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Abstract

This paper discusses the impact of different aerodynamics models on rotorcraft-pilot couplings stabil-
ity using a robust stability analysis approach. Models based on blade element/momentum theory and
boundary element method, coupled to a finite element model of the blade, are used to formulate the
aeroelasticity of the main rotor of a helicopter. The main rotor is coupled to a dynamic model of the air-
frame that also includes the dynamics of the control system. The resulting linearized models are used to
determine stability limits according to the generalized Nyquist criterion, associated with the accelerations
of the pilot’s seat caused by the involuntary motion of the control inceptors. The resulting stability curves
are discussed considering examples of involuntary pilot transfer functions from the literature.

1 INTRODUCTION

Robust stability analysis techniques enables the
evaluation of the stability margins of systems with
respect to uncertain parameters [1,2]. Their appli-
cation to rather heterogeneous aspects of system
dynamics is the result of their generality and flexi-
bility [3–7]. Many aspects of rotorcraft aeroservoe-
lasticity may benefit from robust stability analysis,
especially when intrinsically uncertain aspects of
the model are addressed; for example, the consti-
tutive properties of lead-lag dampers in the study
of ground resonance [8, 9], or the involuntary dy-
namics of the pilot in the study of Rotorcraft-Pilot
Couplings (RPC) [10, 11]. The theory stems from
the consideration that by writing the dynamics of
a stable system in the form of a feedback loop, as
shown in Figure 1, where the uncertainty ∆∆∆(s,p)
is concentrated in the feedback path of the loop,
the stability of the closed loop system can be
analyzed by simply looking at the eigenlocus of
the loop transfer function, according to the Gen-
eralized Nyquist Criterion (GNC). This, in turn is
written as a multiplicative function of a portion of
the part of the system that is considered ‘certain’
by the part that is considered uncertain, H(s) =

G(s)

∆∆∆(s,p)

u y

ξξξζζζ
−

Figure 1: Feedback loop between nominal plant
G(s) and uncertainty operator ∆∆∆(s,p).

∆∆∆(s)G(s).
When any of the eigenvalues of the loop trans-

fer function H(s) reaches the point (−1+ j0) in the
Argand plane (the complex plane), the system be-
comes unstable. The distance of the eigenvalues
of the nominal plant from the point (−1+ j0) repre-
sents a powerful, yet intuitive measure of the stabil-
ity margin of the system, which is defined for each
frequency.

The aerodynamic forces acting on the rotor may
represent a significant source of uncertainty, ow-
ing to local three-dimensional and compressibil-
ity effects, Blade-Vortex Interaction (BVI), and so
on. When the aeroservoelasticity of the overall ve-



hicle is of concern, often using Ritz-like reduced
order models to describe the structural dynamics
of the system, the generalized unsteady aerody-
namic loads may be computed from relatively so-
phisticated, yet uncertain models. As soon as the
source of the uncertainty can be somehow iden-
tified, e.g. in the form of amplitude and phase of
the transfer functions relating the airframe motion
to the loads transmitted by the rotor to the airframe,
appropriate margins with respect to the stability of
the overall aeroservoelastic system can be deter-
mined.

In detail, the proposed approach makes it pos-
sible to determine how sensitive the stability of the
system is with respect to uncertainties in the mod-
eling of the main rotor aeroelasticity (with particu-
lar attention to the aerodynamic contribution). In
fact, significant sensitivity would indicate that a re-
finement and an improvement of the quality of the
modeling is mandatory. Otherwise, as soon as the
impact of the uncertainty is minimal, relatively inac-
curate models could be tolerated, being the quality
of the aeroelastic (aerodynamic) modeling not es-
sential for the purpose of the analysis.

This work originates from the need to analyze
Rotorcraft-Pilot Couplings (RPC) within the EU-
sponsored research project ARISTOTEL (http:
//www.aristotel.progressima.eu/). The
possibility to limit the complexity of the analysis of
critical components of the aeroservoelastic system
is in fact of paramount importance to reduce the
computational cost and to make it possible to fo-
cus on essential aspects of the problem.

The robust stability analysis requires to act on
Linear Time Invariant (LTI) models of the plant. In
the present analysis, the aeroservoelasticity of the
helicopter is modeled in the MASST environment,
developed at Politecnico di Milano [12, 13]. The
aeroelastic LTI model of the main rotor is devel-
oped by the University ‘Roma Tre’, starting from
validated computational tools for rotor aeroelastic
response analysis [14] and subsequently applying
the methodology presented in Ref. [15] for iden-
tification and finite-state modeling of the aerody-
namic operator regarding rotors in arbitrary steady
flight. This approach requires the prediction of
a set of harmonic perturbation responses by an
aeroelastic solver, and the accuracy of the identi-
fied model in describing the unsteady loads trans-
mitted by the rotor to the airframe is strictly con-
nected to that of the aerodynamic solver applied
within the aeroelastic tool.

The proposed approach is applied to a rotorcraft
model jointly developed by Politecnico di Milano

and University ‘Roma Tre’ within the project ARIS-
TOTEL. Applying both a quasi-steady, sectional
aerodynamic formulation and a Boundary Element
Method (BEM), potential-flow solution within the
aeroelastic solver [14], stability margins with re-
spect to uncertainties in aerodynamics modeling
are computed and mapped in the space of the pa-
rameters.

2 ROBUST STABILITY ANALYSIS

Robust stability analysis is based on the as-
sumption that the transfer function G(s) between
the input u(s) and the output y(s) of a system char-
acterized by a set of uncertain parameters p,

y(s) = G(s,p)u(s), (1)

under broad assumptions can be cast as

{

y
ηηη

}

=

[

G11 G12

G21 G22

]{

u
ζζζ

}

(2)

using a Linear Fractional Transform (LFT) [16],
where a negative feedback loop can be estab-
lished on the transfer matrix ∆∆∆ of the uncertain
part, ζζζ =−∆∆∆ηηη, yielding

y(s) =
(

G11−G12∆∆∆(I+G22∆∆∆)−1 G21

)

u(s), (3)

as shown in Fig. 1. The m parameters collected in
vector p are uncertain but bounded; they belong to
the set

P = {p : p = p0+δp, δp ⊂ R
m}, (4)

where p0 corresponds to the nominal parameters
of the aircraft without uncertainty.

Under the assumption that the baseline system
G, with ∆∆∆ ≡ ∆∆∆0, is stable, and that ∆∆∆ itself is stable
for all p ∈ P , the stability of the uncertain system
of Eq. (3) can be studied by considering that of the
transfer function

H( jω) = G22( jω)∆∆∆( jω), (5)

which plays the role of the loop transfer function
in classical feedback control theory [2]. The stabil-
ity of the transfer function of Eq. (5), in turn, can
be studied using the GNC by considering the dis-
tance of the eigenvalues of the loop transfer func-
tion H( jω) from the point (−1+ j0) as a function of
the uncertain parameters, whose limit values are
found by requiring such distance to vanish, namely
det(I+H( jω)) = 0.
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Figure 2: Nyquist eigenloci: distance of transfer
matrix eigenvalues from point (−1+ j0) in the com-
plex plane.

The perturbation of the i-th eigenvalue
λi(H0( jω)) of the reference system H0 = G22∆∆∆0

can be expressed as

χi = λi(H0( jω))+ρejθ, (6)

where the complex number ρejθ represents an ar-
bitrary perturbation of the i-th eigenvalue of modu-
lus ρ and argument θ, as shown in Figure 2.

When χi = −1 the stability limit is reached for
eigenvalue λi , since the loop transfer function cor-
responding to that eigenvalue for any further per-
turbation would circle about point (−1+ j0). As a
consequence, the stability margin, as a function of
the frequency ω, is

ρi(ω)ejθi(ω) =−(λi(H0( jω))+1). (7)

For each frequency ω, the critical direction θi(ω)
represents the direction from λi(H0( jω)) to (−1+
j0), while ρi(ω) represents the magnitude of the
eigenvalue perturbation that leads to instability
when it occurs along the critical direction (Fig. 2).

The most critical eigenvalue among those of ma-
trix H0 is the one whose distance is the smallest
among those computed for all eigenvalues. The
distance of the eigenvalues from the point (−1+
j0) can be transformed into frequency-dependent
boundaries for the uncertain parameters using the
notion of left, vLi , and right eigenvectors, vRi, re-
spectively solutions of the eigenvalue problems

H0vRi = vRiλi (8a)

HT
0 vLi = vLiλi , (8b)

with VT
L = V−1

R when all left and right eigenvectors
are collected in matrices VL and VR, respectively,

since by definition

vT
LiH0vRi = λi . (9)

Considering an additive uncertainty ∆∆∆ = ∆∆∆0 + δ∆∆∆,
the left and right eigenvectors of the nominal sys-
tem can be used to express the critical condition
as

vT
LiH( jω)vRi = vT

Li (H0( jω)+δH( jω))vRi

= λi +vT
LiδH( jω)vRi =−1, (10)

where δH = G22δ∆∆∆, which implies

ρi(ω)ejθi(ω) =−1−λi = vT
LiδH( jω)vRi. (11)

When ρ(ω) < mini(ρi(ω)) ∀ω, stability is granted.
Otherwise, it is necessary that θ 6= θk, where k in-
dicates the eigenvalue corresponding to mini(ρi).
This can be stated as

ρ(ω)ejθ(ω) < ρk(ω)ejθk(ω), k : ρk = min
i
(ρi(ω)),

(12)

where operator (·) < (·) applied to complex num-
bers compares their moduli when the argument is
the same.

Further margins can be considered by requiring
the uncertain bounds to allow some residual dis-
tance from point (−1+ j0). This can be obtained
by first computing the critical direction θi that leads
from point λi to point (−1+ j0), namely

d =−
1+λi

‖1+λi‖
= ejθ. (13)

Then, a new uncertainty amplitude ρ̂i , that leaves
a prescribed margin ρ̃ along the critical direction,
is considered,

ρ̂i = ρi − ρ̃. (14)

This corresponds to considering the distance ρi of
the i-th eigenvalue from the point (−1+ j0), along
the critical direction θi , as shown in Figure 2, and
restricting the limit value such that, when at the
boundary, a residual distance ρ̃ remains.

3 PROBLEM DESCRIPTION

3.1 Rotor Aeroelasticity Subproblem

From the point of view of the interaction with the
rest of the vehicle, the Main Rotor (MR) contribu-
tion is expressed in terms of LTI aeroelastic oper-
ator. It, for a given steady flight condition, relates



forces and moments produced by the rotor at the
MR attachment point, fMR, to the components of
motion at that point (displacements and rotations),
xMR, and to the MR controls, δδδMR = {θ0;θ1c;θ1s},
namely

fMR = HxMR(jω)xMR +HδδδMR(jω)δδδMR. (15)

Note that the rotation components of the motion
are point functions in that they include both rigid-
body motion and deformation effects of the air-
frame. In practice, these loads are evaluated in
the frequency domain for a set of discrete frequen-
cies and for a given set of trim points, ranging from
hover to forward flight at different speeds. Varia-
tions of the aeroelastic solver applied to sample
matrices HxMR and HδδδMR enables one to carry out
sensitivity analyses of the predicted dynamic be-
havior of the coupled rotorcraft-pilot system with
respect to uncertainties in main rotor aerodynamic
(and structural, eventually) modeling.

3.1.1 The Aeroelastic Solver (in brief)

A beam-like model [15] is applied to describe
the structural dynamics of rotor blades. It is based
on the nonlinear bending-torsion formulation pre-
sented in Ref. [17], that is valid for straight, slen-
der, homogeneous, isotropic, nonuniform, twisted
blades, undergoing moderate displacements. The
radial displacement is eliminated from the set of
equations by solving it in terms of local tension,
and thus the resulting structural operator consists
of a set of coupled nonlinear differential equations
governing the bending of the elastic axis (lead-lag
and flap deflections) and the rotation of the cross
sections (blade torsion). If present, the effects of
blade pre-cone angle, hinge offset, torque offset
and mass offset are included in the model, as well
as the kinematic effects due to hub motion.

Combining this structural dynamics model with
a model describing the distributed aerodynamic
loads yields the aeroelastic formulation. In this
work, the rotor aerodynamic loads are simulated
either through a quasi-steady, sectional model with
wake-inflow corrections taking into account the
three-dimensional trailing vortices influence (see,
for instance, Ref. [14]), or through a BEM solver for
free-wake, potential flows. In particular, the BEM
computational tool considered is based on the for-
mulation suited for the prediction of BVI effects pre-
sented and validated in Refs. [18, 19], and there-
fore is applicable to a wide range of rotor flight con-
figurations, including descent patterns. The blade
pressure distribution, p, is determined using the

Bernoulli theorem and the distributed forces and
torque moment are obtained by integration over
cross section profile contours.

The resulting aeroelastic integro-differential for-
mulation is integrated spatially by application of the
Galerkin approach while, for the purposes of this
work, the time response is computed through a
time marching, Newmark-β numerical scheme.

Once the aeroelastic response is computed,
forces and moments at the MR attachment point
are evaluated by integration of the corresponding
aerodynamic and inertial loads arising along the
span of the blades.

3.1.2 Sampling of the LTI Aeroelastic Operator

For a helicopter rotor in arbitrary steady flight,
the aeroelastic model described above is intrin-
sically nonlinear, with periodic coefficients. As
a consequence, even a single-harmonic, small
perturbation of MR controls or hub motion yields
multi-harmonic loads at the MR attachment point
(and thus, cannot be modeled through a LTI op-
erator). However, akin to what widely applied
in multiblade-variable, aeroelastic analyses of iso-
lated helicopter rotors, for the objectives of the
present problem (that involves I/O quantities de-
fined in the nonrotating frame) accurate linearized
modeling can be based on the time-invariant ap-
proximation.

Following the approach presented in Ref. [15]
regarding the LTI modeling of the aerodynamic
loads of rotors in arbitrary steady flight, in this work
the MR LTI aeroelastic model is obtained from the
complete aeroelastic solution in the way herein de-
scribed:

(i) the time marching aeroelastic solver is used
to evaluate the perturbation loads at the
MR attachment point due to single-harmonic
small oscillations of each variable in xMR and
δδδMR;

(ii) the response harmonic component having the
same frequency of the input is extracted;

(iii) the corresponding complex values of the
frequency-response function are determined;

(iv) the process is repeated for a discrete num-
ber of frequencies within an appropriate
range, so as to get an adequate sampling of
the frequency-response functions appearing
within HxMR and HδδδMR.

In other words, the procedure applied is such that
only the constant-coefficient, linear(ized), portions
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Figure 3: MR vertical force vs. axial hub motion.
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Figure 4: MR roll moment vs. lateral cyclic pitch.

of the operator relating perturbations of xMR and
δδδMR to fMR are retained [15].

It is worth mentioning that the harmonic compo-
nents are obtained through a Fast Fourier Trans-
form (FFT) algorithm, taking care of the following
issues:

(i) the period examined by the FFT starts after
that the aeroelastic transient response to the
perturbation is finished;

(ii) the period examined has to be an integer mul-
tiple of the period of the input harmonic;

(iii) almost periodic loads might arise because of
the intrinsic periodicity of the aeroelastic sys-
tem, and hence the leakage avoidance is as-
sured if, in addition, the period examined is
wide enough.

Finally, note that the described approach is ap-
plicable under condition of asymptotic stability of
the isolated rotor for the steady flight configuration
about which the LTI model is identified.

The transfer functions identified through the
aeroelastic solver based on Blade Element theory
and those obtained using aeroelastic predictions
derived from the application of the BEM solver are
compared in Figs. 3 and 4. Figure 3 contains the
thrust component of the rotor force as a function
of the axial motion of the hub, while Fig. 4 con-
tains the roll moment as a function of the lateral
cyclic pitch control. In both cases, the two so-
lutions show a similar trend with respect to fre-
quency. This is expected, since rotor blade elas-
tic properties have a strong influence on poles and
zeroes of the aeroelastic response function. How-
ever, some discrepancies arise, which imply not
negligible local differences in amplitude and phase
of the response.

3.2 Airframe Dynamics Problem

The structural dynamics model simply consists
of the second-order equations of the rigid-body
and flexible airframe dynamics,

Mq̈+Cq̇+Kq = f, (16)

formulated for the modal variables q. The motion of
the MR attachment point is known in terms of the
corresponding modal displacements xMR = UMRq.
As a consequence, the frequency domain repre-
sentation of the airframe dynamics is simply cou-
pled to the MR aeroelastic model using the Princi-
ple of Virtual Work (PVW), namely

δWMR = δxT
MRfMR (17)

= δqTUT
MR (HxMR(jω)UMRq+HδδδMR(jω)δδδMR) ,

which yields
(

−ω2M+ jωC+K−UT
MRHxMR(jω)UMR

)

q

= UT
MRHδδδMR(jω)δδδMR (18)

As long as all the controls δδδ are considered, in-
cluding for example also the collective pitch of the
tail rotor, i.e. δδδ = {δδδMR;δδδTR}, the problem can be
written as

q = Hqδδδ(jω)δδδ, (19)

where additional exogenous inputs and distur-
bances are neglected, since the analysis focuses
on coupled pilot-vehicle stability.

In order to account for the detailed pilot-vehicle
interaction actuator dynamics are considered as
well. The dynamic relationship between the com-
mand requested by the pilot and the actual motion
prescribed to the controls is

δδδ = Hact(jω)ηηη+Hdc(jω)fact, (20)



where vector ηηη contains the motion of the control
inceptors, while fact represents the force transmit-
ted by the actuators; Hdc(jω), the dynamic compli-
ance of the actuator, is usually neglected. Usually,
a first- or second-order equation is considered for
the actuator dynamics transfer function Hact(jω).
The bandwidth of the actuators may have an im-
pact on the interaction between the vehicle and
the pilot mainly because it introduces a delay in
the control.

3.3 Involuntary Pilot Model

The involuntary pilot model basically produces
control inceptors motion as a function of the mo-
tion of the vehicle. In practice, the inceptor motion
involuntarily produced by the pilot is often associ-
ated to the acceleration experienced by the pilot
through the seat. The literature on the subject is
scarce (see for example the work of Mayo on the
involuntary collective motion associated to motion
along the vertical axis, [20] and subsequent work
by Masarati et al., [21], and the work by Parham
et al. on the lateral axis, [22]). Analytical methods
based on accurate biomechanical modeling of the
pilot are being developed [23], to support the de-
termination of transfer function variability.

In general, a complete involuntary pilot model is
expressed in the form

ηηη = Hηx(jω)xpilot, (21)

where ηηη are the involuntary contributions to the
motion of the control inceptors, while xpilot = Upilotq
is the motion of the seat.

In Mayo’s work [20], the function expressed the
absolute acceleration of the hand as a function of
the absolute acceleration of the seat,

z̈hand = Hz̈handz̈seat z̈seat

=
srp/mp+kp/mp

s2+s(rp+ rc)/mp+kp/mp
z̈seat (22)

The function can be reformulated in order to yield
the collective input as a function of the acceleration
of the seat by:

• transforming the absolute acceleration of the
hand into its relative counterpart,

z̈hand rel. = z̈hand − z̈seat; (23)

• integrating the output twice,

zhand rel. =
1
s2 z̈hand rel.; (24)

Table 1: Data for function Hηz̈p(s) based on Mayo’s
models [20]

ectomorphic mesomorphic
ωp (radian/s) 21.267 23.567
ξp 0.322 0.282
τp (s) 0.118 0.108

• dividing the output by the length of the collec-
tive stick, namely

η =
1
L

zhand rel.. (25)

The resulting function is

η =−
1
sL

s+1/τp

s2+2ξpωps+ω2
p
z̈seat (26)

The values used in the modified form of Mayo’s
formula are reported in Table 1.

Similar functions can be formulated for the in-
voluntary longitudinal and lateral cyclic controls re-
sulting from surge (fore-aft motion) and sway (lat-
eral motion) accelerations. When discussing nu-
merical results, transfer functions from the litera-
ture are considered; since the original references
did not provide analytical formulas, their interaction
with the stability limits will be analyzed only graph-
ically.

A complete description of the loop closure ex-
erted by the pilot requires one to consider also the
voluntary action. Since this contribution is band-
limited at a crossover frequency of about 2÷3 ra-
dian/s (the upper is a hard limit for typical human
behavior, as discussed in [24]), it is not considered
in the present work because its action is about one
decade below typical biomechanical poles, which
are in the range 20÷25 radian/s, as shown in Ta-
ble 1, and thus no significant interaction is ex-
pected with the aeroelasticity of rotorcraft. This
implies that only results above 1 Hz must be con-
sidered.

3.4 Robust Analysis Problem

The robust stability analysis problem aims at de-
termining the stability boundaries of the involuntary
pilot model, considering the involuntary pilot as the
uncertain element of an otherwise certain system.

The plant consists in the transfer matrix of the
helicopter from the control inputs to the motion of
the pilot seat. In principle, one may want to con-
sider the nominal controls that are sent to the main



and tail rotor in a conventional helicopter design,

δδδ =

{

δδδMR
δδδTR

}

=















θ0MR
θ1cMR
θ1sMR
θ0TR















(27)

However, it may be more appropriate to decouple
the uncertain pilot model from the kinematics and
dynamics of the flight controls of a specific vehicle,
thus considering as inputs the motion of the control
inceptors,

ηηη =















ηcollective
ηlongitudinal

ηlateral
ηpedal















. (28)

In this latter case, any gearing ratio between the
motion of the control inceptors, the actuator dy-
namics and the dynamics possibly associated to
an Automatic Flight Control System (AFCS) in aug-
mented helicopter designs can be included in the
dynamic model of the vehicle.

As previously mentioned, the output of the plant
consists of the motion of the pilot’s seat,

xpilot = Upilotq, (29)

which, thanks to Eqs. (19) and (20), can be ex-
pressed as a function of the control inceptors,

xpilot = UpilotHqδδδHactηηη = Hxηηηηηη. (30)

In general, thus, the motion of the seat is repre-
sented by a 6×1 vector, while the controls consist
of a 4×1 vector. As a consequence, the reduced
plant is represented by a 6× 4 matrix, G = Hxηηη.
Consequently, the involuntary pilot model is repre-
sented by a 4×6 matrix, ∆∆∆ = −Hηηηx. This implies
that the coupled loop transfer matrix, G∆∆∆, is struc-
turally rank deficient.

As discussed in [11], limit reference pilot mod-
els are represented by Hηηηx ≡ 0. In fact, when the
pilot is absent, well balanced control inceptors do
not usually move when the cockpit is subjected to
accelerations. At the opposite extreme, an ideal,
infinitely stiff pilot that firmly grasps the inceptors
does not produce any involuntary input as a conse-
quence of cockpit accelerations. For this reason, it
is desirable to consider Hηηηx = 0 as the reference
pilot. In this case, the reference coupled system
is perfectly stable, since matrix HCL reduces to the
identity.

The determination of robust stability consists in:

• determining the stability limits of the vehicle as
indicated earlier;

• superimposing the transfer function of the pi-
lot, taking into account any structure of its un-
certainty;

• if the magnitude of the pilot transfer function
does not exceed the magnitude of the vehicle
limits, no instability can occur; otherwise,

• at crossings between the phase of the pilot
transfer function and the vehicle limits, if the
magnitude of the pilot transfer function ex-
ceeds that of the vehicle limits, an unstable
condition is met.

This analysis is exemplified and clarified in the fol-
lowing section.

4 NUMERICAL RESULTS

The aeroelastic model discussed earlier has
been used to determine the stability limits with
respect to selected involuntary pilot inputs. Fig-
ures 5–7 contain the stability limits associated to
the main rotor controls as functions of the motion
of the pilot’s seat in three directions. The limits
associated to longitudinal cyclic caused by surge
(fore-aft motion) of the seat are shown in Fig. 5.
The limits associated to lateral cyclic caused by
sway of the seat are shown in Fig. 6. The limits as-
sociated to collective caused by heave of the seat
are shown in Fig. 7.

In all cases, the limits are computed using he-
licopter models that share the same airframe and
controls dynamics, and differ in the aeroelasticity
of the main rotor. In addition to the two models dis-
cussed earlier (blade element and BEM), a model
derived from CAMRAD/JA is used as well. The
stability limits resulting from the three models show
relatively similar trends, especially in the band of
frequencies of interest for the present analysis (1
Hz to 8 Hz), where the analysis was refined. At
lower and higher frequencies the limits differ, sig-
nificantly with respect to phase.

In order to illustrate the significance of the stabil-
ity limits of the vehicle, they are compared with in-
voluntary pilot models from the literature. In Fig. 5,
the model of the involuntary longitudinal cyclic re-
sulting from surge acceleration presented in [25]
and related to the V-22 is considered. Unfortu-
nately, no information about the phase was given
in the original reference. In Fig. 6, the model of the
involuntary lateral cyclic resulting from sway accel-
eration presented in [22] and again related to the
V-22 is considered. In addition, experimental re-
sults obtained in the University of Liverpool’s HE-
LIFLIGHT flight simulator [21, 26] are considered.
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Figure 5: Stability limits associated to longitudinal cyclic control induced by surge acceleration at the
pilot’s seat.
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Figure 6: Stability limits associated to lateral cyclic control induced by sway acceleration at the pilot’s
seat.
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Figure 7: Stability limits associated to collective control induced by heave acceleration at the pilot’s seat.

Finally, in Fig. 7 the previously discussed model of
the involuntary collective resulting from heave ac-
celeration proposed by Mayo [20] is considered.

The graphical analysis shows that in the case of
the surge motion of Fig. 5 no adverse interaction
is possible, since the amplitude of the involuntary
pilot control is always well below the limit. On the
contrary, in the case of the sway motion of Fig. 6
an instability can occur because the amplitude of
some of the pilot models overcome some of the ve-
hicle’s limit curves, and this occurs when the phase
of the related pilot curve is close to the phase as-
sociated with the critical direction of Eq. (13), il-
lustrated in Fig. 2 as ejθi . Similarly, in the case of
the heave motion of Fig. 7, there is a slight chance
of instability in the higher frequency portion of the
frequency band where the magnitude of the pilot’s
curve intersects the lower limit amplitude, since the
phase of the pilot’s curve approaches the phase
associated to the critical direction. It is worth re-
calling that this analysis is essentially intended to
illustrate the features of the proposed approach
to robust stability analysis, and it does not imply
any specific proneness of this helicopter model to
unstable aeroelastic RPC. Flight simulator testing
of the proposed numerical models with respect to
RPC is underway within ARISTOTEL to verify the
predictions presented in this work.

5 CONCLUSIONS

A robust stability approach has been presented
to study the proneness of helicopters to Rotorcraft-
Pilot Couplings. The approach has been applied to
the analysis of aeroelastic rotorcraft models of dif-
ferent complexity in the aerodynamics of the main
rotor, from simple blade element theory to an orig-
inal approach based on the Boundary Element
Method. The interaction of the pilot biodynamic
feedthrough with the dynamics of the vehicle has
been discussed. Numerical results related to the
comparison of stability limits of the different models
have been discussed. All the aerodynamic models
considered in the analysis show similar trends for
the stability limits. The differences are limited es-
pecially in the frequency band of interest for the
involuntary interaction with the pilot. Further in-
vestigation is needed to confirm this result and to
determine whether it also applies to helicopters of
different categories.
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