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ABSTRACT 

Most rotor air loads programs are trimmed by an iterative 
process with two steps per iteration. In the first step, controls 
are guessed and the equations are integrated in time until all 
transients are decayed. In the second step, the controls are 
improved based upon the difference between the desired hub loads 
(thrust, propulsive force, side force) and the computed loads. As 
an alternative to numerical integration, however, recent papers have 
suggested a procedure called periodic shooting. The numerical 
shooting procedure can be used sequentially in the above, 2-step 
process; or it can be used in parallel with the control strategy as 
a unified trim method. 

In this paper, these three trim methods (conventional, 
sequential shooting, parallel shooting) are applied to production­
version rotor air loads programs. The convergence and efficiency of 
the methods are studied, and the converged results are compared with 
wind-tunnel data. 

1. Introduction 

Any calculation of rotor air loads requires the periodic 
solution to the rotor aeroelastic equations with a known set of 
control settings. Similarly, most dynamic stability calculations 
are based on perturbation equations written about a periodic 
equilibrium position. Therefore, calculation of rotor control 
settings and periodic response is a fundamental aspect of rotor 
analysis. 

This calculation is not at all trivial, however. Even when 
the controls are known, it is not always easy to solve for the 
periodic solution. This is especially true when one or more system 
modes has small damping. In fact, however, the rotors controls are 
not known. Instead, what is known is the lift force, propulsive 
force, and side force desired for a flight condition. The pilot 
controls, therefore, also appear as unknowns in the problem. 

In general, there are three categories of methods to solve 
for the periodic rotor response. These are: 1) Numerical 
Integration, 2) Periodic Shooting, and 3) Harmonic Balance. There 
are also three categories of methods for finding the control 
setting.s. These are: 1) Automatic Pilot, 2) Newton-Raphson, 
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and 3) Algebraic Control Equations. Each of the three response 
methods (1,2,3) is particularly suited for one of the three control 
methods (1,2,3) in the sense that they are compatible for 
application in a parallel strategy. For example, numerical 
integration and automatic pilot are applied in Reference 1; Shooting 
and Newton-Raphson are applied in Reference 2; and Harmonic Balance 
with Algebraic Control Equations is applied in Reference 3. 

Despite this compatibility, however, most production version 
air loads programs use numerical integration coupled with Newton­
Raphson (a rather incompatible combination). The purpose of this 
paper is to compare three me,thods: 1) the conventional numerical 
integration with Newton-Raphson, 2) the sequential application of 
periodic shooting with Newton-Raphson (without capitalizing on their 
compatibility), and 3) the parallel application of the two methods. 

2. Background 

2.1 The Transition Matrix 

The first step in solution of a system of linear differential 
equations is the determination of the transition matrix[~]. Given 
a set of n linear equations of the form 

{i< }= [A(t)J {x }+ b(t) (1) 

where A(t) and b(t) are periodic with period,T, the transition 
matrix, [~], is defined such that, for b(t) = 0, 

x(t) - [cj> (t)] {x(O)} 

This further_implies that 

[qi J = [A] [cj> J 

(2) 

(3) 

in practice [cj>] can 
(1) with b(t) = 0. 
will have the form 

be found by numerical integration of equation 
For nonlinear systems, the equation of state 

{x(t)} = {F(x,t)} (4) 

It is often helpful to linearize these equations around a nominal or 
periodic equilibrium position {x }. This solution solves the 
equations P 

{xp}= {F(xP,t)} 

{xp(O)} = {xp(,)} 

Now, we write equations for perturbations about x (t). 
p 

x(t) = X (t) + oX(t) 
p 

(Sa) 

(5b) 

(6) 

where higher powers of ox are negligible compared to 6x. Now if 
F(x,t) is smooth enough to have a Taylor series representation, then 

{F(x,t)} = {F(x ,t )} + 
p p 

afi 
[-] {ox(t)} 

axj lx=x 
p 

(7) 



This leads to the equations 

af. 
{ox } = r__1o1 

axj x=x 
p 

Then the transition matrix [~(t)] can be found from sequential 
perturbations of each element of {x(O)} by a small amount, say 

(8) 

away from {x (0)}. The resultant perturbed initial conditions can 
be used in E&uation (4a), and integration through one period gives a 
solution {x(t)} from which {ox(t)} may be obtained by 

or 
{ox(t)} = {x(t)} -

{x(t)} = {x (t)} + 
p 

{x (t)} 
p 

{ox(t)} 

(9a) 

(9b) 

The transition matrix may be formed by dividing the {ox} columns by 6 
and assembling them in [~] such that 

{x(t)} = {x (t)} + [Nt)] {ox(O)} 
p 

as in Equation (7). 

2.2 Periodic Shooting 

(10) 

The method prescribed here, periodic shooting, utilizes the 
transition matrix [~] to find a periodic solution in a direct way. 
The first step in this procedure (once [$] is known) is to integrate 
Equation (1) through one period with zero initial conditions but 
with ~(t)} retained. The resultant, non-periodic solution will be 
called {xf }. 

It follows from linearity that the general solution to 
Equation (l) is 

{x(t)} = {xf(t)} + [ $(t)] {x(O)} ( ll) 

Now a periodic solution, { x(O) } = {x( T)} can be immediately achieved 
from the initial conditions 

{x(T).}={xf(T)}+ ($(T)] {x(O)} = {x(O)} 

{x(O)} (I- ~(T)] = {xf(T)} 

-1 
{x(O)} = (I- $(T)] {xf(T)} (12) 

The resultant periodic solution is obtained from substitution of 
Equation (12) into Equation (11). The calculation in Equation (12) 
is called "periodic shooting" because the initial conditions are 
"aimed" so as to hit the target {x(T)} = {x(O)}. We should mention 
here that the calculation in Equation (12) is conceptually identical 
(but computationally much simpler) than the method described in 
Reference (4). 

In the case of a nonlinear system, Equation (Sa), the 
procedure is similar to that outlined above. For example, estimated 
initial conditions, {xE(O)}, can be assumed and an integrated 
solution found {xE(t)}, that is not periodic but is a first estimate 
of {x }. Thus the initial conditions can be modified in an attempt 
to ma~e {xE} periodic. 
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{x (0)} 
p 

(13) 

The procedure can then be repeated with x (0) generating a new 
estimate x (t). Thus, the above algorith£ can be utilized to find 
the periodtc solution x (t) to a nonlinear system. It should be 
noted that this is equivRlent to a modified Newton-Raphson procedure 
to find the initial conditions that will result in a periodic 
solution. 

Thus, the above method and time-wise integration (until all 
transients decay) stand as two alternative methods for the periodic 
response. The third method, harmonic balance, is not treated in 
this paper. Now, the complete rotor trim involves calculation of 
control settings and periodic response. Three possible means of 
effecting trim are outlined below. 

CONIRot SIRAHGY 

GUESS CONTROLS 

l 
l ~::::::~l--~IN~T~E~GR~A~T~E~UN~T~IL~AL~L--_1 ._ __ c_A_Lc_u_LA~~~E-FO_R_c_Es--....11. TRANSIENTS DECAY. 

YES 

EXIT 

l NO 

VARY CONTROLS ONE BY ONE 
AND CALCULATE CHANGE IN 

fORCES 

1 
fORM PARliAL DERIVATIVES 

ANll INVERT 

l 
OBTAIN NEW GUESS 

Of COIHROLS 

Figure l. Flow Chart for Conventional Method 

2.3 The Conventional Method 

This is a method which uses a Newton-Raphson iteration 
procedure for convergence on controls (called control strategy) and 
integrates through time until a steady-state solution is found for 
the given initial conditions. A flow chart of this method is shown 
in Figure l. It can be seen that, first, the controls are guessed. 
Second, the equations are integrated in time until a periodic 
solution is obtained (until all transients decay). Third, the 
forces are found. If they are within a certain error criteria, the 
program stops. If not, each control is perturbed; and, for each 
perturbation, integration in time is performed until transients 
decay. Fourth, a partial-derivative matrix is f.ormed and new values 
for controls are found using a modified Newton-Raphson procedure. 

{8} = {8} 
new old 
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ln_~ome airloads programs only an approximate version of 
[aF./a6 ] is used. Approximations include: 1) neglect of 
dia~onai terms, 2) closed form approximations, and 3) pseudo 
inverses. These approximations may save computation for each 
iteration, but at the possible expense of requiring more total 
iterations. 

(QI'H~Ot ~IRII.IfGY 1'1 RIOOIC ~IIOO!INC 

GUESS CONTROLS I :IF I GUESS INITIAl CONIJifiONS 

~--CA_l_C-Ul_A;:!!::_fO_R_C-ES-~~S·"i r CALCULATl fi!L CONDITIONS 

1 
YES .... 
EXIT 

n BY INT~RATION 

YES 

<V~ 
t.No tJ l VARY CONTROLS ONE BY NO NO 

ONE AND CALCULATE 5 VARY INITIAL CONDITIONS 
t.__;,;CH.,;A;,;N;,;GE;.;:IN.,;f;,;O.,;RC;;;E;;S_...J ONE BY ONE AND INTEGRATE 

1 l 
FORM PARTIAl DERIVATIVES 

AND INVERT 

OBTAIN NEW GUESS Of 
CONTROLS 

Figure 2. Flow Chart for Sequential Method 

2.4 The Sequential Method 

FORM PARTIAL DERIVATIVES 
AND INVERT 

1 
OBTAIN NEW GUCSS Of 

INITIAL CONDITIONS 

In the sequential method of periodic shooting, the right 
block in Figure 1 is replaced by the shooting algorithm described 
previously. This is depicted in Figure 2. A convergence criteria 
must be applied to the shooting algorithm. This is done as follows. 
A solution is considered to be converged when the error between each 
of the state variables at ~ = 0 and ·~ = 2n is less than some chosen 
value. Thus every time the block diagram calls for a periodic 
solution (i.e., at every control perturbation), a new convergence is 
r.equired on initial conditions. 
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EXIT 

YES 

GUESS INITIAL CONDITIONS 
AND CONTROLS 

l 
INTEGRATE ONCE 

CHANGE EACH VARIABLE 
ONE A1 A TIME 

l 
INTEGRATE AND fiND NEW 
fiNAL VALUES AND FORCES 

FORM PARTIAL DERIVATIVE 
MATRIX AND INVERT 

! 
OBTAIN NEW VALUES 

FOR VARIABLES 

Figure 3. Flow Chart for Parallel Method 

2.5 The Parallel Method 

In this method the iterations on control variables and 
initial conditions in Figure 2 are combined into one scheme that 
iterates simultaneously on controls and periodicity. The procedure 
is similar to the former algorithm except that a single partial 
derivative matrix is obtained that includes the changes in forces 
and periodicity with respect to control settings and initial 
conditions. The flow chart for this refined method is given in 
Figure 3. Here, we have capitalized on the fact that both 
strategies (controls and periodic solution) are Newton-Raphson 
procedures. Thus, it makes sense to combine these into a single 
Newton-Raphson scheme with both controls and initial conditions as 
unknowns. 

3. Application to Production Program 

3.1 Discussion of Rotor Loads Basis 

A test of the above described methods is provided by 
application to a rotor loads and performance analysis that has been 
developed as a subrouting for use within the AVRADCOM, Applied 
Technology Laboratory (ATL) V/STOL Preliminary Design Program. The 
importance of an efficient iteration method within a preliminary 
design process becomes evident as the analysis is permitted to allow 
more and more design variables to be considered. The basis for the 
applied rotor analysis is documented in the cited References 5, 6. 



The basic equations are for a rigid hinged blade with hinge offset. 
Only flapping dynamics are considered. Calculation of the rotor 
loads requires the airfoil section lift and drag characteristics as 
well as the resultant velocity. The airfoil section characteristics 
are provided for section angles of attack from -180° to 180° for 
Mach numbers from 0. to 1.0. The use of basic steady airfoil lift 
and drag measured as a result of 2- dimensional transonic wind 

tunnel tests is done with confidence along most of the rotor blade 
span. However, three separate adjustments are required to account 
for air flow and blade motion which can become significant depending 
upon the rotor operating regime. The first of these adjustments is 
a so-called tip relief model, derived in Reference 7, which accounts 
for the reduced compressibility existing in the 3-dimensional flow 
near the tip of a lifting surface. The tip relief model is based 
upon the potential representation of the thickness effect of an 
airfoil by a source-sink distribution. The thickness effect can be 
thought of as a qualitative explanation for tip relief in the sense 
that 2-dimensional flow requires greater displacement in a 
perpendicular direction than 3-dimensional flow about a finite tip. 
Therefore, there r~sults a relief in the flow about the tip as 
compared to the 2-dimensional flow. · The potential function is 
formulated for a finite wing by subtracting the functions for 
complementary wings on both sides from the function for an infinite 
wing (2-dimensional airfoil). Formulation in this manner relates 
the velocity on the 2-dimensional airfoil to that on the finite 
wing. 

The second adjustment to the 2-dimensional airfoil data is 
intended to account for the radial flow conditions that exist on a 
rotor blade due to its yawed position present for much of the 
azimuthal circuit. The significant features of this method 
(Reference 8) include an estimate for the increased skin friction 
drag due to the use of the resultant velocity acting at a yaw angle 
to the blade element and a stall delay due to an increased lift 
capability evidenced in yawed flow experiments on various wings. 

The third adjustment to the basic wind tunnel tested airfoil 
data is an approximation of the stall hysteresis with lift overshoot 
that occurs as a result of an airfoil oscillating near stall. The 
cyclic pitch variation required by a conventional rotor system 
causes this unsteady airfoil characteristic to have a significant 
effect upon calculations when the operating condition allows 
appreciable stall. The formulation, detailed in Reference 8, is 
based upon tests of four airfoil sections from 6% to 12% thick. 
Derived from these tests are the stall delay angles as a function of 
a dimensionless parameter, ~h/ZV I (analogous to the reduced 
frequency parameter) where C = blade chord and V = local velocity. 
Linear functions have been developed for a stall delay parameter 
which depend on the airfoil thickness, Mach number,. 1C"cy2Vl 
parameter, and whether it is lift or moment stall wh ch is being 
examined. The moment stall formulation is used to determine the 
unsteady drag coefficient. Reference 9 shows this to be a good 
approximation. 

The non-dimensional integral expressions for the three rotor 
forces (thrust along rotor shaft, and propulsive force and side 
force, perpendicular to each other and the rotor shaft) are derived 
from the resolution of the airfoil force coefficients as they vary 
along the rotor blade. The integral spans the distance from the 
root cutout r to the tip (1). Tip losses, or the approximation of 
the loss of lift due to the finite blade, are approximated by 
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setting lift = 0.0 at r = l and assuming a linear variation in the 
lift from r = .97 to r = l. The drag force coefficient used at 
r = l is that which has been calculated as a result of applying the 
above summarized tip relief method at lift = 0.0. 

3.2 Application of Iteration Methods 
The application of the procedure summarized above requires an 

iteration method to solve for the required rotor forces and the 
accompanying steady state rotor blade motion. Specifically, the ATL 
V/STOL Preliminary Design Program requires rotor torque and tip 
path-plane inclination when given the rotor forces. The iteration 
method must provide conve+gence of magnitude and direction upon the 
resultant of rotor lift, propulsive force and side force (Figure 4). 
This is done by adjusting collective pitch ~ ), longitudinal cyclic 
angle (8 ), and lateral cyclic (8 ), Steady0 state blade flapping 

s c magnitude and velocity must be attained. Three methods of iteration 
have been applied to investigate the relative efficiency of each in 
achieving convergence through the variation of the five variables. 
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Figure 5. Step by Step Conventional Method 

1) Step by step conventional method: This first method 
(Figure 5) steps through each one of the variables, insuring 
convergence within a specified tolerance before proceeding to the 
next variable. Steady State flapping is calculated first and then 

is incremented toward the resultant vector magnitude convergence. 
T8tal force is not integrated until a steady state flapping is 
achieved. When the force magnitude is converged, is incremented 
toward the vector direction re~uired. The vector ~gnitude is then 
checked and then reiterated until it again is converged. This 
procedure is repeated until both magnitude and direction are 
correct. At this point, is incremented and when the results of 
this perturbation are avaiiable, tests are made to check the 
previously achieved convergence on and . If this test shows 

0 s non-convergence the procedure is repeated from the point of 
non-convergence. Extrapolation and interpolation are accomplished 
in small enough linear steps so as to approximate the 
non-linearities of the problem. When enough consistent 
perturbations have been accomplished, the step by step procedure is 
deviated upon, in that when one control is incremented, enough is 
known about the sensitivities so that the other controls can be 
changed at the same time. Thus the off-diagonal terms (coupling 
terms) of the inverse matrix can be included. Upon changing 

s 

Upon changing 9. : 
c 

(15) 

(16) 
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Figure 6. Newton-Raphson Sequential Method 

.2) Sequential Newton-Raphson: This method (Figure 6) 
requires the establishment of a matrix of slopes representing the 
sensitivity of the rotor forces to the isolated perturbation of each 
of the control variables. This matrix is applied, through 
inversion, to the Newton-Raphson equation to achieve simultaneous 
convergence. The method is termed Sequential because each 
perturbation requires first the convergence of flapping displacement 
and velocity. Flapping convergence is achieved through periodic 
shooting with the first perturbation being the value found from 
numerical integration. If an accurate first estimate is possible 
for the flap motion, numerical integration will yield a periodic 
solution within two revolutions for a practical articulated rotor. 
For the two variables included in this problem, sequential periodic 
shooting would require four rotor revolutions to establish the 
required matrix and then another (minimum) to converge, for a total 
of five revolutions. Because convergence is tested for every 
perturbation, the Newton-Raphson sequential integration (conventional 
method) is superior, in this application, to the Newton-Raphson 
sequential shooting technique. Sequential shooting would be 
advantageous for more blade motion degrees of freedom. When all the 
control variables are perturbed and the simultaneous solution of all 
the variables does not result in convergence, two variations of 
matrix update are possible. The first variation checks to see which 
parameter is furthest from convergence and then allows a 
perturbation of this single variable in order to update only the one 
affected matrix column. A new estimation is then made for all the 
variables and convergence is retested. The second variation 
requires perturbation of each of the variables when convergence is 
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not achieved, thus resulting in a completely updated matrix. This 
second variation is the procedure for which results are presented. 
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Figure 7. Newton-Raphson Parallel Shooting 

3) Parallel Newton-Raphson shooting: This method (Figure 7) 
extends the sequential method to include in the Newton-Raphson 
formulation, the periodic blade motion variables. Isolated 
perturbation of each of the variables is used to construct a 
combined matrix of slopes representing the sensitivity of both the 
forces and periodic blade lllOtion. The term "parallel" then, refers 
to the fact that the periodic blade motion is being iterated upon at 
the same 'ime as the integrated force magnitude and direction. 

3.3 Method of Application 

Each of the above three methods has been used, on an equal 
basis, in conjunction with the rotor loads and performance method 
summarized above. An equal basis of comparison is assured by the 
use of the same estimates for the starting values of the control 
variables. For each series of calculations (each rotor shaft angle 
at a particular advance ratio) the first point uses the estimates 
for control angles and blade motion based on a closed form solution. 
The subsequent points use this same closed form solution for the 
angles, but the estimate is modified based on the differences 
between the initial values and the converged values for the previous 
point. Improvements to this scheme would include extrapolating the 
converged controls (angles and blade motion) based on the previous 
two values. The convergence criteria is the same for all cases: l% 
of resultant force magnitude; l% of resultant force direction; 10% 
of rotor side force; l% of blade flapping angle and velocity (except 
for small angles, the tolerances for which is .001 radians). These 
convergence criteria are small enough such that a consistent set of 
data can be calculated, Overall .rotor performance is relatively 
insensitive to side force, so the larger tolerance is acceptable. 
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Each perturbation includes a tolerance test on every required 
variable, so each time a perturbation is required, the control is 
perturbed in the direction toward convergence. Each time the 
controls are calculated as a result of the complete matrix update, 
they are saved to be used with their previous counterparts to 
predict the next value used during the subsequent perturbations. An 
important consideration during calculation for cases near the 
analytical lift limit for the rotor is to limit the extrapolated 
control predictions in order to avoid a condition too far into stall 
(beyond the required condition). The two Newton-Raphson methods 
which produced the results shown here do not include specific tests 
to contend with predictions which overshoot the target and end up 
too far into stall. This would be a problem only if the predicted 
controls required calculations in the area of the second lift rise 
at very high angles of attack, since the slopes would indicate 
iterations to even higher angles of attack. The overshoot at 
conditions near "maximum" lift is most critical for the step-by-step 
conventional method since convergence is accomplished for each 
individual control variable (its related force, direction, or 
motion) while the remaining variables are held constant. This means 
that, if, for some reason, the combination of controls becomes 
unreasonable, a false indication of lift required being greater than 
lift available will result. For this reason some checks are 
required which result in a restart at a more reasonable value for 
the step-by-step method. 

4. Results 

4.1 Preliminary Investigations 

Before proceeding to the results for a production airloads program, 
it is interesting to compare results for a research oriented 
response problem as given in Reference 2. Three separate 
assumptions can be established for a comparison of periodic shooting 
with numerical integration (solution of equations of motion until 
tranients decay). Figure 8 illustrates the boundaries established 
when these assumptions are coupled to a knowledge of the stability 
of problem. For the sake of comparison, it is assumed that each 
method starts with a first guess of the initial conditions (often 
zero), having an error, E • Each method must then be pursued until 
a desired error, E is rea8hed. It is also assumed that the 
equations are nonlinear so that the shooting method requires several 
iterations. For the controls known case, Figure 8 shows that for 
10% damping, such as is typical of articulated rotors with dampers, 
direct numerical integration is always preferred, even for only one 
degree of freedom. For hingeless rotors, however, for which as 
little as 1% damping is typical, direct integration is superior only 
when more than 16 degrees of freedom are present. For damping less 
than 0.1%, as is typical in stability work, direct integration is 
generally inferior to the present method of periodic shooting. 
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Figure 8. Comparison of Numerical Integration and Periodic Shooting 

For the case when the controls are not known, the above 
comparison must be modified to include the fact that controls and 
initial conditions are found simultaneously by the combined Newton­
Raphson shooting method, but are found sequentially when Newton­
Raphson is coupled with direct integration. Figure 8 shows for the 
comparison between shooting and direct integration becomes more 
favorable for periodic shooting when the controls must be found. 
For typical articulated'rotors(damping lO~shooting is superior for 
less than 10 degrees of freedom and for typical hingeless rotors 

(damping !%)shooting is superior for less than 100 degrees of 
freedom. Thus there is a great potential advantage of the shooting 
method over numerical integration even for large problems. 

Finally, it might be argued that the potential advantage of 
direct integration would increase if direct integration were used 
with only an estimated set of partial derivatives. However, as seen 
in Figure 8, even for estimated derivatives, it has been found that 
there is still a favorable trade-off between shooting and 
integration. 

Thus, the relative advantage of shooting is enhanced for 
systems with low damping. For unstable systems, (damping less than 
0.0) direct integration cannot be used and so, periodic shooting (or 
some other method) is necessary. 
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4.2 Direct Applications 

In order to provide a comparison of the relative efficiencies 
of the iteration procedures which would be indicative of what is 
required to undertake a complete rotor loads and performance 
analysis, calculations have been made of an advanced rotor design 
for which wind tunnel data is available (References 10, 11, 12). 
The simulation of the rectangular planform rotor (baseline) requires 
the ability to include three airfoil data tables with interpolation 
between adjacent ones to represent transition section 
characteristics (Figure 9). The airfoil data tables consist of data 
measured in a transonic wind tunnel at Reynolds numbers which are 
representative of the full scale rotor test. 
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Figures 10, 11 and 12 illustrate the range of rotor test 
conditions and the number of points which were calculated to provide 
a comparison. The actual reported test point values (lift, drag, 
side force and shaft angle) are used as the calculated trim valves. 
This not only exercises the trim procedures to the maximum possible 
extent for this analysis, but also insures the calculation of the 
actual rotor condition as measured in the test. Although the 
calculated value of the relative rotor power does. not, in all cases, 
correlate well with the test value, the trends are quite 
representative for the range from the autorotative to the propulsive 
state of the rotor. 
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Correlation can be obtained through the adjustment of profile 
drag and inflow velocity. The profile drag increment would account 
for the differences between the wind tunnel airfoil and the full 
scale section (small imperfections). The inflow velocity varible 
adjustment can be used (References 13, 14) to adjust the slope of 
the variation of relative rotor power with advance ratio. Through 
the comparison of the analysis with the full range of the test 
results, it is insured that the trim iteration methods are exercised 
to their useful limits. The test results represent a helicopter 
rotor at its maximum lift and propulsive force limits (within the 
power required limit of the test facility) for a wide range of 
inflow conditions. 

A summary of the rotor revolutions required for each case is 
shown in Figure 13 for a comparison of each of the trim iteration 
methods. It is apparent that for this analysis, the Newton-Raphson 
and Shooting methods are superior in an overall reliability and· 
efficiency sense. However, it is interesting to note that the 
parallel shooting method fails to converge at some isolated cases 
for a very high lift condition, where the other two methods are 
successful. 
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5. Conclusions 

The shooting method can be applied to an existing airloads 
program with a moderate amount of program changes. Many airloads 
programs are set up to remain in the azimuth loop until blade motion 
transients decay. This loop must be interrupted to allow only one 
revolution per perturbation and the resulting partial derivative 
then added to the matrix for the Newton-Raphson method. 

For this example, parallel shooting is superior to the 
conventional method for about 50% of the cases. This is consistent 
with earlier estimates for a system with 1 Degree of Freedom and 
14% damping. 

The use of an approximate Partial Derivative Matrix is not 
satisfactory and requires an average of 2 - 8 times as many 
iterations as when using the full matrix. 

No unusual convergence problems were encountered. The parallel 
shooting method and the conventional method generally failed to 
converge for the same cases (about 6% of the time). 

The sequential application of shooting is generally much less 
efficient than the parallel application, requiring 3 to 4 times as 
many rotor revolutions. 

The periodic shooting technique can be successfully applied to 
a rotor airloads program which includes detailed aerodynamics and 
dynamic stall, to calculate the full range of performance of an 
advanced technology operational helicopter rotor. 
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