
( 

c 

c 

( 

TWENTY FIRST EUROPEAN ROTORCRAFT FORUM 

Paper No Vl.6 

ANALYSIS OF TORSIONAL MOIVIENTS PRODUCED 
IN MAIN ROTOR BLADES AND RESULTS OBTAINED 

N.S.Pavlenko, A.Y.Barinov 

MIL MOSCOW HELICOPTER PLANT 

RUSSIA . 

August 30 - September 1, 1995 

SAINT - PETERSBURG, RUSSIA 

• 



Paper nr.: VI.6 

Analysis of Torsion Moments Produced in Main Rotor Blades 
and Results Obtained. 

N.S. Pavlenko; A.Yu. Barinov 

TWENTY FIRST EUROPEAN ROTORCRAFT FORUM 
August 30 - September 1, 1995 Saint-Petersburg, Russia 

c 

c 

c 

c 



Analysis of Torsional Moments Produced 
in Main Rotor Blades and Results 

Obtained. 

N.S. Pavlenko 
Deputy Head of Structural Department 

and 
A.Yu. Barinov 

Design Engineer 

Mil Helicopter Plant 
Russia 

This paper presents analytical 
procedures used to calculate bending and 
torsional moments produced on the blade 
subject to forced oscillations, as well as 
moments produced on the swashplate. 

The procedures described here allow 
us to determine aerodynamic 
performance, blade flap and lag 
deflection, as well as torsional deflection 
and their respective bending and torsional 
moments with their harmonic content for 
main rotors having elastic blades 
undergoing flap bending, lag bending and 
elastic twist, articulated, rigid blade root 
attachments; for sophisticated hub designs 
intended for modern semirigid and rigid 
rotors incorporating flexure elements, 
control fairings and elastomeric or 
hydraulic dampers; as well as for blades 
having straight, swept and anhedral tips. 

Analytical Procedures 

Helicopter blade low oscillations of 
the rotating m·ain rotor are described by a 
system of partial differential equations of 
the fourth order that can be presented in 
the operator form as follows: 

L [ q(r,t)] = F (I) 

Here L is the operator of the system 
including three partial differential 
equations relative to unknown functions 
q{r,t) and the required boundary 
conditions. 

where 

X 

q(r,t)= y 

<r 

q is column matrix of the 
generalized coordinates; 

x is inplane blade deflection 
(deformation); 

Y is blade deflection 
(deformation) in the plane 
containing the axis of 
rotation of the rotor; 

cp is blade torsional 
deflection and deformation 
relative its longitudinal 
axis; 

F is external aerodynamic 
forces. 

The anhedral-tip blade is taken into 
account in the following way. Let us 
denote all the parameters of the blade 
elastic axis junction point by adding the 
sign (*) to the appropriate symbol. When 
passing over the elastic axis junction 
point, it is necessary to satisfy the 
conditions of geometric conjugation of 
the elements which further will be 
designated as blade and tip elements. 
Besides, additional terms will appear in 
the formulas used for inertia and 
aerodynamic loads as compared to the 
sraight-tip blade. 

Let us introduce right-hand 
coordinate systems. 

o~x~y~z~ is the coordinate system 
related to the undeformed blade. The o,z, 
axis is directed along the blade radius, 
while the o.y. axis coincides with the 
main rotor mast axis. 
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o,x,y,z, is the coordinate system 
originating in the elastic axis junction 
point, and the coordinate axes are 
parallel to the axes of the o.x.y,z, 
system. 

02 1 X2'yz 1 Z2' is the coordinate system 
in which . the Q,'y,' axis coincides with 
the Q,y, axis, and the angle between the 
Q,z, and Q,'z,' axes is equal to the angle 
of deflection of the section at the (x')* 
elastic axis junction point with the blade 
bending in the plane of the maximum 
stiffness. 

0:;X3Y3Z3 is the coordinate system in 
which the Q,x, axis coincides with the 
Q,x, axis and the angle between the Q,z, 
and Q,z, axes is equal to the angle of 
deflection of the section at the 
(y')* elastic axis junction point 
blade bending in the plane 
minimum stiffness. 

with the 
of the 

04x4y4z4 is the coordinate system in 
which the 04z4 and Q:;z:; axes coincide 
with each other, the o.x. axis is at the 

~* angle denoting blade elastic twist at 

the junction point relative to the O,x, 
axis. 

Osxsyszs is the coordinate system in 
which the angle between the Q,z, and 
Q,z, axes is equal to the tip sweep angle 

Xc; (the sweptback angle is considered 

to be positive), and the o,y, and o.y. 
axis coincide with each other. 

OoX•Y•Z• is the coordinate system for 
which the Ooxo axis coincides with the 

o,x, axis, and the o.y, axis is at the Xj3 
angle relative to the Q,y, axis. The 
anhedral angle is assumed to be positive. 

The origin of the 02'X2'y2'z~' Q;x)y:;z:o, 
o~x4y4Z4, Osxsyszs, 06X6Y6Z6 coordinate 
systems coincides with that of the 
o,x,y,z, coordinate system. 

Sequential transformation of 
projections of some vector from the 
o,x,y,z, coordinate system into 
Oz'xz'y2'Z2 1

, O:;X:;y:;Z:;, 

and o.x.yozo systems 
matrices 

' 0 COS X, 

A,r = 0 1 

' 0 sm x. 

04X4y~z~, Osxsyszs 
is carried out by 

' -sin x. 

0 

' cos x. 

1 0 0 

A,h = 0 ' ' cosy. -sin Y.; 

0 ' ' sin y. cosy, 

cos cp* -sin <p* 0 

A = 
" 

sin <p* cos cp* 0 

0 0 

cos X~ 0 -sin X; 

A = 
" 

0 I 0 

sin X~ 0 cos xs 

1 0 0 

A 56 = 0 cos Xp sinx 13 
0 -sin Xp cos X~ 

By multiplying matrices 
A:;~, A4s and AH, we can 
transformation matrix to convert 
02x2yzzz coordinate system into the 
06X6Y6Z6, coordinate system which 

(considering that the (y')*, (x')* and ~· 
angles are small and ignoring values of 
less than the second order) can be written 
as 

~
o~-.,:~ -<p.co"'4J+~(~+x:c~~) ~-co~(s.i..~+x:co~)l 

7 co~->·~in;(~ co~+~(~.sinx~·J;eo<;(~) ~-co~(~ ... y:co::,o:~)l 
X:co::,o:~+~ y;c~+~(x:a~-co~) y~-co~(~~-cO'\l';~)j 

Conversion from the tip axes to the 
o,x,y,z, axes is accomplished with the 
help of inverse matrix A- 1

,, which is 
equal to transposed matrix AT,,_ 

Let us introduce the following 
expressions: 

x. 

h = y. 

z. 

Now the coordinates of any tip point 
after the blade deflection are expressed 
in the OtXtYtZt systen1: 
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(2) 

From equation (2) conditions of 
geometric conjugation can be obtained. 

Conjugation conditions for inner 
force factors follow from the equation 
below: 

(3) 

Here the following expressions are 
introduced: 

M' 
' 

M' • 
L L 

qM1:::::: M:;; qM6 = M36; 

M' ' 
' M" 

Projections of the bending and 
torsional moments actingin the blade 
section along the Ojxj, Ojyj and Ojzj can 
be expressed in terms of MFj, MLi and 
Mri respectively, where j is the index of 
the Ojxjyjzj coordinate system. 

From equation (3) formulas for 

projections of the bending and torsional 

moments on the o.x:;, 01y1 and 0;Z:; axes 

are obtained. 
When conditions (2) and (3) in 

equations of blade coupled bending and 
torsional oscillations are met, the blade 
swept and anhedral tips are taken into 
account. 

In system of equations (1) blade flap 
and lag bending'. and torsional deflections 
are considered to be the q(r,t) 
generalized coordinates. Each generalized 
coordinate is a function of two 
independent variables: radius and time. 

Solutions of system (1) are presented 
in the form of series expansion in normal 
modes for coupled bending and torsional 
oscillations in the two planes: 

(4) 

where j=1,2,3... the number of normal 
modes to be assumed 
in the analysis; 
means the form 
component of the j-th 
tone of the blade 
eigenfrequency in 
emptiness which is the 
function of its radius; 
means 
functions 
called 

some time 
which are 

deflection 
coefficients. 

The qi normal modes are determined 
from system of differential equations (1) 

when its right side is equal to zero. 
In the analysis the blade is presented 

as a beam model divided into z elements. 
The weight of each element is 
concentrated at its ends as discrete 
masses. Stiffness characteristics are 
presented as step lines so that they could 
have constant values within each element . 
Having applied the Galerkin approach to 
system of partial differential 
equations (!), we obtain a system of 
differential equations of the second order 
relative to oj deflection coefficients. 

(5) 

Here pj is the frequency of blade 
natural coupled oscillations in the j-th 
tone; 

Aj is the work of the aerodynamic 
forces during their displacement along 
the j-th generalized coordinate that is 
divided by the blade equivalent mass . 

The order of system (5) is determined 
by the number of the series terms in the 
expansion of solution (4). 

Calculations of the aerodynamic 
forces compnsmg the right part of 
system (5) are performed by using lift, 
drag and torque coefficients ((Cy), 
(Cx),(mz) respectively] that are functions 
of the blade airfoil angle of attack and 
Mach number obtained from wind tunnel 
test results. 

Induced velocity is assumed to be 
constant over the rotor disc or it is 
calculated by using the vortex theory. 

The .oj deflection coefficients can be 
calculated by using numerical integration 
of system of equations (5). 
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Calculation Results 

Using the above procedures, torsional 
and bending moments on the main rotor 
blades for helicopter of different weight 
categories (light, medium and heavy-lift) 
were calculated (Table 1). 

Table 1 

Helicopter TOW Main rotor Number 
diameter of 

kg m blades 
Mi-34 1,350 10.0 4 
Mi-28 11,000 17.3 5 
Mi-8 12.000 21.0 5 
Mi-26 56,000 32.0 8 

The calculations were made for 
straight-tip and swept-tip blades. 

The paper gives some results of these 
calculations and their comparison with 
flight test data. 

The most complicated thing in 
calculating torsional moments is proper 
azimuth distribution of torsional moment 
values, their phase, amplitude and 
harmonic content for each flight 
condition. 

·500 !--;';--;';--:':-:--::.L..-.L__,.J,.,----,.J,.,-__j 
o a ~ w 100 m m 315 • 

AZIMUTH, dog 

Fig.! Mi-28 helicopter torsional moment 
versus blade azimuth, 250 km/h (lAS). 

Fig.! shows torsional moment versus 
azimuth for the Mi-28 main rotor blade at 
an airspeed of 250 km/h. The same 
dependence obtained from flight 
measurements is given here. It can be 

seen from the diagram that the calculated 
data are in good agreement with the 
flight test results. 

oL---L---~--~ __ _L __ _L __ _j 

0 50 100 150 200 250 300 
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Fig.2 Mi-28 helicopter torsional moment 
amplitude versus airspeed. 

The solid line in the diagram in Fig.2 
shows torsional moment amplitude versus 
the Mi-28 airspeed. The hatching shows 
the area of values obtained in flight 
measurements. Here good agreement of 
the calculated and experimental data can 
be seen within the whole airspeed range 
with the exception of flight at airspeeds 
close to the maximum value and 
hovering. It can be attributed to the 
influence of stall. 
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Fig.3 Mi-34 helicopter torsional moment 
versus blade azimuth, 100 km/h (!AS). 

Fig.3 shows torsional moment versus 

blade azimuth for the Mi-34 helicopter. 
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In this case the flight condition which is 

characterized by high harmonics was 

analysed (the diagram is a copy of the 

oscillogram). This is mainly attributed to 

the engine and blade features. The engine 

features are not taken into account, as for 

the blade features. they can be considered 

by taking a greater number of the series 

terms and a more sophisticated model of 

aerodynamic forces in .the analysis. But, 

as can be seen from the diagram. 

calculations are in good agreement with 

the experiment for low harmonics. Here, 

different dependences of the torsional 

moment on the blade azimuth for the Mi-

34 and Mi-28 as well as their proper 

simulation by analysis should be noted. 
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Fig.4 Mi-34 helicopter torsional moment 
amplitude versus airspeed. 

The diagram in Fig. 4 presents the 
torsional moment amplitude versus 
airspeeds anq a good agreement of 
calculated and flight data (the exception 
is hovering and low-speed flight). 
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Fig.5 Mi-8 helicopter torsional moment 
versus blade azimuth, 240 km/h (lAS). 

Fig.5 gives torsional moment versus 
blade azimuth for the Mi-8 main rotor at 
an airspeed of 240 km/h. Here we have 
good convergence of calculated data and 
flight measurements. In this case the law 
governing the torsional moment change 
with azimuth differs greatly from that for 
the Mi-28 and the Mi-34. Here high 
harmonics were obtained by analysis as 
can be seen in the diagram. 
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helicopter torsional moment 
azimuth, 280 km/h (lAS). 

Fig.6 shows torsional moment versus 
blade azimuth for the Mi-26 heavy-lift 
helicopter that was obtained by analysis 
and by flight test results. Good agreement 
between the calculation and experiment is 
clearly seen. 

When comparing the azimuth 
distribution of torsional nl"oments for 
different helicopters (Table 1). general 
regularities should be noted inherent in 
these dependences, and regularities that 
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actually do not depend upon the type of 
helicopter or the main rotor 
configuration. Thus, all the diagrams of 
the torsional moment functions have a 
local maximum in the vicinity of azimuth 

equal to 7t/6. The only exception is the 
torsional moment curve for the Mi-34 
helicopter: in this case this maximum is 
shifted into a lower azimuth value. In 

some azimuth area close to 7t the 
torsional moment curves have a local 
minimum. In the region of azimuth equal 

to 3/4 n there is another local minimum. 
The torsional moment curves shown 

in the diagrams for the main rotor blades 
of different helicopters differ 
substantially. For the Mi-26 and Mi-28 
helicopters the harmonic composition of 
the torsional moment is similar and has 
an insignificant content of high 
harmonics. The torsional moment versus 
blade azimuth curve for the Mi-8 
helicopter contains quite a large 4/rev 
content, and that for the Mi-34, 
harmonics influenced by the engine and 
blade features. 

&(J 
MPo 

2~----~----t-----+---~ 

oL-----L-----L-----L---~ 
0 so 100 ISO 200 

lAS, krnA1 

Fig.? Mi-34 helicopter alternating 
stresses in the plane of minimum stiffness 

(tlCJ) versus airspeed. 

The diagram in Fig.? shows variation 
of alternating stresses in the Mi-34 main 
rotor blade spar in the plane of the 
minimum stiffness. It is clearly seen from 
the diagram that in the region of average 
speeds there is a good agreement between 
the calculated and experimental data. The 
exception is an area of !ow-speed flight; 
to make calculations in this particular 

area it is 
sophisticated 

necessary to 
vortex models. 

use more 
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Fig.8 Mi-34 helicopter alternating 
stresses in the plane of maximum 

stiffness (tlCJ) versus airspeed. 

Fig.8 presents comparison of 
analytical data with measurements made 
in flight tests for alternating stresses in 
the blade spar acting in the plane of the 
maximum stiffness. Here we also have a 
good agreement between calculated and 
experimental data for average airspeeds, 
and an unsatisfactory one for low 
airspeeds and deceleration. 
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Fig.9 Mi-28 helicopter torsional 
amplitude versus airspeed. 
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Fig.9 shows the calculated torsional 
moment amplitude versus 
swept-tip blade of one 

airspeed for the 
and the same 
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helicopter. A set of the Mi-28 main rotor 
swept-tip blades underwent 
comprehensive flight tests during which 
blade and control system loads were 
measured. The measurements showed that 
the torsional moment amplitude was 
slightly higher on the swept-tip blade at 
average airspeeds of 120-220 km/h as 
compared to the straight-tip blade. But at 
airspeeds of 230 km/h and higher 
torsional moments (therefore swashp!ate 
loads) for the swept-tip blade were 
smaller. That was the main reason for 
using swept-tip blades in the Mi-28 main 
rotor. 

Conclusions 

I. Analytical procedures for 
calculating torsional and bending 
moments acting on the helicopter main 
rotor blade have been developed. 
Comparison of calculated data with those 
obtained from flight tests of the Mi-34, 
Mi-28, Mi-8 and Mi-26 helicopters has 
been made. 

2. Calculations of torsional moments 
for the Mi-28 swept-tip main rotor blade 
have been made. Comparison with flight 
test results for the swept-tip blade has 
been drawn. 

Calculated data are in good 
agreement with the flight test results for 
average airspeeds. 
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