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The subject of this work is the aeroelastic analysis of a flapping and lagging 
hovering rotor. It is well known that the prediction of helicopter rotor aeroe­
lastic behavior is heavily influenced by the aerodynamic model used. This is 
particularly true when the blades are subject to lead-lag motion, and hence the 
aerodynamic loads due to induced and viscous drag play a fundamental role. 
Here, we consider three different aerodynamic models for rotor aeroelasticity and 
compare their effects on the stability analysis. Specifically, we compare classi­
cal quasi-steady-aerodynamics and Loewy /Greenberg-theory results with those 
obtained by applying a finite-state aerodynamic model based on the frequency­
domain potential-flow solution given by a boundary element method. 

1. INTRODUCTION Theodorsen's theory by including the effects of 
a pulsating stream on the unsteady aerodynamic 
loads exerted on a fixed-wing section. The adap­
tation of this approach to rotary-wing configura­
tions by replacing the Theodorsen's lift deficiency 
function with that introduced by Loewy, yields an 
aerodynamic model capable to evaluate the forces 
involved in lead-lag dynamics (see Ref. [5]). 

First attempts in developing three-dimensional 
unsteady aerodynamic models for rotor aeroelas­
ticity are based on the simple momentum theory, 
where a constant inflow is derived from momen­
tum balance. From the evolution of these models 
originated the dynamic inflow models (see Ref. 
[6]). These models take into account the unsteady 
wake effects on the blade aerodynamics by consid­
ering a dynamic inflow, that in turn is related to 
the aerodynamic load acting on the rotor blades 
(they can be treated as closed-loop approaches 
[6]). 

One of the most important aspects in the aeroe­
lastic analysis of helicopter rotors is the level 
of accuracy in predicting the aerodynamic forces 
acting on the blades. In early work dealing with 
aeroelasticity of rotary-wings, the aerodynamic 
effects have been taken into account by using 
very simple two-dimensional quasi-steady aerody­
namic models (see e.g., Ref. [1]), where unsteadi­
ness is considered only in the variation of angle 
of attack induced by blade motion, whereas the 
velocity induced by the wake vorticity is obtained 
from a stationary momentum-theory approach. A 
more accurate two-dimensional unsteady aerody­
namic model is that introduced by Theodorsen 
[2] for plunging and pitching fixed-wing sections, 
and extended by Loewy [3] to hovering rotary­
wing sections. The latter consists of including 
the unsteady effects due to the wake by consider­
ing the downwash induced by an infinite number 
of sheets of vorticity lying beneath the rotor, and More recently, aerodynamic models for rotor 
parallel to the rotor disk. Within this category aeroelasticity able to account for realistic wake 
of aerodynamic models falls the two-dimensional shapes and blade-tip effects, have been developed. 
model developed by Greenberg [4], who extends In a number of these models, the blade is repre-
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sented by a vortex line originating the tip vortex 1 

wherea.s the inboard portion of the wake is mod­
eled by a sheet of vorticity (see e.g., the aerody­
namic model included in CAMRAD [7]). A more 
accurate prediction of the blade aerodynamics in 
rotor aeroela.stic analysis ha.s been used in Ref. 
[8], where the potential flow solution around a 
hovering rotor with ela.stic blades ha.s been ob­
tained by a time-domain panel method ba.sed on 
the boundary integral formulation introduced by 
Ma.skew [9]. 

This work is divided into five sections. In the 
next section we outline the aerodynamic finite­
state model ba.sed on BEM solution for poten­
tial field, wherea.s in Section 3 the rotor model 
used in the stability analysis is described. In Sec­
tion 4 results concerning the stability analysis of 
the hovering flap-lag rotor considered will be dis­
cussed (with empha.sys on the examination of the 
influence of the aerodynamic model used on the 
aeroelastic predictions). Section 5 contains con­
cluding remarks. 

2. FINITE-STATE AERODYNAMICS 

In this section we outline the finite-state model, 
here applied for the potential-aerodynamics pre­
diction in the aeroela.stic analysis of the hover­
ing flapping and lagging model rotor described in 
Section 2. Such finite-state model is ba.sed on the 
fully unsteady, three-dimensional potential aero­
dynamic solver described in Appendix A 

In general, the efforts spent in the la.st decades 
in formulating finite-state models for the aerody­
namic loads appearing in the equations of mo­
tion of aircraft, are motivated by the desire of 
writing the dynamic equations in state-space for­
mat. Indeed, aerodynamic loads are extremely 
complex (tra.scendental) functions of the reduced 
frequency, and this limits the aeroela.stic stabil­
ity analysis to the determination of stability mar­
gins (and also causes difficulties in the synthesis 
of control laws for aeroservoela.sticity purposes). 
Expressing the aerodynamic loads by a finite­
state model, these problems are overcome: sta­
bility may be studied by eigenanalysis and stan­
dard control criteria may be applied for control 
law synthesis. 

Here, the finite-state model is formulated in con­
nection with a boundary element method (BEM) 
approach for the solution of the irrotational (po­
tential), unsteady aerodynamic field around the 
hovering rotor (viscous effects are taken into ac­
count by considering the stationary profile drag 
coefficient, and then applying the strip-theory 
technique for the evaluation of the overall load). 
Specifically, once the frequency-domain aerody­
namic potential solution ha.s been obtained by 
BEM, the aerodynamic matrix (i.e., the collec­
tion of the transfer functions relating the aero­
dynamic loads to the state variables describing 
the rotor dynamics) is evaluated in the frequency 
range of interest (in Appendix A, an outline of 
BEM applied for the solution of potential field, 
and the description of the aerodynamic matrix 

Here, we analyze the aeroelastic behavior of a 
flapping and lagging hovering rotor 1 with elas­
tic stiffness modeled by an equivalent system of 
bending springs inboard the pitch bearing, and a 
system of bending springs outboard it (see Ref. 
[1 J for a detailed description of the spring sys­
tem). Under the a.ssumption of incompressible 
potential flows, we determine the unsteady aero­
dynamic solution by a frequency-domain bound­
ary element method (BEM) for the velocity po­
tential, following the approach introduced in Ref. 
[10]. Then, the loads on the blades are evaluated 
by application of the Bernoulli theorem. Note 
that in the presence of lead-lag motion, aerody­
namic loads in the plane of the rotor play a fun­
damental role in the aeroela.stic analysis. Namely, 
they are the viscous and the induced drag. Here, 
the first one ha.s been evaluated by a qua.si-steady 
aerodynamic model (in a fa.shion typically used 
for aeroela.stic purposes, see e.g., Ref. [1]), since 
our potential solver is not able to predict it. The 
second one is one of the output of our aerody­
namic model, but particular care must be taken 
in evaluating it. Indeed, induced drag comes out 
a.s a balance between the pressure effects at the 
leading edge of the blade and those at the trail­
ing edge 1 and hence numerical computation needs 
a high level of accuracy. In addition, this bal­
ance is also strongly dependent on the flow ve­
locity induced by the vorticity in the field, and 
hence on the shape of the rotor wake used in 
the computation. Next, from the knowledge of 
loads in terms of indicial response, we determine a 
finite-state model for aerodynamics, following the 
frequency-domain matrix-fraction-approximation 
approach for the aerodynamic transfer function 
introduced in Ref. [11]. (see also Ref. [12], where 
an overview of the method is presented). Using 
this finite-state model, it is possible to reca.st the 
dynamic equations (aerodynamic forces included) 
in a standard state-space format, which allows for 
eigenanalysis of the stability of the system (such 
a description of the dynamics of the system is also 
essential for the design of control laws). 

are given). Then, the finite-state model is ob­
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tained by approximating the aerodynamic ma­
trbc in terms of rational-matrL;;: functions of the 
frequency. The technique used for this rational­
matrix approximation is described in the follmv­
mg. 

2.1 Matrix-fraction approximation 

As described in Appendix A, for an arbitrary 
aircraft, under the assumptions of unsteady, po­
tential flow, it is possible to define a frequency­
dependent matrix, the aerodynamic matrbc E, 
that transforms the vector of the perturbation 
state variables {about a reference configuration) 
of the aircraft, q, into the vector of the general­
ized aerodynamic forces, e. Specifically, we have 
e = q D E(s) q, where !i is the reduced frequency, 
and q 0 is the reference dynamic pressure. 

Following the procedure introduced in Ref. [11] 
(see also Ref. [12]), and observing that for 
high values of the reduced frequency, the lead­
ing term of the aerodynamic matrix is of order 
ii2 (see matrices E, and E3 in Appendix A), we 
adopt the following matrix-fraction approxima­
tion (that yields the desired aerodynamic finite­
state model) 

E{s) "'E(s) = ;;2 A2 + s A1 + Ao 

[

N ]-l[N-1] 
+ t; D,s' t; R.;s' . (1) 

The matrices A,, D, and R; are real and fully 
populated (except for D N that is chosen to be 
an identity matrix). They are determined by a 
least-square approximation technique along the 
imaginary a:ds. Specifically, the satisfaction of 
the following condition is required 

where i = A, 
weights, and 

+ 
n=O 

Wn denotes a suitable set of 

[s' A, +sA, +Ao -E(s)] 

is a measure of the error (E- E). 

state variables, q, Eq. (1) is recast in the follow­
ing form 

where H depends upon the R;'s, G upon the 
Dis, whereas Fr = [I, 0, ... , OJ (see Ref. [11] or 
Ref. [12], for details). 

Note that the accuracy of the approximation de­
pends upon the number, N, of matrices used in 
the matrix-fraction term in Eq. (1). The appro­
priate value of N depends upon the characteris­
tics of the functions to be approximated. In our 
case, these functions corresponds to the elements 
of the matrix E in terms of the frequency and, 
for the problem of an hovering rotor, they show 
a wavy behavior which requires a high value of 
N (see, e.g., Fig. 1). This, in turn, may induce 
an instability (i.e., real part greater than zero) 
in some of the eigenvalues of the matrix G in 
Eq. {2); these are spurious poles which are intro­
duced by the interpolation procedure. In order 
to overcome this problem the iterative procedure 
of Ref. [11] is adopted. This consists of: (i) di­
agonalization {or block-diagonalization) of G, {ii) 
truncation of the unstable states (the matrix G 
is modified into a smaller matrix G), and {iii) 
application of an optimal fit iterative procedure 
to determine new matrices A2, A1 , Ao, F, and H 
that replace, respectively, A2 , A1 , Ao, F, and H 
(whereas G remains unchanged throughout the 
iteration). Hence, the matrix-fraction finite-state 
approximation assuring a good and stable fit of 
E(s) has the final form 

E(s)=s'A,+SA! +Ao + :H [sr-Gj-1
:F. {3) 

2.2 Numerical applications 

For the validation of the matri-x-fraction approx­
imation described above, we have considered a 
one-bladed hovering rotor with NACA 0012 sec­
tion, radius R = 1.143m, chord c = 0.193m, an­
gular velocity !1 = 635rpm, and constant collec­
tive pitch 8, = 12°. Figure 1 depicts the element 
£11 of the aerodynamic matrix (i.e., the transfer 
function Mp//3, connecting the flap moment with 
the flap angle deflection), as a function of there­
duced frequency, k. In this figure, we compare 
the values of Mp//3 computed by the formulation 
described in Appendices A and B, with the values 
obtained from the matrix-fraction approximation 

Next, in order to use the matrix-fraction approx- with N = 10. The same comparison is shown 
imation to determine the time-domain relation- in Fig. 2 for the transfer function M< f {3. Note 
ship between the aerodynamic loads, e, and the that using this number {10) of matrices in the 
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Figure 1: Finite state approximation of M13/fJ 
with N = 10. 

matrix-fraction term in Eq. (1), the approxima­
tion appears to be quite good fork < 0.1, whereas 
for k > 0.1 only the mean value of the curve is 
captured .. Increasing N, the approximation im­
proves. Indeed, for N = 12 the transfer function 
Md fJ is well captured up to k = 0.2, whereas for 
N = 19 it is well captured over the entire fre­
quency range considered (see Figs. 3 and 4). An 
identical behavior has been observed for all the 
elements of the aerodynamic matrix. 

3. FLAP-LAG ROTOR DYNAMICS 

In this section we briefly outline the equations of 
!lap-lag rotor dynamics used in this work. 
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Figure 2: Finite state approximation of Md fJ 
with N = 10. 
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Figure 3: Finite state approximation of Md fJ 
with N = 12. 
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Since the main objective of this paper is the anal­
ysis of the effects on the aeroelastic behavior of 
the aerodynamic model adopted, the blade dy­
namics is described by means of the simple struc­
tural model introduced in Ref. [1]. It consists 
of an articulated rigid blade with an equivalent 
spring system simulating the elastic stiffness of 
the blade. The spring system is composed of two 
orthogonal spring subsystems: one is attached to 
the rotor hub inboard the pitch bearing, whereas 
the second is attached to the blade outboard the 
pitch bearing. The hub system does not rotate 
during collective pitch changes, whereas the blade 
system follows the rotations around the pitch 
axis, therefore inducing coupling between elastic 
flapping moments and lead-lag deflections (and 
viceversa). This elastic coupling is proportional 
to the ratio between the stiffness of the blade sp­
ing system and that of the total equivalent spring 
system (see Ref. [1], for details}. In the pres- Figure 4: Finite state approximation of MdfJ 
ence of the equivalent spring system described with N = 19. 
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above, the perturbation equations of the flap­
lag dynamics of an articulated rigid rotor have 
the following nondimensional condensed expres­
sion (see Refs. [1] and [13]) 

y + (rD + (J,G)Y + (K0 + RK,)y = -rf(y) (4) 

where y = {fJ, (} is the vector of the flap and 
lead-lag perturbation deflections, 1 denotes the 
Lock number, flo is the equilibrium flap deflec­
tion, whereas f is the vector of the moments 
about the flap and lead-lag hinges produced by 
the potential-aerodynamics forces. Furthermore, 

D-[0 0 l - 0 Cd
0
/4a 

is the viscous drag aerodynamic matrix ( \vith Cd 
0 

denoting the stationary profile drag coefficient, 
and a denoting the two-dimensional lift curve 
slope), 

G=[02] 
-2 0 

is the gyroscopic matrix due to Coriolis force, that 
produces inertial coupling between flap and lead­
lag dynamics, \Vhereas the stiffness matrices are 

Ko = [ 

and 

1 + k~ 
0 

where k~ and k( denote, respectively, the flap and 
lead-lag stiffnesses of the equivalent spring system 
(matrix K 1 represents the structural coupling 
produced by the equivalent spring system, with 
8, denoting the collective pitch angle). Note 
that, in Eq. ( 4) the time variable has been nondi­
mensionalized by the factor (1 (angular velocity 
of the rotor), whereas the spring stiffnesses have 
been nondimensionalized by the factor I fl 2 (with 
I denoting the moment of inertia of the rotor 
blade). Finally, in Eq. (4) the factor R denotes 
the degree of elastic coupling produced by the 
equivalent spring system, and is defined as R = 
k~jk~u = k(/k(u> withk~ = k~8 k~H/(kf38 +kf3H) 
and k( = k(u k(H / (k(u + k(H), where subscripts B 
and H denote blade and hub springs, respectively 
(see Ref. [1], for details). 

3.1 State-space form of flap-lag equations 

terms of the finite-state model described in Sec­
tion 2. Specifically, applying the inverse Laplace­
transform to Eq. (3), one obtains the follow­
ing constant-coefficient linear differential rela­
tions between aerodynamic loads and state vari­
ables 

A.,q + A.,q_ + A0 q + :Hr (5) 

r Gr + Fq, (6) 

where r is the vector of the augmented state vari­
ables, introduced by the finite-state approxima­
tion. Then, note that for the problem examined 
in this paper, the state variables are represented 
by flap and lead-lag deflections (i.e., q = y), 
whereas the aerodynamic loads are represented by 
the aerodynamic moments about flap and lead­
lag hinges (i.e., e = f). Therefore, combining 
Eqs. (4), (5), and (6), and defining the extended 
state-variable vector z = {y, :Y, r }, it is possible to 
describe the flap-lag aeroelasticity of a hovering 
rotor by a first-order linear differential equation 
of the type 

Z = Az, (7) 

\vhere A is a real, constant square matrix, with 
dimensions [(4 + N) x (4 + N)], with N being 
the number of augmented states produced by the 
aerodynamic finite-state approximation. There­
fore, the aeroelastic stability of the flap-lag ro­
tor can be examined by eigenanalysis of the ma­
trix A. Incidentally, if the model of the sys­
tem includes control variables (e.g., swash-plate 
or blade-flap deflections), Eq. (7) (with the ad­
ditional control terms) may be conveniently used 
for aeroservoelastic applications (e.g., design of 
control laws). 

4. NUMERlCAL RESULTS 

In this section we present some results concerning 
the aeroelastic behavior of a one-bladed flapping 
and lagging rigid rotor, obtained using three dif­
ferent aerodynamic models. One of these mod­
els is that described in this paper (named as 
BEM/finite-state approach in the following); the 
second one is the two-dimensional, quasi-steady 
aerodynamic model described in Ref. [1] (i.e., 
unsteadiness considered only in the variation of 
angle of attack due to blade motion, and veloc­
ity induced by the wake vorticity obtained from 
a stationary momentum-theory approach), cou­
pled with a strip-theory method, whereas the 
third one is the two-dimensional, unsteady aero-

The state-space form of flap-lag equations is ob- dynamic model described in Ref. [5] which con-
tained by expressing the aerodynamic loads in sists of coupling the Greenberg's theory [4] for 
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Figure 5: Steady induced drag coefficient for a 
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plunging and pitching airfoils in pulsating stream, 
with the lift deficiency function introduced by 
Loewy [3] for hovering-rotor sections (also in this 
case, the overall aerodynamic load is obtained by 
applying the strip-theory method). 

First, we present some results for validating the 
BEM approach present here. Note that the first 
step in the aeroelastic analysis of rotor considered 
consists of determination of the equilibrium flap 
deflection, /3, appearing in Eq. (4). It depends 
on the aerodynamic loads in steady conditions 
and plays an important role in the aeroelastic be­
havior of the rotor. Figure 5 shows the stationary 
induced drag coefficient as functions of the an­
gle of attack, for a rectangular wing with aspect 
ratio 2. In this figure, we compare results from 
the BEM approach described here, with those ob­
tained using a lifting surface approach (see Ref. 
[15]). These results agree quite well: this is 
promising in view of an accurate determination 
of the equilibrium rotor configuration (note that 
the BEM approach discussed here, has already 
been validated in the past for aerodynamic anal­
ysis of hovering and advancing rotors -see e.g., 
Ref. [16]- but with no emphasis on the induced 
drag prediction). 
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ent that those obtained by the two-dimensional 
approaches are quite similar 1 whereas the results 
from the method presented here predicts a more 
damped system. Differences between the re­
sults from the three methods are observed also 
for the case R = 0. The comparison is shown in 
Fig. 7, and although the values of dampings are 
lower than for the case with structural coupling 
(R = 1), the results do not seem to be in agree­
ment: for e 0 > 11° the quasi-steady aerodynam­
ics predicts instability of the rotor, whereas for 
the other two approaches the system remains sta­
ble (very close to the limit of instability). For this 
rotor case, we have also analyzed the aeroelas­
tic behavior, considering for all the aerodynamic 
approaches the equilibrium configuration deter­
mined from the quasi-steady model. The results 
are depicted in Fig. 8 and show that the change 
in the equilibrium configuration does not mod­
ify deeply the aerolastic behavior predicted by 
the Loewy/Greenberg approach (the steady aero­
dynamics predicted by this method is very sim­
ilar to that predicted by the quasy-steady one), 
whereas the results from our methodology have 
been strongly affected by it. This fact has then 
been investigated further. Indeed, we have com-

Then, we analyze the aeroelastic behavior for the puted the lead-lag damping (for n = O) using the 
rotor case with Lock number 1 = 5, rotor solid- equilibrium conditions from steady aerodynamic 
ity 6 = 0.05, profile drag coefficient Cd 0 = 0.01, loads predicted by our BEM approach multiplied 
and k( = 1 + k~ = .j4[3. Figure 6 shows, for by a factor equal to 0.95 and 1.05 (and has been 
the elastic-coupling factor n = 1, the lead-lag compared with the unmodified ones). The re-
made damping as a function of the collective pitch suits given by this analysis are depicted in Fig. 
angle, e 

0
• In this figure, we compare the lead- 9, and show that a difference of 5% in the com-

lag dampings obtained with the three aerody- putation of equilibrium aerodynamic loads pro-
namic models mentioned above, and it is appar- duces the change from stable-system prediction 
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to unstable-system prediction. 

Finally, for 0 o = 12°, we have determined the 
root locus of the dynamics of the aeroelastic sys­
tem, letting kc fixed, and changing the values of 
the stiffness of the flap spring, k13. The curves 
concerning the lead-lag mode root are plotted in 
Fig. 10: those given by the quasi-steady aerody­
namics and Loewy/Greenberg approach show a 
similar behavior, first moving towards the imag­
inary axis and then moving back towards stable­
pole regions (although the result from the quasi­
steady aerodynamics predicts instability for a 
limited range of k13), whereas the root locus given 
by our aerodynamic model crosses the stability 
boundary and without returning to the stability 
region (our aerodynamics predicts instability of 
the system for high values of k13). 

5. CONCLUDING REMARKS 

In this paper we have studied the aeroelas­
tic behavior of a rigid flapping and lagging ro­
tor using three different aerodynamic models: 
a quasi steady-aerodynamic model, an aerody-
namic model obtained by coupling Loewy's and 
Greenberg's theories, and the finite-state model 
based on a BEM potential aerodynamic solution 
described in this work. 

The numerical investigation has demonstrated 
the capability of the finite-state model presented, 
to approximate with excellent accuracy the aero­
dynamic loads acting on a hovering rotor. In ad-

DY 01-7 



1.162 ,----,--,-----r---,--,----,-,..-, 

1.16 

1.158 

1.156 

1.154 

1.152 

: . 
/ 

quasi-steady -
1.15 Loewy/Greenberg 

BEMifinite-state · 
1.148 '---'---'--'-------'---'---'---''--' 

-0.01 -0.008-0.006-0.004-0.002 0 
real 

0.002 0.004 

Figure 10: Locus of the lead-lag mode root. 

dition, we have also shown that the level of ac­
curacy may be chosen by varying the number of 
augmented states included in the model. 

For the aeroelastic analysis, \V€ have considered a 
configuration \Vith structural coupling and a con­
figuration without structural coupling. Specially 
in the second case, the three aerodynamic mod­
els have predicted different aeroelastic behavior of 
the rotor. Moreover, we have also observed that 
the aeroelastic response is dependent on the level 
of accuracy by which the equilibrium configura­
tion is determined: small variations in the equilib­
rium configuration produce large changes in lead­
lag mode damping. This analysis has revealed 
a strong dependence of aeroelastic prediction on 
both steady and unsteady aerodynamic models 
used in the computation: an accurate aeroelas­
tic analysis requires good level of accuracy in de­
termining the equilibrium configuration, as well 
as in determining the perturbation aerodynamics. 
A high level of accuracy is particularly required 
in the evaluation of induced drag, and this point 
needs further investigation in using the BEM ap­
proach (where a large number of panels of dis­
cretization is required, and the dtermination of 
the converged solution is expensive from the com­
putational point of view). 

About the aerodynamic model presented in the 
paper, future work will concern extension to com­
pressible flows and adaptation of the existing 
time-domain solver to aeroelastic analysis (with 
inclusion of all nonlinear aerodynamic terms). A 
better model for the prediction of viscous loads is 
also desirable. 
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APPENDIX A. AERODYNAMIC MATRIX 
FOR HOVERING ROTORS 

For an arbitrary aircraft, under the assumptions 
of unsteady, potential flow, it is possible to de­
fine a frequency-dependent matrix, the aerody­
namic matrix E( s), that transforms the vector 
of the perturbation state variables (about a ref­
erence configuration) of the aircraft, q, into the 
vector of the aerodynamic loads, e. This aero­
dynamic matrix is obtained as product of a set 
of frequency-dependent matrices, that will be de­
scribed in the following. Specifically, we have 

where q0 is the reference dynamic pressure, S 
is the reduced Laplace-transform variable, E, (s) 
transforms state variables into blade normal wash 
(boundary conditions of the potential flow formu­
lation, Eq. (16) in Appendix A), E 2 (s) gives the 
perturbation of potential induced by the pertur­
bation state variables, E 3 (s) transforms the per­
turbation potential field into perturbation pres­
sure on the body surface, and finally E 4 yields 
the aerodynamic loads. This formulation is a 
hovering-rotor extension of the fixed-wing formu­
lation of Ref. [14]. 

Matrix E 1 

Let us introduce a set of material curvilinear coor­
dinates, ((1 , ('),on the blade surface, and express 

of that point in the unperturbed configuration. 
Here, <I>n are a set of suitable body-displacement 
modes that describe the deformation of the blade. 
Then, assuming that the origin of the body frame 
is placed at the center of rotation, and denoting 
with f! the angular velocity of the rotor, we have 

n 

n 

+ nxx,(e,eJ. (9) 

where v n is the rotating-frame vector of the ve­
locity of the body points with respect to the air 
frame. In addition, the unit normal to the body 
surface has the expression 

n 

where n 0 is the normal to the body surface, S", 
in the undeformed configuration, whereas Vn de­
notes the variation of n due to a unit n-th La­
grangean variable, q" (see Ref. [14], for a detailed 
description of vn). 

Next, combining Eq. (9) with Eq. (10), neglect­
ing second-order perturbation terms, and assum­
ing f! = l1 k (k being the unit vector parallel 
to the axis of rotation), the frequency-domain 
potential-flow boundary condition (normalwash) 
corresponding to perturbation motion is given by 

n~= 2: [.s<I>n·n,+kx<I>n·n,+kxx,·vn] iln, 
n 

where s = sj0., <I>n = <I>n/R, X0 = x,jR, with R 
denoting the rotor radius and x =VB · n. 

Finally, dividing the surface of the blade into el­
ements of discretization (panels), and denoting 
with X = {x;/0. R} the dimensionless vector of 
the normalwash at the centers of the panels, the 
equation above may be recast into the following 

where 

El;n (s) = S <f>n(Ej') ·n0 (Ej') + k X <f>n(Ej') ·n0 ({f) 
+ k X X0 (Ej) · Vn((j). 

Matrix E 2 

by x(('' e' t) = x, (('' (') + Ln qn(t) <I>n(E'' ('), As stated in the theory of potential flows, the 
the actual position of a surface point in the ro- velocity potential on the body surface is deter-
tating frame of reference, x

0 
being the position mined from the knowledge of the normal derivate 
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of potential over the same surface (normalwa;;h). 
Here, the potential solution is obtained from the 
boundary integral equation given in Appendix B. 
Hence, rewriting the boundary integral equation 
in discretized form by dividing the surface of the 
blade into panels, it may be obtained the follow­
ing expression (see Appendix B), 

¢ = Ez(s) ;\:, (11) 

connecting the vector of dimensionless potential 
at the centers of the panels,¢= { cp;/ll R 2}, with 
the vector of dimensionless normalwa;;h at the 
same points. 

Matrix E, 

The expression of the matrix E 3 is derived start­
ing from the Bernoulli theorem that, in a frame of 
reference connected with the blade ha;; the form 

&¢- v . v¢ + llvll2 + E = P=, (12) 
&t 8 2 p p 

where ¢ is the velocity potential, p denotes local 
pressure, P= is the pressure of the undisturbed 
flow, v = v¢, and &f&t denotes time derivative 
in blade frame. 

Next, set ¢ = </! 0 + cp and p = p0 + p', where 
¢

0 
and p

0 
denote, respectively, the potential field 

and the pressure field around the blade in its ref­
erence configuration (stationary aerodynamic so­
lution), wherea;; cp and p' denote, respectively, po­
tential field and pressure field produced by per­
turbation motion. Equation (12) applied to the 
aerodynamic solution around the reference con­
figuration yields 

_ v . \7¢ + II'V¢oll
2 

+Po = P=. (13) 
8 0 2 p p 

Then, subtracting Eq. (12) with Eq. (13), 
neglecting second-order perturbation terms, and 
transforming into frequency domain, we obtain 
the following expression for the pressure pertur­
bation produced by perturbation motion 

Finally, considering the blade discretized into 
panels, and using dimensionless quantities, Eq. 
(14) may be reca;;t in the following matrix form 

f>' = E,(s)<P, 

where E 3 (s) is a matrix operator defined from 
the discretized form of the gradient operator, and 
p' = {p~fpS12 R2} is the vector of the perturba­
tion pressure at the centers of the panels. 

Matrix E 4 

By definition, for the j-th generalized force in­
duced by perturbation state variables we write 

ei =- f p'n 0 ·<I> idS, 
ls

8 

(15) 

where, for aeroela;;tic analysis, Pj are the set 
of body-displacement modes used to describe the 
deformation of the blade (see matrbc E 1 ). Then, 
in matricial form, we have 

where qD = p 0 2 R 2
) whereas 

E4,, = j n 0 ·<pi dS, 
s. 

with Sn denoting the surface of the n-th panel. 
Note that, in general, in the integral in Eq. (15) 
it should appear an additional linear term of the 
type Po Ln iinVn ·Pj (with Vn defined in Eq. 10); 
nonetheless, for the problem considered in this 
work, the product Vn · Pj is negligible for ev­
ery combination of the indeces n and j, due to 
the shape of body-displacement modes connected 
with flap and lag deflections (it vanishes for cylin­
drical blades). 

APPENDIX B. BEM FORMULATION FOR 
POTENTIAL AERODYNAMICS 

The aerodynamic formulation considered in this 
work is ba;;ed on the a;;sumptions of incompress­
ible, inviscid flow, that is initially irrotational. 
Such a flow field remains irrotational at all times, 
except for the points which come in contact with 
the body surface, S 8 , since for these points 
Kelvin's theorem is no longer applicable (there, 
a contour that remains in the fluid at all times 
cannot be identified). Indeed, these points form 
a surface, Sw (the wake), where vorticity may be 
different from zero. 

Hence, if v denotes the velocity of the fluid parti­
cles, it is possible to introduce the potential func­
tion¢ such that v = v¢ (for x outside S8 USw ). 
Combining the above equation with continuity 
equation, V · v = 0, one obtains the following 
Laplace equation 

for x outside S 8 U Sw. 

Next, the differential formulation requires the 
boundary conditions on the body and the wake. 
The body is a;;sumed to be impermeable, and 
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accordingly the boundary condition on S n is 
(v- v n) · n = 0, where v n is the velocity of the 
points on S 8 and n is its outward unit normal. 
Recalling that v = v ¢, one obtains 

aq, 
8n = v o. n. ( 16) 

The boundary conditions on the wake are ob­
tained from the principles of conservation of mass 
and momentum across a surface of discontinuity, 
like Sw. In particular, following the formulation 
given in Ref. [10], one obtains: (i) D,(aq,jan) = 0 
on the wake surface, and (ii) D,¢ =const. follow­
ing a wake material point. 

Starting from this differential formulation and ap­
plying the boundary integral equation technique, 
the frequency-domain potential field solution for 
a lifting body is expressed by (see Ref. [10] for 
further details) 

- r (a¢ -ac) 
¢(x.) = Jsn an G- ¢ an dS(x) 

f - aG - ls D,</JTE exp(-sr) an dS(x), (17) 
w 

where G = -1/4rr]]x- x.IJ is the unit source so­
lution for the Laplace equation, and T is the time 
necessary to convect the material wake point from 
the trailing edge to the actual position. 

The numerical solution of Eq. (17) has been 
obtained from its algebraic approximation de­
rived from the discretization of the body and 
wake surfaces into quadrilateral panels, where 
J,,aJ,jan and D,:j, have been assumed to be con­
stant (zeroth-order boundary-element method). 
Letting Eq. (17) be satisfied at the centers of 
the panels (collocation method), its algebraic ap­
proximation assumes the form 

N D N 8 

</>k = 2::= BkJXi + 2::= Cki:j,i 
j=l j=l 

Nw 

+ 2::= Fkn6¢;:.E exp( -STn), (18) 
n=l 

where x = a¢/ an. The coefficients appearing in 
Eq. (18) are given by 

1 ack 
Cki =- .-- dS, 

s an n, 

r ack 
Fkn =- Js an dS, 

Wn 

where Gk = G]x.=x" and Sn; and Sw. denote 
the surfaces of the j-th panel of S n and of the 
n-th panel of Sw, respectively. 

Finally, expressing the potential discontinuity at 
the trailing edge, 6.(i;TI::, in terms of the values of 
the potential at the centers of the body panels, 
and using Eq. (18), one obtains the matrix Ez 
relating the vector of normal wash at the centers 
of the panels, with the vector of potential at the 
same points. 
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