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Abstract 

The theory of Volterra integral series for 
nonlinear systems is applied to the prediction of 
the aerodynamic response of an NACA 0012 
airfoil experiencing blade-vortex interaction.  The 
phenomenon is modeled in two-dimensions 
using Euler/Navier-Stokes description of the 
flow.  The resulting unsteady lift time sequences 
are appropriately combined to form a training 
dataset to identify the Volterra kernels that 
characterize the reduced-order model based on 
the Volterra integral series.  Next, the response 
predicted by the reduced-order model is 
compared to new data produced by the 
Euler/Navier-Stokes simulations to which the 
reduced-order model has never been exposed.  
The lift time histories predicted by the reduced-
order model and the corresponding 
Euler/Navier-Stokes simulations are shown to be 
in respectable agreement.  
 

Nomenclature 

c Airfoil chord 

cj ,dk Volterra kernels basis functions 
expansion coefficients 

CL Airfoil instantaneous lift coefficient 

Cp Airfoil instantaneous pressure 
coefficient 

∆CL Maximum lift coefficient during BVI 

K1, K2, K3 First, second and third-order 
Volterra kernels 

t, t1 ,t2 Instants of time 

u∞ Flow undisturbed velocity 

(x0, y0) Initial position of vortex core from 
airfoil leading edge 

(x, y) Instantaneous position of vortex 
core from airfoil leading edge 

z(t) Volterra series output function 

α(τ) Volterra series input function 

z1(t),  z2(t), 
z3(t) 

First, second and third-order 
Volterra functionals (linear, bilinear 
and tri-linear outputs of Volterra 
series) 

Γ Vortex circulation 

ζj , µk Volterra kernels basis functions 
(first and second-order) 

τ, τ1, τ2, τ3 Dummy time variables 

τj, τjk Time constants of Volterra kernels 
basis functions (first and second 
order) 

 

Introduction 

With the increasing usage of modern rotorcraft, 
the focus of most blade-vortex interaction (BVI) 
research is on the effects of unsteady impulsive 
loading on the rotor blades and the associated 
noise generated during the process.  It is 
already well understood that BVI is essentially 
three-dimensional and unsteady phenomenon, 
as the tip helical vortex filaments produced by 
previous blades passages intersect the on-
coming blades at different angles.  However 
there are two orientations of the interaction that 
are of particular concern.  The first is the case 
when the vortex axis of rotation is perpendicular 
to the leading edge of the on-coming blade, as 
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shown in Fig. 1a. The second is the case when 
the vortex axis of rotation is parallel to the 
leading edge of the blade, as shown in Fig. 1b.  
By comparing the two orientations in Fig. 1, the 
area affected by the parallel is greater then that 
affected by the perpendicular case.  As the 
vortex travels parallel to the leading edge of the 
blade, a larger span of the blade will be 
simultaneously affected by the vortex.  In fact, 
Martin et al. (Ref. 1) identified in wind tunnel 
tests that the most prominent BVI noise 
emission occurs when the blades azimuth 
angles are in the exactly range where the trailing 
vortices are nearly parallel to the blade. 

 
Figure 1: (a) Upper: vortex rotation axis 

perpendicular to the blade. (b) Lower: vortex 
rotation axis parallel to the blade. 

In principle, the parallel BVI case sketched in 
Fig. 1b is easier studied because it can be 
approximated by a two-dimensional model.  The 
entire span of the blade undergoes the same 
aerodynamic loading induced by the vortex 
filament.  Strauss (Ref. 2) provides an excellent 
summary on the pioneering works performed on 
the problem of parallel BVI.  In particular, in the 
work by Renzoni and Mayle (Ref. 3), a set of 
correlations was obtained for the overall change 
in the lift, moment and drag coefficients due to 
BVI.  In this work, a formula for the maximum 
change in the lift coefficient is given in terms of 
the ratio between the normalized vortex 
circulation and the initial vertical distance 
between the vortex and the airfoil mean chord 
(the initial vortex-airfoil “mean distance”), which 

is considered a fundamental parameter to 
measure the intensity of the BVI phenomenon: 
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In mathematical terms, the correlations as such 
imply that underlying kernels could be identified 
behind the phenomenon.  The main objective of 
the present study is to demonstrate using the 
simpler two-dimensional formulation of parallel 
BVI that the Volterra integral series involving 
nonlinear kernels can identify the phenomenon.  
Moreover, in the present work a simple 
framework for the further developments of an 
engineering tool that can be used to obtain an 
accurate prediction of not only the overall 
change in aerodynamic coefficients during BVI 
but, most importantly, the associated time 
histories is established.  
 
The pioneering work of the Italian mathematician 
Vito Volterra on functionals provided the 
fundamentals of modeling a physical process 
from some observable facts that can be used in 
turn to generate new information about the same 
process (Ref. 4).  Due to the significant 
contributions by Wiener on the development of 
the Volterra functionals, this theory is also 
referred as the Volterra-Wiener theory of 
nonlinear systems.  When modeling any 
nonlinear phenomena using the Volterra-Wiener 
theory, the effort is concentrated on the 
identification of the kernels associated with the 
series of integrals in either the time or the 
frequency domains.  Although the initial 
identification of the kernels for a completely 
unknown process may be cumbersome, the 
advantages of using the Volterra integral series 
to generate reduced-order models outweigh 
these difficulties.  This modeling technique 
allows the inclusion of any arbitrary number of 
degrees of freedom while maintaining simple 
levels of computations. 
 
The Volterra-Wiener theory has long been used 
as a tool in the field of electrical engineering, 
mathematical biology, medical imaging and 
numerous other fields of applications.  However, 
only in the past decade this powerful theory 
received attention from researchers in the field 
of unsteady aerodynamics.  In 1990, Tromp and 
Jenkins (Ref. 5) applied for the first time a 
Volterra integral series identification scheme to 
model the nonlinear aerodynamics of a two-
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dimensional airfoil in subsonic flow subjected to 
an input angle of attack.  The identification was 
performed in the frequency domain.  The model 
was built using aerodynamic data produced by 
an unsteady Computational Fluid Dynamics 
(CFD) Navier-Stokes solver.  Both the first-order 
(linear), and the second-order (non-linear) 
kernels were identified.  Silva (Ref. 6) in 1993 
also used the outputs from a CFD solver to 
identify the first and second-order kernels.  His 
method, however, used the system responses to 
single- and double-impulse input functions to 
generate training datasets.  
 
Reisenthel (Ref. 7) developed a method that 
identifies the Volterra kernels from unsteady 
aerodynamic training datasets obtained either 
from wind tunnel or flight tests.  According to this 
method, in order to generate the training dataset 
the system is not required to undergo the 
experimentally difficult to reproduce impulsive 
excitations that are required in Silva’s method.  
This is also an advantage when CFD-based 
datasets are used because impulsive inputs can 
only be approximated numerically.  Reisenthel 
applied the method to a rigid NACA0015 airfoil 
that was dynamically pitched about its quarter 
chord.  The results demonstrated that the 
method is feasible for the identification in the 
time-domain of the first and second-order 
Volterra kernels from experimental data.  This 
method will be employed in the present work to 
identify BVI.  First, a training dataset will be 
generated by a complete CFD analysis of the 
phenomenon, which includes assignment of the 
airfoil geometry, the flow field characteristics 
such as the Mach number, static temperature 
and pressure, and the single vortex 
specifications in terms of its circulation and core 
initial location with respect to the airfoil leading 
edge.  If the vortex is released at a “sufficiently 
far” distance ahead the airfoil, only the vertical, 
y0 coordinate, the vortex core initial miss 
distance becomes a parameter.  Using the 
obtained training dataset, the Volterra kernels 
will be identified following Reisenthel’s method.  
Once the reduced-order model is generated, the 
complete time-response of the system (regarded 
now as a “black box”) will be predicted for a 
general input vortex, as depicted in Fig. 2.  For 
this, the input vortex must be defined only in 
terms the time sequence given by the ratio 
between its normalized circulation and core 
instantaneous miss distance from the airfoil, 

( ) ( )BVI t y tα = Γ c .  As (1) suggests, this ratio 

can be identified to an “equivalent instantaneous 
angle of attack” due to BVI that could also be 
directly related to the instantaneous lift 
coefficient, CL(t) experimented by the airfoil.  
This is, in summary, the object of study of the 
present paper: to identify a nonlinear model able 
to generalize Renzoni and Mayle’s results for 
any time step.  Although in the present work only 
the lift coefficient time history was the object of 
study, the time histories of other aerodynamic 
coefficients can be equally addressed using the 
same procedure, whose schematic is depicted in 
Fig. 3. 

 
Figure 2: Unsteady aerodynamic system defined 

as a “black box”  

Reduced-order Model Definition 

 

Unsteady 
Aerodynamic Data 
form CFD output 

Volterra Kernels 
Identification 

Reduced-order Model 

System Response 
(Unsteady Aerodynamic 

Coefficients Time-
histories) 

BVI Phenomenon 
Definition 

New Vortex 
Data 

(Circulation 
and Miss 
distance) 

CFD Model 

 
Figure 3: Reduced-order Model 

identification scheme 

Volterra Integral Series The Volterra-Wiener 
theory states that any nonlinear system can be 
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modeled as an infinite sum of multi-dimensional 
convolution integrals (Ref. 8).  Nonlinear 
systems exhibit an after-effect, which is often 
referred as the “nonlinear system memory.”  
One example of such systems is BVI.  The 
modeling of a nonlinear aerodynamic system 
with Volterra integrals follows a method of 
successive approximations.  Starting from the 
conventional one-dimensional linear convolution, 
as many terms of an infinite series of multi-
dimensional nonlinear convolutions containing 
kernels on time differences involving the present 
and previous instants of time are added as 
necessary to achieve an accurate description of 
the phenomenon. 
 
The output of a nonlinear time-invariant system 
can be expressed by using the summation of the 
Volterra functionals as follows (Ref. 9):  
 

0 1 2 3( ) ( ) ( ) ( )  z t z z t z t z t= + + + +…  (2)
 
where z0 is here a constant, z1(t) is known as the 
linear output, z2(t) is the bilinear output and z3(t) 
is the tri-linear output, etc.  The order of each 
term in the series can be regarded as a 
measurement of the intrinsic non-linearity 
embedded into the system.  For a weakly 
nonlinear system, only the first two Volterra 
functionals in the series are required to define 
the system, as the magnitudes of the higher-
order kernels quickly fall off, and these terms 
become negligible. 
 
The Volterra functionals in (2) are given by: 
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(3)

 
where t is the current instant of time, τ1, τ2 and τ3 
are dummy time integration variables; α(t) is the 
system input, K1, K2 and K3 are the kernels of the 
Volterra series, and z(t) is the overall system 
response to the input function, α(t).  
 
The prediction of the nonlinear aerodynamic 
response of a system to an arbitrary input 
begins from the identification of the kernels of 
the Volterra integrals. The procedure is 
essentially the same regardless the order of the 

kernel.  The system response due to an arbitrary 
input can be obtained either from experimental 
datasets or from the output of a CFD simulation, 
as it was done in the present work.  The 
extraction of the kernels is the most critical part 
of the prediction process because they hold the 
characteristics of the physical system.  The first 
task in the extraction process involves 
discretization of the unknown kernels in the time 
domain and their subsequent expansion into a 
space spanned by prescribed basis functions:  
 

( ) (
( ) (

1

2 1 2 1 2, ,

j jj

k kk

K t c t )
)K t t d t t

ζ

µ

=

=

∑
∑

 (4)

 

In (4), the basis functions ζj and µk are 
admissible functions of time, whereas cj and dk 
are coefficients to be determined.  These must 
satisfy all available datasets at all times in a 
least-square sense.  Since the solution of this 
least square problem is highly sensitive to round 
off errors, a singular value decomposition 
technique is employed (Ref. 7).  
 
Thus, for the ith time step the bilinear 
representation of the nonlinear system in terms 
of the prescribed basis functions gives: 
 

( ) ( ) ( )

( ) ( ) ( )

1 1 10

1 2 1 2 10 0
,

i

i i

t

i j j ij

t t

k k i ik

z t c t d

d t t d

ζ τ α τ τ

2dµ τ τ α τ α τ τ τ

= − +

− −

∑ ∫
∑ ∫ ∫

(5)

 
 
Tailoring Kernel Basis Functions for BVI.  In the 
present work, it was found that the lift response 
of the airfoil due to BVI could not be modeled 
with the bilinear approximation using the basis 
functions discussed in Ref. 7.  Due to the highly 
nonlinear characteristics of the phenomenon, a 
higher-order model containing several additional 
Volterra functionals would be necessary.  This 
would make the process of kernel identification 
of Ref. 7 too cumbersome and not well suited to 
the envisioned development a simple 
engineering tool to predict BVI.  Roughly, the lift 
curves due to BVI resemble two consecutive 
delta functions carrying opposite signs (or the 
derivative of a delta function).  Then, in the 
present work it is proposed that the form of the 
second-order basis functions of Ref. 7, which 
define the bilinear kernel be modified to tailor the 
present application.  To better describe the 
impulsive BVI phenomenon, an extra term 
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Importantly, by imposing the above symmetry on 
the second-order time constants matrix, one 
guarantees a fundamental symmetry property of 
the kernel.  It is, however, important to note that 
when adding the underlined term in (6), the 
space spanned by the basis functions is no 
longer complete and this fact should raise 
mathematical concerns that must be addressed 
in the future. 

resembling the Gauss probability function was 
added to the original set of basis functions µk 
associated with the bilinear kernel, whereas the 
basis functions ζj associated with the linear 
kernel remained unchanged.  Therefore, the first 
and second-order basis functions depicted in (5) 
in the present work are given by, respectively: 
 

( ) j

t

j t e τζ
−

=  

( )
2
21 2 2 1
2

1 2 1 2 2
1 2

1, k k k k k

tt t t t

k t t e e eτ τ τ τ τµ
π

   
−− + − +   

   = + +

(6)
 
 
Forming the BVI Dataset  

CFD Simulation Model.  In the present study, the 
blade-vortex interaction was first modelled 
numerically by solving Euler/Navier-Stokes 
equations using a finite-volume commercial 
solver. Since the purpose of the simulations was 
only to create a nonlinear dataset for the 
Volterra kernel identification process, the simpler 
Euler-based option of the CFD solver was 
employed.  When choosing the Euler model, the 
flow is assumed inviscid, and the BVI cannot 
cause flow separations.  Hence, in all 
simulations the vortex was initialized at a miss 
distance below the airfoil where the resulting 
vortex path did not lead to a direct head-on 
collision with the airfoil, ensuring that the above 
assumptions were valid.  

 
where the underlined term in the second 
expression is the proposed addition.  Also in (6), 
τ1k and τ2k are time constants that are 
determined at this stage of development of the 
method by a procedure that is greatly dependent 
upon past experience and “educated guesses.”  
Fundamentally, the range of values of the time 
constants are chosen to cover a range bounded 
by the inverse of the time interval defined by the 
signal onset (i.e., when the lift produced by the 
approaching vortex is first detected) and the 
time at which the final value of the input is 
reached (i.e., when the maximum lift due to the 
approaching vortex is reached).  Therefore, by 
adjusting the time scales, the frequency content 
of the input signal is controlled.  The impact of 
choosing the correct time scales is important to 
improve the efficiency and accuracy of the 
method.  Hence, the time scales must be tested 
in an algebraic sequence to determine their 
proper values.  For the first-order basis 
functions, ζj the trial set of time constants, τj are 
kept in a one-dimensional array.  Once these 
values are selected, they are left unchanged 
while identifying the second-order kernel.  The 
basis functions for the second-order kernel,  µk 
are constructed to span a similar range of time 
scales covered by the first-order kernel.  In this 
case, the time constants, τjk are the elements of 
a symmetric matrix formed by all possible 
combinations from the generating set.  For 
example, for a generating set of consisting of 
three time constants, forming the array [τ1, τ2, τ3], 
nine second-order time-constants are obtained 
as follows:  

 

airfoil

Figure 4: Domain outlines for the NACA 0012 
airfoil mesh. 

The accuracy of the simulation results is strongly 
dependent on the details of the blade geometry 
and the mesh.  The geometry used in the 
simulation was the symmetric NACA 0012 airfoil 
with a unit chord length.  The airfoil was set at a 
position with a 0o angle of attack; therefore, any 
lift observed in the simulations was a direct 
result from the blade-vortex interaction.  A C-
type, multi-zone two-dimensional structured grid 
was constructed around the airfoil. The outer 
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21 22 23 2 3 1

31 32 33 3 1 2
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τ τ τ τ τ τ
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boundaries were located 25 chords away from 
the nose of the airfoil.  The computational 
domain was divided into 6 zones, as shown in 
Fig. 4, allowing different grid densities to be 
used in different areas around the airfoil.  During 
the simulation of BVI, a very fine grid was 
required on the path of the vortex in order to 
preserve its characteristics.  Throughout the 
study, the vortex was set so that it passed under 
the target airfoil; therefore the zones directly in 
front of and under the airfoil contain the highest 
grid density.  The grid was constructed in such a 
way that the near field of the airfoil contained a 
very fine grid distribution that gradually 
coarsened as it proceeded outward towards the 
far field. The total number of grid points was 
approximately half-a-million.  The same grid was 
used for all of the computations.  Using the 
same grid topology with a larger value for the 
normal distance resulted in fewer grid points but 
the dissipation of the minimum pressure inside 
the core was found to be too great; therefore, 
the fine grid was selected for the present 
analysis. 
 
At the solid boundaries (the upper and lower 
surfaces of the airfoil) inviscid (slip) and 
adiabatic wall conditions were applied.  The 
normal pressure gradient at the wall was 
assumed to be zero.  The ideal gas model was 
used in the simulations.  The freestream flow 
field conditions were used as reference 
conditions for normalizing the flow field variables 
(Table 1).  At the downstream (outflow 
boundary), the pressure for all the points on the 
boundary was extrapolated from the adjacent 
points. 
 

Mach Number 0.300 
Speed of Sound 1116 ft/s 
Flow Velocity 334.9 ft/s 
Total pressure 15.643 psia
Static pressure 14.696 psia
Total temperature 528.0°R 
Static temperature 518.7°R 
Table 1: Flow-field characteristics 

 
A single vortex with the non-dimensional 
circulation 0.166u c∞Γ = Γ =  in the clockwise 
direction was released downstream at the fixed 
freestream velocity, u∞ in all test cases.  Since 
for a typical rotor blade the tip vortex has a core 
diameter of about the thickness of the blade 
(Ref. 10), the radius was set as 6% of the chord 
length to match the NACA 0012 airfoil used in 

the simulations.  The internal structure of the 
vortex was constructed according to the 
classical vortex model suggested by Scully (Ref. 
11).  The leading edge of the airfoil was 
positioned at the origin of the Cartesian system, 
(x, y).  For each of the simulations, the vortex 
was initially placed at a horizontal distance of 
approximately x0=2.5 chords ahead of the airfoil 
(considered “far enough”) and different vertical 
miss distances, y0 below the airfoil.  The vertical 
distance was measured in all cases from the 
chord line of the airfoil to the core of the vortex.  
The definition of the CFD problem initial 
conditions is summarized in Fig. 5.  
 
An array of test cases with different miss 
distances was simulated in the present study.  
The exact initial locations, (x0,y0) of the core for 
test cases studied are listed in Table 2.  This set 
of test cases was selected to cover a narrow 
range of miss distances so that the extraction of 
kernels could be performed within a minimum 
number of test cases.  A fifth-order upwind-
biased spatial integration scheme was used and 
the time step was set at 2.5µs, with 20 maximum 
iteration cycles per time step. 
 

 
Figure 5: Definition of Test Cases initial 

conditions. 
 

 
Test Case 
Number 

0x c  0y c  

1 2.53480 0.245929 
2 2.54205 0.155371 
3 2.52202 0.353106 
4 2.53898 0.19865 
5 2.52461 0.334044 
6 2.53028 0.288505 
7 2.54062 0.176521 
8 2.54161 0.162314 
9 2.54012 0.183789 

Table 2: Initial location of the vortex core for 
Test Cases. 

 
CFD Simulation Results.  Since the only notable 
difference among all test cases was the initial 
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miss distance, y0 the description of the airfoil-
vortex interaction process is discussed for one 
of the test cases in the present work.  The 
instantaneous pressure coefficient contours in 
Figs. 6 to 11, along with the airfoil lift coefficient 
time history in Fig. 8 will now be examined for 
Test Case 9.  

In Fig. 7, the vortex has advanced towards the 
leading edge of the airfoil.  The approach of the 
clockwise rotating low-pressure vortex causes 
the lower surface of the leading edge of the 
airfoil to become a low-pressure region.  When 
the vortex is located at 0.00848 chords and the 
core of the vortex has just passed the nose of 
the airfoil, the minimum pressure coefficient over 
the airfoil peaks to a high of approximately 1.0.  
As a result of this rapid decrease in pressure 
over the lower surface, the lift coefficient over 
the airfoil also experienced a plunge from zero 
to −0.15, as shown in Fig. 8.  Also from Fig. 8, 
once the vortex passes the nose of the airfoil, 
the lift induced by the vortex rapidly increases 
and reaches its maximum value of 0.047. This 
rapid increase in lift is associated with the 
magnitude of the negative pressure peak 
induced by the vortex on the lower surface of the 
airfoil.  

 
Beginning with Fig. 6, the vortex is located at 
0.485 chords ahead of the airfoil.  At this 
location the vortex starts to interact with the 
airfoil, as the pressure coefficient contour 
indicates.  
 

 

 

 
Figure 8: Airfoil instantaneous lift-coefficient 

versus vortex positions for Test Case 9. Figure 6: Pressure coefficient contour of Test 
Case 9 at 0.00705s (BVI starts).  

  

  Figure 9: Pressure coefficient contour of Test 
Case 9 at 0.00915s. Figure 7: Pressure coefficient contour of Test 

Case 9 at 0.00855s (BVI peaks).   
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It can be seen in subsequent time sequences 
(Figs. 9 to 11) that the propagation of the 
pressure peak towards the trailing edge 
corresponds to the convection of the vortex.  As 
the negative pressure coefficient peak 
decreases, the overall pressure on the lower 
surface of the airfoil also becomes less negative.  
Hence, the normal velocity induced by the vortex 
has the effect of increasing the airfoil effective 
angle of attack.  The lower surface becomes a 
higher-pressure region and, therefore, the lift 
increases in the process.  In the pictures, it can 
also be seen a slight and noticeable decrease in 
the vortex intensity due to the numerical 
dissipation inherent to the CFD approach.  
However, since the focus of the present study is 
on the development a reduced-order model 
based on a typical case of parallel BVI, these 
results were considered satisfactory. 

 
Figure 11: Pressure coefficient contour of Test 

Case 9 at 0.01065s.  

 

 

 Figure 10: Pressure coefficient contour of Test 
Case 9 at 0.01005s. Figure 12: Pressure coefficient contour at 

0.01185s (vortex at trailing edge).  
 Figure 12 depicts the situation when the vortex 

reaches the trailing edge of the airfoil (the core 
is located at 1.03 chords).  With the negative 
pressure coefficient peak located at the trailing 
edge, the airfoil experiences a small increase in 
lift.  This small increase in lift translates into the 
small bump in the lift coefficient time-history 
shown in Fig. 8.  Even after the vortex has 
passed the airfoil, its effect continues to linger 
until it is a few chords downstream, as the same 
picture indicates.  Also, as Fig. 12 suggests, the 
numerical dissipation problem becomes more 
evident at this stage.  Hence, the present CFD 
results underestimate the lingering effects of 
BVI. 

 
A summary of the lift coefficient time histories for 
all Test Cases studied is shown in Fig. 13.  In 
Fig. 14, the corresponding normalized maximum 
change in the lift coefficient for all test cases is 
plotted against the predictions of Renzoni and 
Mayle (Ref. 3).  According to the same Figure, 
the present CFD simulations correlated fairly 
well with the formula in (1).  The deviations are 
probably due to poorer convergence of the CFD 
code in some test cases, indicating that the set 
allowed maximum of 20 iteration cycles should 
be increased to guarantee convergence for all 
test cases. 
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Figure 13: Airfoil lift-coefficient versus vortex 
instantaneous position for Test Cases 1 to 9. 

 
 

Figure 14: Comparison of airfoil maximum 
change in lift-coefficient versus vortex core initial 

miss distance against Renzoni and Mayle’s 
predictions (Ref. 3) for Test Cases 1 to 9. 

 
 

Volterra Kernels Identification 

For the Volterra kernels identification process, 
Test Cases 3 to 9 were used.  Test Cases 1 and 
2 were left out of the process so that they could 
be used as new data for validation of the 
method.  The training dataset spanned by these 
seven test cases covered a range of normalized 
vortex initial miss distances, y0/c from –0.145 to 
–0.335.  
 
As commented in a previous Section, the 
selection of the time constants to represent the 
admissible basis functions is critical to the kernel 
identification process.  At the beginning of the 
kernel identification process, a range of time 
scales has to be tested in an algebraic 
sequence in order to determine their proper 
values.  At first, as nothing was known about the 
system, several series of positive time constants 
sets were used in the testing.  The first-order 
kernel was chosen to have six time constants 
that were kept constant throughout the process: 
[0.3, 0.2402, 0.1804, 0.0907, 0.0309, 0.001].  

The identification of the second-order kernel 
proved to be more difficult due to the highly 
nonlinear characteristics of the phenomenon.  
Due to the chosen form for the basis functions, 
only positive constants provide stability to the 
model.  After conducting a series of tests, it was 
found that a bilinear-based reduced-order model 
formed with only exponentially decreasing basis 
functions (bearing positive time constants) could 
not capture the rapid changes in the lift time-
history, as shown in Fig. 15.  In this Figure, the 
second-order kernel was based on the 6x6 
symmetric matrix of time constants formed with 
the array [1.5, 1.35, 1.05, 0.75, 0.45, 0.005].   
 

 
Figure 15: Lift coefficient versus time for Test 

Case 3. Comparison of bilinear model based on 
the conventional basis functions (blue curve) 

against CFD simulation (red curve). 
 

 
Figure 16: Lift coefficient versus time for Test 

Case 3. Comparison of bilinear model based on 
the conventional basis functions and some 

increasing exponentials (blue curve) against 
CFD simulation (red curve). 

 
Still retaining the bilinear approximation, a better 
capture of the BVI transient was found using for 
the second-order kernel a number of higher-
frequency content exponentially increasing basis 
functions.  The agreement with the simulation 
data showed significant improvement, as shown 
in Fig. 16.  However, as expected, instability 
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builds up rapidly after the maximum lift is 
achieved.  In this example, the second-order 
kernel was based on the 8x8 symmetric matrix 
of time constants formed with the array [0.1, 
0.01, 0.005, −0.0015, −0.0018, −0.0022, 
−0.0025, −0.003].  Nevertheless, a much-
improved agreement with the dataset could be 
obtained by adding the underlined term to the 
basis functions defining the second-order kernel, 
as indicated in the second of Equation (6).  The 
results are depicted in Fig. 17.  In this example, 
although the array of time constants from the 
previous example was kept, the instability was 
offset.  Moreover, inspection of Figs. 15, 16 and 
17 prove that the modified second-order kernel 
brought a significant improvement into the 
bilinear model approximation.  The lingering 
oscillations shown in Fig. 16 are no longer 
persistent in Fig. 17.  Although the extremes of 
the lift response were not well captured in Fig. 
17, the bilinear model replicated the general 
characteristics of the CFD simulations. 
 

 
Figure 17: Lift coefficient versus time for Test 

Case 3. Comparison of bilinear model based on 
the modified basis functions (blue curve) against 

CFD simulation (red curve). 
 

 
Reduced-order Model Predictions 

Once the kernels were identified, the system is 
replaced by a “black box” and its response due 
to a new input (to which it has never been 
exposed during the identification process) can 
be predicted.  In the upcoming predictions, it is 
worthwhile to stress that the input of the system 
is given by the time sequence corresponding to 
the instantaneous angle of attack due to BVI, 
previously defined in Fig. 2, and given by the 
ratio between the normalized vortex circulation 
and the core instantaneous normalized vertical 
position (miss distance) from the airfoil, 

( ) ( )BVI t y tα = Γ c .  The considered output of 
the system is the lift time history, C . ( )L t
 
Test Cases 1 and 2, which were not used in the 
kernels identification process, represent new 
data to demonstrate the performance of the 
reduced-order model.  Test Case 1 is well within 
the y0/c range covered by the training dataset, 
while Test Case 2 is outside, consisting thereof 
a more difficult case.  The output lift responses 
predicted by the method are shown in Fig. 18 
and Fig. 19, respectively, for Test Case 1 and 
Test Case 2. 
 
The predicted lift response shown in Fig. 18 
compared very well with the numerical 
simulation solution.  Even though the minimum 
was slightly over predicted, the maximum was in 
very good agreement with the CFD simulation.  
As for the more severe case of the two, Test 
Case 2, although the minimum and maximum 
were not very well captured, as Fig. 18 
indicates, the predicted lift response did present 
the general characteristics of the CFD 
simulation.  
 
It is important to stress the fact the accuracy of 
the extracted Volterra kernels could be 
significantly improved by using datasets with a 
larger number of test cases and covering a 
wider range of airfoil-vortex miss distances.  In 
fact, the number of nine CFD Test Cases 
included in the dataset employed in the kernels 
identification process is very limited when 
compared with its counterpart presented in Ref. 
7. 
 

 
Figure 18: Lift coefficient versus time for Test 

Case 1 (predicted by the model). Comparison of 
bilinear model based on the modified basis 

functions (blue curve) against CFD simulation 
(red curve). 
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Figure 19: Lift coefficient versus time for Test 

Case 2 (predicted by the model). Comparison of 
bilinear model based on the modified basis 

functions (blue curve) against CFD simulation 
(red curve). 

 
 
Conclusions: 

The theory of Volterra-Wiener for nonlinear 
systems identification was applied to predict the 
lift time history of an NACA 0012 airfoil 
subjected to typical parallel blade-vortex 
interaction (BVI) phenomenon.  The airfoil and 
its surrounding flow field composed the “black 
box” nonlinear system to be identified.  The time 
sequence defined by the instantaneous vortex 
core miss distance with respect to the airfoil mid 
chord was considered the system input, 
whereas the lift coefficient time history was 
regarded the output.  First, aerodynamic data 
obtained from CFD simulations was used to 
build a training dataset for the “black box.”  A 
reduced-order model of the system based on the 
Volterra series bilinear approximation, retaining 
only its linear and first nonlinear functionals, was 
next generated.  The reduced-order model was 
then exposed to input data not included in the 
training dataset.  The prediction results were 
shown to be in fairly good agreement with the 
corresponding CFD simulations, suggesting that 
the outlined method is promising.  
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