Of the drivers so identified look for those which involve 
degrees-of-freedom which mutually drive each other. Such 
drivers we denote as "critical drivers." As illustrated in 
Figure 2 such critical drivers would occur in the most simple 
form as off-diagonal terms involving two distinct degrees-of­
freedom, say the nth and mth. 

(4) Thus, critical drivers would show up as relatively large (+) 
values in both the ( ) and ( ) elements of one or more of mn -- nm 
the three force-phasing matrices. The interaction through these 
terms is defined herein as the "energy-flow path." 
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nth Degree-of-Freedom mth Degree-of-Freedom 

~~ ,-E---- ---- l 
nth 

Equation 

1 ""~ 
I . I 
I 
I 

Diago~al I 
Elements 

~: 
--4 
~ Equation ----- mth 

Critical Drivers = Terms in original dynamic equa­
tions acting as mutual drivers for unstable motion, 
as identified by (+) terms in corresponding force­
phasing matrices. 

Energy-Flow Path 

Figure 2 Definitions of Critical Drivers and Energy-Flow Path 

3. Applications 

The FPM technique is completely general in that it can be applied 
to any explicit set of linear (or linearized) differential equations of 
motion, irregardless of the number of degrees-of-freedom. For demonstra­
tion purposes herein, however, two basic sets of simplified equations are 
used for the instability phenomena to be examined. For ground and air 
resonance purposes the equations described in Ref.8 were selected 
because they constitute a reasonably representative modeling of the 
phenomena yet are sufficiently explicit for the purpose af demonstrating 
usage of the FPM technique. This set of equations, applicable to both 
ground and air resonance calculations, is reproduced in Appendix B. For 
the analysis of flap-lag instability in forward flight the differential 
equations defined by Peters (Ref.3) were selected; only selected portions 
of these equations are reproduced herein for brevity. 
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3.1 Ground Resonance 

As can readily be seen from any typical set of basic ground resonance 
equations [8, 9], the. coupling terms producing the instability (i.e., 
those which couple the pylon (hub) in-plane translational displacement and 
rotor blade cyclic edgewise motion dynamic subsystems) can be readily 
identified to be the off-diagonal, acceleration dependent ones. Using the 
complex displacement scheme of Ref. 9 and the nomenclature of the equations 
given in Appendix B, these coupling terms can be expressed as: 

Hub in-plane motion (z = x + iy) eguation 

(2la) 

Rotor edgewise motion (e = ex+ iey) equation 

= 0 (2lb) 

where 848 , as defined in Appendix B, is a generalized edgewise first mass 

moment of inertia for the blade, and b is the number of blades. This 
parameter (848 ) is directly analogous to the ~ parameter defined in the 

classic work of Coleman and Feingold (Ref.9). In the basic ground reson­
ance equations of motion these coupling terms are quite literally the only 
ones present, and indeed (in the limit) minimization of these terms rela­
tive to the diagonal terms, eliminates the instability. Clearly, identify­
ing the coupling terms in the above manner, however, is an insufficient 
explanation of the ground resonance instability. That these coupling terms 
result in instability is due in large measure to the phase relationships 
resulting between z and 8, and even more importantly, between ex and ey· 
These issues are addressed in more detail in the following section. 

3.2 Air Resonance 

Appendix B presents the simplified set of equations used for exam­
~nkng the physics of the air resonance phenomenon. The minimum descrip­
tion selected for this simplified analysis includes eight (cyclic) degrees­
of-freedom: longitudinal and lateral hub translations (x andy), hub roll 
and pitch rotations (8"< and ey,), blade longitudinal and lateral inplane 

bending (ex and ey), and blade rolling and pitching flatwise bending (eX. 
and ey, ). The increased complexity of the air resonance equations (over 

those for ground resonance) is commensurate with the need to include aero­
dynamic as well as gravitational effects. Consequently, coupling terms 
abound in the air resonance equations. 

For illustrative purposes the four-bladed, Froude-scaled hingeless 
rotor/airframe configuration described in Ref.8 was used. Table 1 lists 
the mechanical and geometrical properties of both the selected blade 
configuration and the (rigid body) airframe. 
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TABLE 1 

AEROMECHANICAL PROPERTIES OF ROTOR AND PYLON 
USED FOR AIR RESONANCE CASE 

1, Rotor Properties 

(Nominal) tip speed, OR 
Froude number @ nom (It 
Radius, R 
Mass distribution, ro 1 

Flatwise bending stiffness, EI 
w 

Edgewise bending stiffness, Elv 

(Nominal modal damping, Cv'Cw 
Number of blades, b 
Lock number, y 
CT/cr (hover) 

Chord, c 
Precone angle, SB 

Collective angle, e.?SR 

Inflow, A 
a 

cdo 
Thrust, T 

2. Pylon Properties 

Pylon mass, mf 

e.g. location, h1 
(Nominal) roll inertia, I 

'P£ 

(Nominal) pitch inertia, 1
9 f 

90,50 m/s 
608,41 

1.37 m 
4, 98 kg/m 
1. 904 Nm2 

106.65 Nm2 

0,005 
4 

5.854 
0,075 

11.65 em 
0.5 deg 

9.98 deg 

-0.06371 
0.1/deg 
0.008 

387.20 N 

37,02 kg 

0.305 m 

0,163 kg-ni' 

0. 746 kg-m2 

For a hovering flight condition (OR ~ 96.01 m/s) an unstable air 
resonance eigenvalue pair (characteristic roots) was calculated to be 
).. ~ +. 2498 ± i26.8127. For this eigenvalue the complex eigenvector is 
given by: 

" y ex, 

LcpJ ~ /Real/ -. 2324 -. 5604 ,8284 

/Imag/ -.0476 -.0438 .1378 

ey, Ex Ey ex, ey. 

-. 2619 1.0000 • 0219 -.4546 .0862 

-. 0651 0. -.9853 -.4509 .1569 

Based on this modal information the unstable motion is seen to 
involve principally the y, e , E , E and ex_ degrees-of-freedom. 

Xr X y --, 
These degrees-of-freedom constitute those defining lateral motion with 
almost equal components of both lateral and longitudinal cyclic blade 
edgewise bending, For the unstable air resonance characteristic root pair 
given above, the force-phasing matrices which were calculated using 
Eqs.(4), (5) and (6), are given below with the most significant drivers 
for the principal degrees-of-freedom indicated with boxes. 
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[PM]' Phasing Matrix for Mass Matrix 

-.907E+Ol .OOOE+OO .OOOE+00-.250E+02 .512E+02 .QOOE+OO .OOOE+00-.330E+OO 
.OOOE+00-.907E+O -.790E+02 .OOOE+OO .OOOE+00(.101E+0~.421E+OO .OOOE+OO 
.OOOE+OO 173E-01 .QOOE+OO _.OOOE+OO .449E 02-.210E+OO .OOOE+OO 
.754E-01 • .OOOE+00-.209E-01 .358E-02 .OOOE+OO .OOOE+00-.233E+OO 

-.312E+OO .OOOE+OO .OOOE+00-.116E-01-.187E+OO .OOOE+OO .OOOE+OO .OOOE+OO 
.OOOE+00-.392E+01-.157E+OO .OOOE+OO .OOOE+00-.187E+OO .OOOE+OO .OOOE+OO 
• OOOE+OO • 851E-03!, 385E+OOI • OOOE+OO • OOOE+OO • OOOE+OO-. 472E-02 • OOOE+OO 
.151E-02 .OOOE+OO .OOOE+OO .559E+OO .OOOE+OO .OOOE+OO .OOOE+00-.472E-02 

[PC]' Phasing Matrix for Damping Matrix 

-.100E+Ol-.115E+00 .718E+Ol-.119E+Ol .798E+01-.178E+OO- .492E+OO 
.205E-01-.100E+01-.155E+01-.961E+00-.425E+OO-.t .240E+OO 
.211E-01-. 172E-02-. 100£+01 [.79BE+OQb.2B6E+OO • 332E+OO 

-.227E-02-. 154E+00-.773E+01 • 100E+01 .OOOE+OO-. 195E+OO .513E+01 .438E+OO 
.533E-01-.213E-03I.359E+09 .QOOE+00-.100E+01-.229E+Oli.239E+OQ .OOOE+OO 

-.164E-04-.730E-02 .QOOE+OO .260E-Ol 36E+Ol • lOOE+Ol .OOOE+OO .826£-01 
-.235E-Ol .173E-02(. 108E+01~.946E+OO .250E+O .OOOE+OO-. lOOE+O! !.710E+OOJ 
.222E-02 • 130E+OO .759£+01 . 103E+01 .OOOE+OO • 107E+0!-.907E+01 • lOOE+Ol 

[PK]' Phasing Matrix for Stiffness Matrix 

.OOOE+OO, .OOOE+OO .OOOE+OO .252E+Ol .505E+00-.206E+02 .394E+Ol-. 132E+o2 

.OOOE+OO .OOOE+00/.625E+01/.ooOE+OOI.616E+O(ji.11DE+011 .170E+02-.705E+OO 

.OOOE+OO .OOOE+OO .706E-03 .OOOE+OO .OOOE+00/.73BE+Oa .OOOE+00-.429E+OO 

.OOOE+OO .OOOE+OO .OOOE+00-.706E-03 .546E+OO .QQOE+OO .314£+01 .OOOE+OO 

.OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OOj.793E+OOI.257E+Oll .OOOE+00-.216E+OO 

. OOOE+OO • OOOE+OO • OOOE+OO • OOOE+OO !. 265£+01!1. 793E+00 • 640E+OO • OOOE+OO 

.OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .663E+OO .261E-02 !.213E+OO! 

.OOOE+OO .OOOE+OO .OOOE+OO .QOOE+00-.287E+01 .QQOE+OO .256E+01-.261E 02 

Using these force-phasing matrices together with the relative modal 
activity for this mode (as indicated above by the eigenvector information) 
an energy-flow diagram can be drawn. Such a diagram represents a summary 
of the information provided by the force-phasing matrices. The energy­
flow diagram for the given air resonance condition is shown below. 

Eq. No. y -··---9~, ex ey 
----''-----+---

De ree-of-Freedom 

2 (y) 

3 (9 ) x, 

5 (e ) 
X 

6 (e ) 
y 

7 (9 ) 

"" 

•• 

Figure 3 Energy-Flow Diagram for Air Resonance Instability Condition, 
Hovering Flight, Cr/ cr = 0. 07 5 
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The following observations and interpretations can be drawn from 
this diagram (together with the quantitative information contained in the 
actual force-phasing matrices): 

• The air resonance instability is a multiple energy-flow path 
phenomenon with both direct and indirect paths. 

e Contrary to the ground resonance case there are no pylon-to­
blade edgewise acceleration dependent coupling terms partici­
pating in any of the energy-flow paths. 

• Direct energy-flow paths exist between the following sets of 
degrees-of- freedom (y and ex,), (ex, and ex, ) , (ex and ey), 

and (ex and (Sx, ). 

o Indirect energy-flow paths exist between ex and e (through 
f y 

e ), and between y and e (through 9 and e ). 
X y Xf X 

• The unstable coupling between e and e , which is typical with 
X y 

both ground resonance and air resonance, involves not only 
damping and stiffness off-diagonal terms, but the diagonal 
stiffness terms as well. The diagonal stiffness contributions 
are relatively small, however, and arise from the fact that 
the k55 and k

66 
terms themselves become negative for the 

supercritical operation characteristic of ground and air 
resonance phenomenon. 

o The most significant critical drivers are those coupling 
forces associated with the k 23, m26, k 26, m32, k36, c37 , c

53
, 

k55' k56' c57' c65' k65' k66' m73' c73 and c75 terms. 

Using the equations in Appendix B, the critical drivers can be 
explicitly written and are given in the following table: 

TABLE 2 

CRITICAL DRIVERS FOR AIR RESONANCE HOVERING CONDITION 

• Hub Lateral Force (Fr): 

o Hub Roll Moment <Mxf): 

- (b~Bsl- mfhl)y 

b 2 
l Ka(J R().T20 + 29 • 75RT2l)ey 

b • 
2 KaORTll axR 

(cont'd) 
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Table 2 - cont'd. 

o Longitudinal Edgewise Excitation \=:ex): 

-K}lR(2AT20 +B. 75RT21)Sx, 

2 2 
s49(wv- 0 )ex 

[ 28490\,Wv +Ka02R( 2 ~ T25- a. 75R).T24)] ey 

[211JOS25- Ka0R(2).T22 +a. 75RT23)] ex, 
• Lateral Edgewise Excitation <E'.e ): 

k • 
65" 

k • 
66" 

• Rotor Rollwise Flatwise Excitation <Ee ) : . ' 
m73: 5t29xf 

c
73

: K ORTll 9 
a xf 

c7S' (-2~0525 +KaOR(ATzz +26_ 75RT23))tx 

3.3 Flap-Lag Instability 

The equations of motion selected for the analysis of flap-lag insta­
bility are those of Peters (Ref.2, with updates transmitted to the author 
informally). These equations are essentially those published earlier by 
Ormiston and Hodges for hovering flight (Ref.l) but with extensions which 
include (quasi-static) forward-flight aerodynamics. The inclusion of 
forward-flight aerodynamics produces periodicity in the equations of motion 
and, hence, admit the optional use of Floquet theory for solution. 

Briefly, the (2 X 2) equations describe the coupled motion of the 
blade in rigid body flapping ~' and lead-lag, c. These degrees-of-freedom, 
as elastically coupled by a general root retention spring system, consti­
tute an idealization of the flapwise and inplane bending of a hingeless 
rotor blade with structural coupling arising from a variety of sources: 
pitch angle, twist, etc. The idealized elastic coupling is quantified 
using the uncoupled nonrotating natural frequencies in flap and lead-lag, 
w~ and wC' respectively, and an elastic coupling factor, R. The Peters 

analysis also generalizes the automatic pitch change description to include 
both flapping and lead-lag effects, 6~ and es' respectively. Finally, in 

addition to the aforementioned forward-flight aerodynamics effects, the 
analysis makes provision for investigating the effects of a partial trim. 
The trim calculation must be deemed only a partial trim in that it neglects 
the rotor inplane forces and assumes a zero shaft angle. Hence, in the 
numerical results presented propulsive force trim was omitted and only 
those control angles required for thrust and zero hub moment were calcu­
lated. The actual equations used for obtaining the partial trim conditions 
are given in Refs.lO and 11. 

These flap-lag equations are considerably simpler than those for 
air resonance in that there is no difficulty in identifying the critical 

62-13 



degrees-of-freedom and in establishing the energy-flow path. There are 
only four (4) off-diagonal terms which can couple these two degrees-of­
freedom, and for zero elastic coupling (R= 0), the two off-diagonal 
damping matrix elements dominate. In order to clarify the discussion to 
follow, the damping matrix of the flap-lag equations is reproduced herein 
from Ref.2 for the case of constant coefficients and zero flapping: 

[c] = 

y_ 
8 

L, ) - - i-16 3 s 
--------------------- :-------------------------

-213 
0 

y ( -+ 8 -2cp+6o 

1 
I 

+ 1 1-16 ) h. (2 ~ + 6 q; + .?. 1-113 6 ) 
3 s:s a o 3 oc 

I 
I 

(22) 

The increased complexity of the flap-lag instability problem over 
that of air resonance arises because of the periodicity of the coefficients. 
For this case it is possible for otherwise stabilizing or neutrally stable 
forces to act as drivers, as will be shown in the material to follow. 

The FPM technique ,.,as applied to the flap-lag instability phenomenon 
using four basic flight conditions: 

(1) Hovering (!-1 = O) 
(2) Autorotation (i-1 = 0) 
(3) Forward-flight at 1-1 = 0.3 
(4) Forward-flight at 1-1=0.45. 

Additionally, the two forward-flight cases were run without and with the 
harmonic terms (i.e., constant coefficients vs. periodic coefficients). 
For all the cases, except where varied and so noted, the calculations were 
made using the following configuration parameters: w

13 
= 0. 3873, Ill(= 1.4, 

y = S, R = O, CT/cr= 0. 2, 6l3 = 6(; = 6c = O, cdo = 0.01, a= 2rr. The results of 

the calculations for these four cases are summarized in Table 3. 

The bottom portion of Table 3 presents the stability results 
achieved both in terms of the critical eigenvalue (inplane motion dominant) 
and those elements of the force-phasing matrices which indicate that the 
corresponding terms in the equations of motion are drivers. All of the 
critical eigenvalue results calculated are consistent with those calculated 
and presented by Peters (Ref.2). For those cases wherein Floquet theory 
was used (3b and 4b) the critical eigenvalues were calculated from the 
critical characteristic multipliers using the technique of Ref.7. The 
variations in advance ratio 1-1, and inplane natural frequency w(;' were 

selected so as to obtain results which showed instability, as well as 
demonstrated interesting facets of the FPM technique. 

3. 3.1 Non-Forward-Flight Cases (;+ = 0) 

For the nominal inplane frequency of 1.4 the basic hovering case 
(la) was found to be stable (again consistent with Refs.l and 2). Upon 
changing this frequency to 1.2 (case lb), an instability was obtained and 
the drivers for the motion were found to be only those indicated by the 
(1,2) and (2,1) elements of the damping force-phasing matrix. Note that 
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TABLE 3 

STABILITY AND FPM REStn.TS FOR FLAP-LAG INSTABILITY CASES 

Case 

Parameter la lb 2 3a 3b 4a 4b 

" 0 0 0 0.3 0.3 0,45 0,45 

•o 17,02 17.02 10.41 14,90 14.90 17.53 17.53 

•. 0 0 0 -10.90 -10.90 -20.02 -20.02 

• .0943 ,0943 -.0083 .0222 ,0222 .0148 .0148 

'0 
5.49 5.49 5.14 5. 20 5,20 5.14 5.14 

w 1.4 1.2 1.4 1.3 1.3 1.4 1.4 v 

Harmonic 
terms N N N N y N y 

Result 
item 

).crit -.00085 .00072 .00074 .00020 .00113 -.00085 ,00219 
±11.398 ±iL196 ±U.399 ±il. 298 ±il,299 ±il.398 ±11,402 

0 

Pcl2 
1.00 1.00 1.00 1.05 0.793 

0 

Pc21 
1.07 2.43 1.16 1.33 1.47 

0 
(-.00093) (-.00070) (-.00022) o. 23 

p'S.1 1,24 

el ~ .., 
H ~ ~ Pc21 - - - ,049 (-.031) 

~ ~ 

H 
PK21 - - - 0.94 0.55 

the (1,1) elements of the stiffness force-phasing matrix for these cases 
are negative and parenthesized to indicate that they are nondrivers or 
11 quenchers." 

In order to gain understanding of the basic instability mechanism, 
a parameter variation was made of the lead-lag frequency, wC' for the 

selected hovering flight condition. Figure 4 presents the results of this 
variation. The figure shows the variations of the stability indicating real 
part of the critical eigenvalue, the phasing of the flapping motion relative 
to the lead-lag motion, and the two driver elements of the damping force­
phasing matrix with this lead-lag frequency. For variations in wC it can 

be seen from Eq.(22) that the off-diagonal damping matrix elements are 
invariant. Thus, the wide variation of p~ and p~ with Wr must be due to 

12 21 ';:;. 

the variation in the modal relationship of B to r;, as shown by arg(~/C). 
Note that p0e and p0e correlate well with cr "t' confirming the consistent 

12 21 crl. 
role of the c12 and c

21 
terms as critical drivers. For this hovering condi-

tion the numerical evaluation of the [e] matrix is as follows: 

[cl ·l::: -.121 J 
.0195 
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a:: 

1.25 

(/) 
1- 1.20 po 
z c2, w 
:::!: 
w 
...l 1.15 w 
X 
a:: 
ti I. I 0 

:::!: 
a.. 

I 1.05 LL. 
(!) 

P;,2 z 
a.. 1.00 :::!: 
<( 
0 

0.95 
0.8 0.9 1.0 1.1 1.2 1.3 1.4 

NONROTATING LEAD-LAG FREQUENCY, wt, (ND) 

Figure 4 Variation of Flap-Lag Stability Parameters, Hovering 
Flight Condition, CT/cr = 0,2, 9

0 
= 17.02 deg, 1ji=0.0943 

Figure 4 indicates that the maximum instability point occurs when 
the flapping and lead-lag motions are in-phase with each other. Thus, the 
role of these off-diagonal damping matrix elements becomes clearly that of 
being sources of negative damping. Note from Eq.(22) that the c12 damping 

matrix term would normally be positive (= + 2fl
0

) but for the aerodynamic 

contribution, which becomes increasingly negative with 9 . TI1e trend of 
0 
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decreasing stability with increasingly high values of collective angle is 
well recognized (Ref.l). The variation of the c 21 term with 6

0
, and cor-

respondingly with ~' however, is not nearly as great, and that element 
generally remains negative. 

For the nominal lead-lag frequency the autorotational case (2) was 
found to be unstable verifying the destabilizing trend found for auto­
rotative flight (Refs.lO and 11). Note that. in the formulations of the 
FPM technique an arbitrary normalization of the matrices by the diagonal 
damping forces was employed. Thus the substantial increase in the p~ 

21 
damping force-phasing matrix element(= 2.43) over that for case la (=1.07) 
should be interpreted to mean either that the destabilizing impact of the 
c

21 
term in the equations has increased, and/or that the stabilizing impact 

of the c
22 

term has decreased, Examination of the damping matrix portion 

of the Peters equations, Eq.(22), indeed reveals a loss of inplane damping 
(c 22) with negative values of the inflow parameter ~ at a rate higher than 

the accompanying reductions in the destabilizing damping matrix coupling 
terms (c

12 
and c

21
). Thus, it would appear that the decrease in stability 

with autorotative flight, as reported in Refs.lO and 11, is principally 
due to the substantial loss of autogenous inplane damping arising from the 
change of sign on the inflow. 

3.3.2 Forward Flight Cases (~ > 0) 

Each of the two selected forward-flight conditions was analyzed 
using both the constant coefficient approximate solution and the more 
exact Floquet/transition matrix solution. Note that for the periodic 
coefficient cases (3b and 4b) the FPM technique was applied separately to 
the constant portions of the system matrices as well as to the harmonic 
portions. The elements of the force-phasing matrices for these two com­
ponents. are denoted, respectively, by ( )0 and ()H. Note also that for 
the higher advance ratio case the results again support the findings of 
Ref.2 that the inclusion of the periodic terms can reveal an instability 
which might be masked by the constant coefficient approximation. The 
lower advance ratio case (3b) required a reduction in wC to a value of 1.3 

to achieve instability for both types of solution. Remarks made above 
concerning the hovering condition (case lb) would appear to be applicable 
to the constant coefficient case (3a) as well and won't be repeated. 

The results for the periodic coefficients case, however, show a 
somewhat different behavior. The off-diagonal coupling terms identified 
as critical drivers again include the (constant part of) the c12 and c 21 
damping terms, as before, but now with the harmonic portions of the c 21 
and k 21 equation elements as well. A significant result is that the 

constant part of the diagonal k
11 

stiffening term is now acting as a 

driver, even though this term is always positive. Such a term could not 
act as a driver for the case of constant coefficients because of the 
constant phase and amplitude relationship between the characteristic 
velocity and displacement vectors (see Figure 1), However, for the case 
of periodic coefficients (Floquet theory) the phase and amplitude relation­
ship between these two vectors is generally also periodic [12], Thus, over 
ohe period it is possible for the characteristic displacement vector to 
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have (on the average) a component out-of-phase with velocity, and thus act 
as a negative damper. The details of this relationship as it applies to 
the flap-lag instability phenomenon are not yet well understood however 

' ' and more study remains. 

4. Concluding Remarks 

Formulations have been presented which extend the range of applica­
bility of the Force-Phasing Matrix (FPM) to include linear dynamic systems 
with both constant and periodic coefficients. The FPM technique should be 
viewed as a principal part of the eigensolution results. While it does 
not, by itself, indicate stability levels, such as are provided by the 
eigenvalues, it does provide insight into the physics of the instability. 
As such, it is much more directly useful than the basic eigenvector 
results, which are often disregarded because they are difficult to inter­
pret. The implementation of the FPM technique as part of the eigensolu­
tion is quite simple. All of the results calculated for this study were 
computed using an IBM Personal Computer with a state-of-the-art FORTRAN 
compiler [13]. 

It should be stressed that the FPM technique is most properly used 
with and in support of engineering judgement; the results should be inter­
preted generally in the context of the specific application. The technique 
will usually not in of itself provide the design engineer with direct 
information as to how to stabilize any and all instabilities, much less in 
the most efficient manner. Its use lies more in providing the ability to 
identify those coupling terms which are drivers, to be reduced hopefully, 
and those which are quenchers, to be augmented, if possible. 

From the numerical results of applying the FPM technique to the air 
resonance and flap-lag instability phenomena, the following specific con­
clusions have been drawn: 

1. Ground resonance and air resonance instabilities are similar 
in that both require an energy-flow path between longitudinal 
and lateral cyclic rotor mode displacements of blade edge­
wise bending and both involve inertia couplings of the blade 
edgewise motion (accelerations) to the pylon motion force 
equilibrium. 

2. Ground and air resonance are dissimilar in that the energy­
flow paths for air resonance are multiple (both direct and 
indirect), rather than singular and do not involve inertia 
couplings of the pylon motion (accelerations) to the blade 
inplane motion force equilibrium, as with ground resonance. 

3. Stabilization of the air resonance instability using the 
FPM technique would be difficult using only the basic pas­
sive coupling terms given in the simplified dynamic equa­
tions since they are not subject to significant independent 
variation. Successful stabilization using FPM might best be 
accomplished by investigating the impact of additional 
coupling parameters unrelated to aerodynamic performance 
which could be built into the system. 

4. Simple flap-lag instability is basically caused by the off­
diagonal damping elements. Of particular importance are 
those portions thereof relating to flapping airloads result­
ing from lead-lag velocity and inplane Coriolis (inertia) 
loads resulting from flapping velocity. 
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Nomenclature 

a 
b 
C, Ia 
c 

'•o c, 
EI 
F~t,FYt 
fh 
[H(T-mh)) 

® 
hl 
Ier 'r~:pr 
K, 
k, 
[M], [c), [K] 
Mxt ,Myf 

"" m1J,c1J,ktJ 

""' m' 

N, 
[p~k) ], (p~k) ], 
[P~' l ] 

R 
r 
s1 , ••• s49 

T 

T1, ••• T215 
t 
[u<•lJ,[u'•lJ, 
[u<' l l 

x,y 
(x] 
(y] 
(y (0) l 
z 

y 
Yv ,y.,. 
E:x' €y 

Airfoil section lift curve slope, 1/deg 
Number of blades 
Rotor thrust coefficient per blade solidity 
Blade chord, em 
Airfoil section minimum drag coefficient 
Pylon effective translational damping at hub, N-s/m 
Blade bending stiffness, N-mf 
Hub force excitations in x- andy-directions, respectively, N 

Resultant driving force for nth degree-of-freedom, Eq.(3} 
Matrix relating solution for two consecutive augmented state vectors (Re£.7) 
Hadamard or element by element matrix multiplication (Ref.6) 
Distance airframe e.g. is below rotor hub, m 
Airframe pitch and roll inertias, respectively, about airframe e.g., kgnf 

Aerodynamic effectivity, kg-m 
Pylon effective translational stiffness at hub, N/m 
Inertia, damping and stiffness matrices, respectively 
Hub moment excitations in roll and pitch, respectively, N-m 
Airframe (pylon) mass kg 
Elements of the [M], tcJ and [K] matrices, respectively 
Rotor mass, Kg 
Blade mass distribution, kg/m 
Number of intervals into which period is divided 

Force-Phasing Matrices for kth eigenvalue 

Rotor radius, m, or elastic coupling parameter (Ref.2), as appropriate 
Blade spanwise variable, m 
Blade mass modal integration constants, as appropriate 
Period defining periodicity of equation coefficients, or thrust, as 
appropriate 
Blade aerodynamic modal integration constants, as appropriate 
Time, sec 
Matrices used to define characteristic acceleration, velocity and displace­
ment vectors, respectively 
Longitudinal and lateral hub displacements, respectively, m 
Vector of system degrees-of-freedom 
Au~ented state vector 
Eigenvector of transition matrix 
Complex hub displacement (= x + iy) 
Blade precone angle, deg 
Constant component of equilibrium flapping angle, deg. 
Blade Lock number 
Blade 1st edgewise and flatwise bending mode shapes, respectively 
Cyclic rotor mode descriptions of blade edgewise bending in 
Longitudinal and lateral directions, respectively 
Blade structural damping equivalent critical damping ratios for edgewise 
and flatwise bending, respectively 
Cosine and sine components of cyclic pitch control, deg 
Angular argument of kth (complex) eigenvalue, deg 
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90 ,9.?sR 
h, 
>. 

~ 

p 

" [Hy,O)] 

Hub roll and pitch motion, respectively, deg 
Cyclic rotor mode descriptions of blade flatwise bending in roll and pitch 
directions, respectively 
Alternate forms of blade collective angle, deg 
kth characteristic multiplier 
Alternatively, rotor inflow and Laplace transform space eigenvalue 
(= a± iw), 1/sec 

Rotor advance ratio 
Air density, kg/m3 

Real part of syst~ eigenvalue, giving stability information, 1/sec 
Fundamental or generalized transition matrix for initial conditions given 
at t • 0 

[HT,O)] 
[cp<•>J 

Transition matrix relating conditions at end of period to initial conditions 

cp 

• (J 

w 
w.,w. 

Superscripts 

>' & } 

)" 

( )< k) 

( )0 

() 

t> 
Subscripts 

( >cr 1t 

( ). 

( )v' ( ). 
( >:~~:~ ( ), 

kth eigenvector of dynamic matrix equation 
4 

Inflow parameter, s 3 A 

Alternatively, rotor azimuth angle and nondimensional tUne (= Gt) 
Rotor speed, rad/sec 
Imaginary part of eigenvalue giving coupled frequency information, rad/sec 
Inplane and flapwise (first) natural frequencies, respectively, of 
rotating elastic blade at a:, ""0, 1/ sec 
Dimensionless nonrotating flap and lead-lag frequencies of blade at f:b ""0 

Arising from aerodynamic sources 

Pertaining to harmonic portion of periodic coefficients 

Relating to kth eigenvalue 
Pertaining to constant portion of periodic coefficients 

Nondimensionalization by radius, R 

Differentiation with respect to o/ 

Critical or unstable eigenvalue 

Conditions at mth instant of time within a period 

Relating to blade edgewise and flatwise bending, respectively 
In longitudinal and lateral directions, respectively 

Appendix A - Characteristic Responses for Linear Systems with 
Periodic Coefficients 

The eigenvalue problem resulting from the transition matrix approach 
to the stability solution of linear equations with periodic coefficients 
yields a set of k characteristic multipliers ~' and a set of k character-

istic vectors, [y(O)k}. These vectors can be considered to be the k charac­
teristic initial condition vectors. The problem of defining the character­
istic responses (acceleration, velocity and displacement) at arbitrary 
instances within the system period can be obtained using the fundamental 
or generalized transition matrix L~(o/ ,O)J. This matrix relates the solu-

m 
tion vector at an arbitrary instant, o/ , to that at 1jJ = 0: 

m 

(A.l) 

This generalized transition matrix is directly available in the calculation 
for [~(T,O)] (see Ref.7). Equation (A.l) can be rewritten using a parti­
tioned form of a more compact notation for the generalized transition 
matrix: 

(A. 2) [~ (tjJ O)]fY(O)} =[-~=~] m' D2 
m 

(y(O)} 
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This equation together with Eqs.(lO) and (12) then enable the U 
m matrices of Eqs.(l4a-b) to be written as 

[U(A)] -[Mr
1
[[C(t/f )][Dl ] + [K('/1 )][D2 J] (A. 3) m rn m m m 

[U(B)] 
m 

[Dl J 
m (A.4) 

[u(c) J = [D2 ] (A. 5) m m 

Appendix B - Simplified Dynamic Eguations for Ground and Air Resonance 

The simplified equations of motion presented in this appendix are 
intended as a reasonably representative analytical vehicle for application 
of the Force-Phasing Matrices technique. As such, they are not intended 
for general analysis applications in support of actual helicopter design 
efforts. They are presented herein without mathematical development or 
justification. 

The eight differential equations respectively model the responses 
in hub x- andy-translations, hub roll and pitch rotations, blade cyclic 
edgewise bending rotor modes in the x- andy-directions, and blade cyclic 
flatwise bending rotor modes in roll and pitch directions: 

Hub Longitudinal Force (Fx) 

+~ 
2 

Hub Lateral Force (Fy) 

Hub Roll Moment CMx 
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Hub P:i. tc h Moment (My ) 
f 

Rotor Longitudinal Edgewise Excitation (Es ) 
X 

s
48

x + 13 s
46

e + s
49

[€ + 2C w e + (w
2

- (l)e J 
B yf X V V X V X 

. . ) ~(a) 
+s49o(2e +2C we + 21\os 25 <e +oey ;"• 

Y vvy ~ R x 

Rotor Lateral Edgewise Excitation (S. ) 
y 

) 2Q "o (e" - "9 ) ;E(a) - s 49o(ze + 2C w e + "B"" 2s " 
X v v X YR XR _:'_x_ 

Rotor Rollwise Flatwise Excitation <Ea. R ) 

(B .ld) 

(B .le) 

(B.lf) 

- 13 s 1 ,v+s <e +zoe )+s10[e +2~we+<w;-o2)exJ 
B t1' 12 xf y f XR w XR R 

+ s 
0
0(29 + 2r w e ) - 213Bos

25 
(8 +Oe ) ; E~a) (B.lg) 

1 YR "w W YR x Y ~ 

Rotor Pitchwise Flatwise Excitation (E9 ) 
YR 

where the various (inertia) integration constants are defined as follows: 

R R R 
sl ;Jm 1rdr sl2=R I m1

rywdr S = R J m1 ry dr 46 v 0 
0 0 

R R R 
s = J m

1
r

2 
dr sl6 = R I m lyw dr S ; R J m 1y dr (B. 2a-i) 2 48 v 0 

0 0 

R R 
R 

2 s 1 2 2 I m1y y dr s 2 I I 2 s 10 ; R m ywdr szs = R w v 
49 ;R m yvdr 

0 0 
0 

62-23 



Note that this equation set is intended for dual purpose in modeling 
both ground and air resonance characteristics. For ground resonance appli­
cations, only Eqs.(B.la,b,e,f) are used, with the i_l terms suppressed. 
For air resonance applications, all the equations are used, but with the 
i_2 terms suppressed. 

The aerodynamic excitations, indicated by the ( )(a) superscripted 
terms on the right-hand side of Eqs. (B.la-h), were formed using simple 
quasi-static aerodynamic theory. To this end the static lift curve 
slope a, a uniform constant drag coefficient cda' built-in precone 

angle, SB, the collective angle e.?SR' and uniform inflow A, were included 

in the formulations. The more realistic effects of twist, air mass 
dynamics, lift deficiency and nonuniform inflow were omitted consistent 
with the intended use of the equations. 

The simplified modeling of these aerodynamic terms is more or less 
standard and the explicit expressions for these terms are given below 
without derivation: 

+ (2AT5 + 9. 75RT6) (~~ Hl9YR) 

- S T (S - 09 ) Hl(AT8 + e 75RT18)ey} 
B 6 YR XR • R 

F;a) =% Kao{3SB(AT1 +e.75RT2) i 
2 cda Y 

- [(13B+2 -;-) T2- e.7SRAT1] R: + SBT3exf 

+ (2AT2 + 9. 75RT3)Sy f + i3B (AT19 + 29. 75RT20)(ex +Oey) 

- (2 cda T - 9 AT )<1: - Oe ) + i3BT6(S +Oe ) 
a 20 . 75R , 19 Y X ~ YR 

+ (2AT + 9 ?SRT6) (S - 09 ) - 0(AT8 + 9 ?SRT18)9x } 
5 . YR XR · R 
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M(a)=E_K {- x y 
xf 2 /lR (AT2+ 29 .75RT3) R + I'BT3ll: 

-T4Elxf- (AT20+29.75RT2l)(i;x+Oey)-Tll(S~ +09YR)} (B.3c) 

(a) b { x y 
MY f • 2 KaOR -~T3 R - (AT2 +29 • 75RT3) R 

- T4a - (AT 20 + 29 ?SRT 21 ) (€ - Oe ) - T11 (e -09 >} (B. 3d) 
yf • y x YR ~ 

• ( 2 c~ T25- 9. 75RAT2J(ex +Oty) 

+ (2AT22 + 9. ?SRT 23 ) (e~ +09YR)} 

cdc . 
- ( 2 7 Tzo· 9 .75RAT19) ~ + ( 2AT20+ 9 .75RT2l)Elyf 

cdc • 
- ( 2 7 T25- 9 . 75RAT24) (&y- Ot) 

+ (2AT22 + 9. 75RT23)(SYR. 09~)} 

E~a) • Kana{- (ATs + 29. 75RT6) t + ~T6 i 
xR 

where: 

1 4 
K •- paR 

a 2 

62-25 

(B. 3e) 

(B. 3f) 



and where the various (aerodynamic) integration constants are given by: 

l 

T1 = I cdr= 
0 

l 

I c-;: dr 
0 

l 

I -2 -c r dr 
0 

(i) 
avg 

l 

Tl8 = I cr 2 y~dr 
0 

l 

T20 = I ci'Yvdr 
0 

l 

T2l = I c ;=2yvdr 
0 

1 

= Icy y dr 
v w 

0 

1 

=Icryydr 
v w 

0 

(B. Sa- q) 

Note that for integration constants T
8 

and T
18 

the derivative of 

the flatwise mode shape, y~, is understood to be with respect to r. 

62-26 



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 1 to page 1
     Mask co-ordinates: Left bottom (7.90 0.99) Right top (792.29 68.16) points
      

        
     0
     7.9032 0.9879 792.2923 68.1648 
            
                
         1
         SubDoc
         1
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     0
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 2 to page 2
     Mask co-ordinates: Left bottom (10.93 64.57) Right top (64.57 837.42) points
      

        
     0
     10.9271 64.5723 64.5694 837.4189 
            
                
         2
         SubDoc
         2
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     1
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 3 to page 3
     Mask co-ordinates: Left bottom (551.90 44.59) Right top (583.60 830.33) points
      

        
     0
     551.8967 44.5931 583.6035 830.3276 
            
                
         3
         SubDoc
         3
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 4 to page 4
     Mask co-ordinates: Left bottom (-3.95 44.46) Right top (65.23 832.16) points
      

        
     0
     -3.9533 44.4592 65.2296 832.1562 
            
                
         4
         SubDoc
         4
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     3
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 5 to page 5
     Mask co-ordinates: Left bottom (556.77 61.63) Right top (583.62 830.18) points
      

        
     0
     556.7717 61.6343 583.616 830.178 
            
                
         5
         SubDoc
         5
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     4
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 6 to page 6
     Mask co-ordinates: Left bottom (-10.90 55.49) Right top (63.41 839.25) points
      

        
     0
     -10.8992 55.4924 63.4136 839.2452 
            
                
         6
         SubDoc
         6
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     5
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 7 to page 7
     Mask co-ordinates: Left bottom (548.23 60.36) Right top (597.71 831.24) points
      

        
     0
     548.2279 60.3607 597.707 831.2444 
            
                
         7
         SubDoc
         7
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     6
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 8 to page 8
     Mask co-ordinates: Left bottom (154.43 106.61) Right top (566.92 227.17) points
      

        
     0
     154.4321 106.6091 566.9153 227.1658 
            
                
         8
         SubDoc
         8
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     7
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 8 to page 8
     Mask co-ordinates: Left bottom (1.00 55.80) Right top (67.75 836.92) points
      

        
     0
     0.9963 55.796 67.7509 836.9235 
            
                
         8
         SubDoc
         8
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     7
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 9 to page 9
     Mask co-ordinates: Left bottom (552.32 53.65) Right top (596.03 828.48) points
      

        
     0
     552.3171 53.6451 596.0256 828.4785 
            
                
         9
         SubDoc
         9
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     8
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 10 to page 10
     Mask co-ordinates: Left bottom (0.00 41.75) Right top (56.67 838.13) points
      

        
     0
     0 41.7496 56.6714 838.1319 
            
                
         10
         SubDoc
         10
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     9
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 11 to page 11
     Mask co-ordinates: Left bottom (543.28 58.38) Right top (587.81 833.22) points
      

        
     0
     543.28 58.3816 587.8112 833.2236 
            
                
         11
         SubDoc
         11
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     10
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 12 to page 12
     Mask co-ordinates: Left bottom (19.86 817.20) Right top (75.47 840.04) points
      

        
     0
     19.8594 817.2039 75.4657 840.0422 
            
                
         12
         SubDoc
         12
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     11
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 12 to page 12
     Mask co-ordinates: Left bottom (11.92 70.49) Right top (60.57 793.37) points
      

        
     0
     11.9156 70.4907 60.5712 793.3727 
            
                
         12
         SubDoc
         12
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     11
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 13 to page 13
     Mask co-ordinates: Left bottom (553.13 52.53) Right top (577.91 810.86) points
      

        
     0
     553.1301 52.533 577.9119 810.8565 
            
                
         13
         SubDoc
         13
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     12
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 14 to page 14
     Mask co-ordinates: Left bottom (4.97 36.78) Right top (64.63 828.19) points
      

        
     0
     4.9712 36.7784 64.6253 828.1896 
            
                
         14
         SubDoc
         14
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     13
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 15 to page 15
     Mask co-ordinates: Left bottom (548.98 47.48) Right top (584.59 791.32) points
      

        
     0
     548.9771 47.4841 584.5864 791.3234 
            
                
         15
         SubDoc
         15
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     14
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 15 to page 15
     Mask co-ordinates: Left bottom (528.21 823.97) Right top (587.55 836.82) points
      

        
     0
     528.205 823.9652 587.5539 836.8242 
            
                
         15
         SubDoc
         15
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     14
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 16 to page 16
     Mask co-ordinates: Left bottom (-1.98 41.48) Right top (52.36 828.84) points
      

        
     0
     -1.9758 41.4837 52.3585 828.8365 
            
                
         16
         SubDoc
         16
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     15
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 17 to page 17
     Mask co-ordinates: Left bottom (548.58 64.60) Right top (590.32 832.81) points
      

        
     0
     548.5764 64.6007 590.3159 832.8065 
            
                
         17
         SubDoc
         17
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     16
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 18 to page 18
     Mask co-ordinates: Left bottom (-2.97 46.55) Right top (66.36 834.93) points
      

        
     0
     -2.9713 46.552 66.358 834.9252 
            
                
         18
         SubDoc
         18
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 19 to page 19
     Mask co-ordinates: Left bottom (552.79 30.81) Right top (592.56 794.39) points
      

        
     0
     552.7947 30.813 592.5641 794.3856 
            
                
         19
         SubDoc
         19
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     18
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 19 to page 19
     Mask co-ordinates: Left bottom (531.92 817.25) Right top (596.54 844.10) points
      

        
     0
     531.9158 817.253 596.5411 844.0973 
            
                
         19
         SubDoc
         19
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     18
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 20 to page 20
     Mask co-ordinates: Left bottom (-3.95 50.37) Right top (53.35 795.25) points
      

        
     0
     -3.9516 50.3748 53.3464 795.248 
            
                
         20
         SubDoc
         20
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     19
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 21 to page 21
     Mask co-ordinates: Left bottom (552.65 57.45) Right top (575.43 785.40) points
      

        
     0
     552.6536 57.4466 575.4332 785.4043 
            
                
         21
         SubDoc
         21
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     20
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 22 to page 22
     Mask co-ordinates: Left bottom (-7.92 58.44) Right top (57.44 785.40) points
      

        
     0
     -7.9234 58.437 57.4443 785.4043 
            
                
         22
         SubDoc
         22
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     21
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 23 to page 23
     Mask co-ordinates: Left bottom (550.56 56.65) Right top (598.27 784.11) points
      

        
     0
     550.564 56.6503 598.2663 784.1104 
            
                
         23
         SubDoc
         23
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     22
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 24 to page 24
     Mask co-ordinates: Left bottom (3.95 50.39) Right top (60.29 783.73) points
      

        
     0
     3.9533 50.3891 60.288 783.7281 
            
                
         24
         SubDoc
         24
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     23
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 25 to page 25
     Mask co-ordinates: Left bottom (550.16 56.50) Right top (590.80 786.07) points
      

        
     0
     550.1563 56.4981 590.7985 786.0746 
            
                
         25
         SubDoc
         25
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     24
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 26 to page 26
     Mask co-ordinates: Left bottom (47.42 14.82) Right top (785.38 67.18) points
      

        
     0
     47.419 14.8184 785.377 67.1769 
            
                
         26
         SubDoc
         26
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     25
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 27 to page 27
     Mask co-ordinates: Left bottom (553.18 52.44) Right top (584.84 811.45) points
      

        
     0
     553.1758 52.4441 584.8424 811.4528 
            
                
         27
         SubDoc
         27
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     27
     26
     1
      

   1
  

 HistoryList_V1
 qi2base





