
SOFTWARE IN THE EHlOl - A CASE STUDY 

Dr P J Whittle 

Westland Helicopters Limited 

Yeov.il, 

Abstract 

Software is used in modern avionic 
equipment for a variety of reasons; 
operational capability unobtainable by 
other means, flexibility (although 
this can be a disadvantage if it is 
not properly controlled) and accuracy 
as compared with analogue devices. 

At the time of the original EHlOl 
equipment specification (1982) there 
were no well established standards for 
High Integrity software although these 
did become more widely available as 
more and more avionic manufacturers 
used software in their equipment. 

A set of standards for the EHlOl 
therefore gradually evolved throughout 
the project and are still evolving now 
as we contemplate and plan the RAF 
Utility variant. 

Software is used in a number of 
control systems on the EHlOl with 
varying levels of system criticality. 
The basic philosophy with regard to 
Vendor Management and product 
certification, however, remains 
essentially the same. 

Introduction 

Why is Software used in modern avionic 
equipments? Within the engineering 
community software systems have a 
reputation for being undependable, 
always late and always over cost. 
Everyone has heard the stories about 
the Space Shuttle being delayed 
because of software faults, or the 
Venus probe which was lost because of 
a punctuation error. More recently, 
the Russian Mars probe failed because 
of a software error which allowed the 
ground controller to accidently 
corrupt the programme. Interestingly 

somerset, UK 

it was the ground controller who 
appeared to get the blame rather than 
the software development teams who did 
not detect the error. 

In the software community the problem 
is known to be more widespread. If 
software is so untrustworthy, then why 
do not we, as engineers, avoid it and 
use discreet components and analogue 
computation? 

There are three main reasons that are 
pertinent to avionic systems: 

l. Software allows more 
operational capability to be 
given to the operator. 

2. 

Inherent power and flexibility 
allows a wide variety of 
complex information to be 
presented to the operator in 
all sorts of different ways, 
tailored to be useful for any 
particular application. All of 
this can be achieved using less 
space and power than equivalent 
non computerised systems. 

Logic implemented in software 
is, in theory at least, easier 
to change than logic 
implemented in hardware. This 
gives great flexibility and 
easy upgrade paths for the 
operator. This 
reconfigurability is a 
particularly important 
attribute for mission control 
systems where the operational 
requirement is likely to evolve 
substantially during the 
lifetime of the equipment. 
However, it should be realised 
that this relative ease of 
changing a program, at least 
the mechanical part of editing, 
recompiling and reblowing an 
EPROM can give rise to other 
difficulties. These can only be 
controlled by utilising 

!.7.1.1 



3. 

rigorous configuration and 
change control procedures. 

Software technology allows more 
logic to be built into the 
system. Calculations can be 
performed to much higher levels 
of accuracy compared with hard 
wired systems. The software 
can also perform more checking 
of data inputs and outputs and 
of the hardware elements 
themselves. Thus overall 
reliability is improved. If a 
dual redundant architecture is 
used then a failed device can 
be disabled and a backup 
switched in to take over. 

The EHlOl uses all of these useful 
features of software systems. 

EHlOl Software Project Management 

At the outset of the EHlOl project it 
was recognised by all the parties 
concerned, WHL, Agusta and the British 
and Italian Government procurement 
agencies that a large amount of 
software would be required to be 
written for the EHlOl avionic system, 
a lot of it from scratch. In order to 
devise an effective strategy for the 
management of this development it is 
important to understand the 
similarities and differences between 
hardware and software controllers. 

Engineers have long known how to 
specify a hardware control system by 
means of a black box model. In such 
models the inputs and outputs can be 
described explicity as mathematical 
functions. In theory, software 
implemented controllers can be 
described in exactly the same way. 
However, there are fundamental 
differences between software and other 
approaches which demand particular 
attention. 

Complexity 

Software systems are, typically, much 
more complex. Precise documentation, 
even for a small system, can fill a 
bookcase. Similarly it can take a 
very long time for a programmer to 

become sufficiently familiar with a 
particular system before he/she can be 
trusted to make improvements on 
his/her own. 

Error Sensitivity 

Software is very sensitive to small 
errors. This is largely not the case 
in analogue hardware systems where the 
concept of tolerance is meaningful. 
However, no useful interpretation of 
tolerance is known for software. As 
several well known examples prove, a 
single punctuation error can be 
disastrous. Perversely, however, 
quite large errors can equally have 
negligible effects. 

Hard To Test 

Software, by its very nature is 
notoriously difficult to test. The 
number of different permutations of 
possible input data quickly becomes 
astronomic for all but the most 
trivial program. Testing by 
interpolation where one assumes that 
devices which work at two close points 
will also work at all points in 
between, although valid for analogue 
devices is not valid for software. 

For these various reasons it was 
recognised that rigorous control of 
the EHlOl software development would 
be vital to the successful completion 
of the overall project. This was 
particularly important when the early 
estimates for software indicated a 
requirement for approximately 500,000 
lines of code to be written for 
airborne software alone. As well as 
this two significant other software 
development activities were required, 
Integration rigs (involving for the 
main part software modelling and 
emulation of sensors) and Simulation 
(involving the prototyping and testing 
of Man Machine Interfaces). 

It was decided to mandate very precise 
software standards and also specific 
software tools and languages. These 
were to be applied primarily to 
airborne avionic equipment but were 
also applied to the integration rigs 
as these have similar integrity 
requirements. 

1.7.1.2 



Constraints in the choice of simulator 
hardware and the fact that it does not 
have the same integrity requirements 
as airborne or rig equipment meant 
that different, but nevertheless 
similarly rigorous quality standards 
were more appropriate. 

Standards Applied 

At the time of the original 
specification (1982) there were no 
well established international 
standards in common use in Europe 
(such as DOD-STD-2167 and RTCA/D0-
178A). Therefore a detailed software 
standards document was produced which 
mandated rigorous development 
methodologies and deliverable 
documentation from suppliers. 
Westland itself does not manufacture 
avionic equipment, and so another 
important aspect of the overall 
project was the management of the 
software development activities of 
equipment vendors, and auditing them 
against the detailed standard. As 
other standards became more widespread 
in their application and acceptance, 
in particular D0-178A, it was 
comforting to note that other experts 
in this field saw similar aspects of 
the software development life cycle as 
being of equal importance. In the 
original specification for the 
software standards to be applied to 
the airborne equipment it was decided 
to mandate a programming language 
(Pascal) and a development tool set 
(Perspective).- This was felt to be 
advantageous for a number of reasons, 
in particular as future software 
support arrangements could have 
involved an independent third party. 
However, experience showed that this 
presented unforeseen complications 
which needed to be addressed. In 
particular some avionic equipments 
were derived from existing equipments 
which had already been developed using 
a different language. Clearly it was 
not justified on cost terms to rewrite 
this software in Perspective Pascal as 
well as the fact that this would 
actually be likely to increase the 
overall programme risk. Each of these 
cases had to be considered on its own 
merits. 

Results (Good) 

What was the result of all this risk 
reduction and management? well, the 
first avionic aircraft, PP4, has its 
first flight with all its avionic 
equipment fully functional. 

The first RN aircraft had fully 
functional Radar, ESM, and Sonics 
Systems all controlled by and 
displayed through the Mission Computer 
Unit. The capability of the basic 
flight systems is best illustrated by 
the fact that this aircraft was landed 
in the dark on its first flight using 
these systems. 

Results (Not Quite So Good) 

The EH101 Software Requirements 
Document referred to above, even 
though it covered most of the software 
developement lifecycle did 
subsequently prove to have a few 
weaknesses. In particular it didn't 
mandate exact documentation formats 
such as is done in DOD-STD-2167. We 
subsequently discovered that different 
suppliers interpreted our requirements 
in different ways. This added 
significantly to the work of the 
Westland review teams. It was also 
difficult to get suppliers to 
introduce a metric reporting scheme, 
which we believed was highly 
desirable. However, because it was 
not in our contractual requirments it 
could not be enforced. Some of the 
equipments had other developement 
difficulties but the establishment of 
the Vendor Managment Group was 
vindicated by the fact that these 
potential problems were identified 
early enough to enable adequate 
recovery plans to be negotiated and 
implemented in time to still meet 
critical aircraft flight dates. 

Lessons Learnt 

History has shown that the approach 
adopted by Westland - that is having a 
small Vendor management team whose job 
is to attend design reviews, review 
documentation and perform audits, has 
proved extremely effective. Also 
justified is the statement at the 
beginning of the project as to the 

1.7 .1.3 



software standards to be employed. 
This proved to be an essental part of 
the contractual conditions placed on 
suppliers. In retrospect, however, it 
was not strong enough in certain 
areas. 

Early concerns about configuration and 
change control did not materialise. 
Westland employs rigorous 
configuration control on site and 
insists on it being enforced at 
vendors sites. 

Overall these procedures proved 
effective. From the vendor management 
group point of view the most powerful 
tool in their arsenal proved to be the 
audit, both scheduled and unscheduled. 
It proved to be by for the most 
effective way of really understanding 
a suppliers software development 
programme, what the problems were, and 
how they were being addressed. 

The Future 

Software will be used more and more in 
Avionic Systems. We already have a 
fully civil certificated fixed wing 
aircraft using fly-by-wire (the Airbus 
A320) which is dependant on execution 
of software programs for its continued 
safe flight. Because of the general 
nervousness of certification 
authorities, it does, however, have 
some reversionary capabilities. 
Military aircraft are currently flying 
with Active Controls Technology (ACT) 
where the aircraft is designed to be 
statically unstable, artifical 
stability being introduced by the 
software. If this is extended to civil 
aircraft and can be proven safe 
enough, enormous savings in fuel can 
be made. 

Westland has, for some years now, been 
studing ideas for ACT applications in 
helicopters. The levels of integrity 
required are not hugely different to 
those applied to systems on the EHlOl. 
The problem will be one of convincing 
the regulatory authorities that their 
concerns about safety are addressed by 
the best software technology available 
at the time and that the potential 
advantages to the operator far 
outweigh any potential risk. A number 
of techniques for increasing integrity 

are being developed such as static 
code analysis, formal methods of 
specification (and ultimately 
mathematical proof of correct code) 
and the use of dissimilar processing. 
The true value of these techniques is 
still being hotly debated. 

Finally, would Westland continue to 
use a project wide software standards 
document for any future software 
development? The answer is yes, but 
it would be much more detailed and 
would follow more closely the current 
de facto standards of DOD STD 2167 and 
RTCA/D0-178A. 

!.7.1.4 


