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SUMMARY 

The fundamental characteristics of air and ground resonance stability of 
hingeless rotor helicopters are studied in the hover and ground contact condi­
tions. Beginning with Coleman's classical 3 degree-of-freedom articulated 
rotor system operating in vacuo, the effects of additional degrees of freedom, 
structural damping, aerodynamics, collective pitch, and aeroelastic couplings 
are introduced and analyzed in a systematic manner. The effects of rotor flap­
ping stiffness significantly influence hingeless rotor aeromechanical stability 
and can either stabilize or destabilize the system depending on the particular 
configuration and operating condition. Structural damping is generally stabi­
lizing but certain unusual combinations of body and blade damping can be 
destabilizing. Aeroelastic couplings contribute moderate stabilizing effects 
for ground resonance and offer significant benefits for air resonance. Without 
aeroelastic couplings, matched stiffness configurations are found to be 
inherently less stable than non-matched stiffness configurations. 

1. Introduction 

One of the main reasons for the development of hingeless rotors is the 
simplicity gained by eliminating blade articulation hinges and lead-lag dampers. 
Soft inplane configurations usually have weight and stress advantages over stiff 
inplane configurations, and soft inplane rotors are also less susceptible to 
certain blade flap-lag instabilities. The major disadvantage of the soft 
inplane rotor is that it may experience coupled rotor-body aeromechanical 
instabilities termed ground and air resonance. Classical ground resonance was 
encountered early in the development of the articulated rotor helicopter but air 

.resonance has only become a serious concern since the advent of the hingeless 
rotor helicopter. Both of these phenomena are more difficult to predict 
analytically for hingeless rotorcraft than is ground resonance in articulated 
rotorcraft because of strong aerodynamic and structural couplings inherent in 
hingeless rotors. Recent full-scale development programs have reflected the 
complexity of these aeromechanical stability phenomena. For example, of six 
different hingeless rotor helicopters - the Westland WG-13 Lynx, the Westland 
Research Scout, the MBB B0-105, Boeing Vertol YUH-61A, Aerospatiale SA 340 
Gazelle, and the Lockheed matched stiffness XH-51A- only two were successfully 
developed or tested without requiring installation of auxiliary lead-lag 
dampers. The reasons for this wide variation in stability characteristics 
are not very well understood. 

Most research on air-ground resonance falls into two nearly distinct 
categories. Research on ground resonance originated with the classical work 
of Coleman 1 who considered a highly simplified analytical model. This model 
ignored rotor aerodynamics entirely but was quite satisfactory for articulated 
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rotor helicopters and, because of its relative simplicity, was also easy to 
understand and use for design purposes. In the case of hingeless rotorcraft, 
additional rotor and fuselage degrees of freedom become important and rotor 
aerodynamics must be included as well. Most of the remaining research falls in 
this second category and is more complex and difficult to understand. Neverthe­
less, some quite good mathematical models 2- 4 for hingeless rotorcraft ground and 
air resonance have been developed and many of the basic characteristics of the 
problem are now understood. Progress to date, however, has not been sufficient 
to explain the widely varying experience with the aircraft developments cited 
above, nor does it permit the development of future aircraft with assurance that 
such problems can always be avoided. This situation is due, in part, to the 
fact that most research has concentrated on developing complex mathematical 
models for predicting stability rather than attempting to break the problem 
down into simpler elements for the purpose of understanding the underlying 
characteristics that contribute to the stability of the entire system. What is 
needed is a third category of research, one of intermediate complexity, to 
bridge the gap between the classical Coleman analysis and the current highly 
complex hingeless rotorcraft analyses. In particular, the use of simplified 
methods is most efficient for parametric analyses of a wide range of configura­
tions. Simplified mathematical models can also be quickly reduced in size to 
isolate the influence of certain degrees of freedom. 

It is the third category of research toward which this paper is directed. 
The objectives of the paper are to: (1) provide a clearer and more complete 
understanding of ground-air resonance phenomena; (2) explain some aspects of 
previous hingeless rotorcraft developments; and (3) identify configurations 
having favorable stability characteristics. Initial efforts on the last 
objective were reported in Ref. 5. 

2. Mathematical Model 

The results presented in this paper are obtained from a simplified 
mathematical model of a coupled rotor-body system operating in hover or in 
ground contact. Only those elements required to reasonably represent ground 
and air resonance phenomena are retained in the analysis. Additional refine­
ments would be necessary to accurately predict the stability of a specific 
configuration but they would only complicate the present objective of investi­
gating the fundamental characteristics of air and ground resonance phenomena. 

BODY 
CENTER OF 

MASS 

zR The mathematical model is based on 

t 
the physical system sketched in Fig. 1. 
Symbols and configuration parameters are 

Y n defined at the end of the paper. The 

(~~~~~~~=v~,~====~ helicopter is composed of a rigid fuselage 
having pitch and roll rotation (0, f) 

2?'about the body center of mass and horizon-
¢ tal translation (X, Y) degrees of freedom 

X 

z 

in the body fixed X, Y, Z coordinate 
system. The body physical properties are 
its mass mf; pitch and roll inertias 
Iy, Ix; landing gear effective stiffnesses 
in rotation and translation K8 , K~, Ky, 
Kx; and the distance of the rotor above 
the body center of mass h. The XR, YR, 
ZR coordinate system rotates at a constant 
angular velocity il and is the reference 
frame for measuring blade deflections. 

Fig. 1. Physical system for 
mathematical model. 

The blades are rigid and rotate against 
spring restraint about centrally located 
lead-lag and flap hinges. The blade mass 
is distributed uniformly along a radial 
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line with the blade g1v1ng equal flap and lead-lag inertias I. The center 
of mass is at the blade midspan. 

The blade flap and lead-lag 
rotations occur about axes parallel 
and perpendicular to the plane of 
rotation, respectively (Fig. 2). 
The blade flap and lead-lag spring 
constants are K8 and Ks, respec­
tively. The principal elastic axes 
of flap and lead-lag stiffness do 
not necessarily coincide with the 
orientation of the flap and lead­
lag hinge axes shown in Fig. 2; 
this permits structural (elastic) 
coupling of the blade flap and 
lead-lag deflections to be 
introduced. When the blade 
stiffness principal axes 

Fig. 2. Details of blade rotations and 
spring restraint. 

orientation es is zero, the flap and lead-lag deflections are structurally 
uncoupled and when ~12 > es > 0 they are coupled. If es is assumed to be a 
function of the blade aerodynamic pitch angle e, different rotor blade and hub 
types may be simulated. A simple relation used in this paper, 

e = e + Re , R = o or 1 (1) 
s so 

permits the simulation of configurations having bending flexibility located 
predominantly in the hub, R = 0, or in the blade, R = 1*. The 8s term 
represents flap-lag structural coupling when the blade pitch angle0 is zero. 

The rotor-body physical system consists of a total of 8 degrees of freedom 
when the individual blade-flap and lead-lag degrees of freedom for b blades 
(b > 2) are expressed in terms of multiblade coordinates 8 and only the cyclic 
degrees of freedom CSc, Ss and sc, ssl are retained. Body vertical translation, 
yaw rotation, collective flap, and collective lead-lag degrees of freedom are 
not retained because in hover they are uncoupled from the rotor cyclic and body 
0, ¢, X, Y degrees of freedom and do not participate in ground and air resonance 
phenomena. For many of the results presented here, even the 8 degree-of-freedom 
system is not required and a 5 degree-of-freedom system (Sc, Ss, sc, ss, 8 or 
S, s, 8 for short) is sufficient for investigating ground and air resonance 
behavior. 

The equations of motion for this system have been derived using a Newtonian 
approach. Initially a system of nonlinear equations is obtained and the equa­
tions are subsequently linearized by permitting only small perturbation motions 
about a steady equilibrium operating condition where X0 , Y0 , 80 , ¢0 = 0 and 
S0 , s 0 ~ 0. This process can be carried out rigorously to yield, for the assumed 
physical system, an exact set of linear differential equations. Aerodynamic, 
elastic (blade and landing gear springs), gravitational, and viscous (structural 
damping), forces and moments are included in the derivation of the equations. 
For the aerodynamics, a simplified quasi-steady strip theory is employed. A 
complete derivation of the equations of motion, beyond the scope of this paper, 
is given in Ref. 9. The final equations are constant coefficient differential 
equations and the coefficients are functions of the equilibrium flap and lead­
lag blade deflections S0 , so• These are determined by the collective pitch 8 
and the blade physical properties. The solution of the equations of motion 
yields the eigenvalues and eigenvectors of the system which yield the desired 
information regarding the stability characteristics of the system. 

When R = 0 or 1, the present definition of R is equivalent to the one 
originally presented in Refs. 6 and 7. 
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The physical system used for the numerical calculations is defined by 
the following parameter values: h = 0.4, u = 0.1, ky = 0.2, y = 5, a= 0.05, 
E = 1.1. For ground resonance calculations n~ = ne = 0.01; for air resonance 
we = ne = 0, nc = 0.005. When values different from these are used, they are 
given in the appropriate figure captions. 

3. Classical Ground Resonance 

The simplest example of ground resonance involves the lead-lag blade 
deflections and fuselage horizontal translation in one direction, without any 
aerodynamic forces. This 3 degree-of-freedom system is denoted in short-hand 
form as the ~' X system. Coleman 1 used complex coordinates to describe the 
blade deflections; here we use multiblade coordinates to write the equations 
in more conventional form. 

1 0 0 ~~' 0 2 0 c' c 
w2 -

I; 
1 0 0 l;c 

0 1 3 c" -2 0 0 l;~ + 0 wz - 1 0 Cs 0 (2) 2 s + I; 

0 .!!. 1 
X" 

0 0 0 
X' 

0 0 -2 X 
4 R R wx R 

The rotor lead-lag multiblade coordinates l;c and ss are proportional to the 
displacement from the center of rotation of the rotor center of mass in the Y 
and X directions, respectively. In these equations, the body displacement 
and the lead-lag displacements are coupled in the mass matrix by a term 
proportional to the rotor mass ratio ~. The system will be unstable when 
W~ < 1, the rotor and body natural frequencies are near resonance, and when ~ 

X 

13 .5 '-
>' 
u 
~ .4- J.l."' 1.0 

a 
w 
~ 

u.. .J ·- UNSTABLE 
> 
0 ' g .2 ~ STABLE 

.1'· 

DECREASE n 

INCREASE n 

o~~L_~~~--~---L--~ ___ _L __ _L __ ~ 

.1 .2 .3 .4 .5 .6 .7 .8 .9 
LEAD·LAG FREQUENCY, Wr 

Fig. 3. Classical ground resonance 
stability boundaries c, X degrees 
of freedom in vaauo, without 
structural damping. 

is sufficiently large. The condition 
that WS < 1 means that the rotor is 
soft inplane; if Ws > 1 the rotor is 
termed stiff inplane. Figure 3 
illustrates the essential behavior of 
the system with stability boundaries 
in the Wx, W~ plane. Resonance of 
the system occurs when the uncoupled 
natural frequencies are equal: 
wx = 1 - wl;. Note that wl; is the 
blade natural frequency in the rotat­
ing system; in the fixed system it 
becomes 1 - wl; for the regressing 
cyclic lead-lag mode and 1 + w1; for 
the progressing cyclic lead-lag mode. 
When ~ = 0, instability occurs only 
at resonance, and as ~ increases an 
expanding region of instability devel­
ops. This band of instability is 
narrow for high lead-lag frequencies 
and broad for low lead-lag frequencies. 
As the lead-lag frequency increases, 
the region of instability diminishes 
until, for stiff inplane rotors, it 

vanishes completely. Furthermore, within the unstable region, the real part of 
the unstable eigenvalue becomes progressively larger as wl; decreases along 
the resonance line. These basic results lead to the general principle of air 
and ground resonance that instabilities tend to be more severe at low lead-lag 
frequencies and less severe at high lead-lag frequencies. 

It may be noted that the results in Fig. 3 are presented in an unconven­
tional form. Following the work of Coleman, ground resonance analyses are 
usually presented in terms of coupled rotor-body system frequencies as a 
function of rotor rotational speed. Regions of instability are then identified 
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as areas where frequency coalescences occur. This approach is best suited to 
studying a particular configuration over a range of rotor speeds. For the 
present purposes, it is of interest to determine the variation in stability of 
different classes of configurations as defined by dimensionless parameters such 
as wx and we defined at the normal operating rotor speed. Hence, Fig. 3 is 
intended to map out a broad spectrum of different rotor-body configurations. In 
addition, however, it is possible to trace the variation of stability with rotor 
operating speed for a given configuration. For example, let Wx

0 
and w~ 0 be 

the dimensionless uncoupled natural frequencies at normal rotor speed ~0 • 

Then as n varies, the uncoupled frequencies become wx = wx /(Q/Q0 ), 

wz; =we /(n/no), which defines a straight "operating" line pagsing through the 
origin gnd the nominal operating frequencies Wx0 and W~ . Increasing the rotor 
speed is represented by movement along the operating ling toward the origin, and 
decreasing rotor speed moves the frequencies away from the origin along the 
operating line. Following the example operating line in Fig. 3 illustrates how 
ground resonance can be encountered by increasing or decreasing rotor speed 
depending on whether the nominal configuration lies above or below the region 
of ground resonance instability. 

While the e, X system of Fig. 3 involved only one body translation degree 
of freedom, results for a 1;, X, Y system with both X and Y body translation 
are not qualitatively different. For example, when wx = Wy the unstable region 
is broadened slightly. When wx is proportional to wy, two regions of 
instability may be present, corresponding to the different frequency coalescences 
wx = 1 - we and Wy = 1 - wz;. 

4. Rotor-Body Ground Resonance in vacuo 

The previous simple model with only planar translations is also suitable 
for articulated rotor helicopters having combined body translation (X, Y) and 
pitch, roll (8, ~) degrees of freedom. This is because the blade flapping of 
articulated rotors is only weakly coupled to the body pitch-roll rotations and 
because the important motions are rotor lead-lag deflections and linear transla­
tions at the rotor hub due to pitch and roll of the fuselage. This situation is 
not true for hingeless rotors where there is strong coupling between rotor flapping 
motions and body pitch and roll motions. In addition to the mechanical coupling 
of these degrees of freedom, the rotor flapping also generates large aerodynamic 
forces on the blades, forces which in turn influence the entire dynamic system. 

Before considering the effects of aerodynamics we will first treat the 
rotor-body system in vacuo to identify the effects of rotor flap degrees of 
freedom and flap hinge restraint stiffness. The body translation degrees of 
freedom are not required because pitch and roll rotations generate local transla­
tions at the rotor hub. Retaining only pitch rotation, the system is denoted 
B, e, 8 and the equations of motion in vacuo are: 

l 0 0 0 -1 S" 0 0 0 0 s' p2-1 0 0 0 0 3 

' ' ' 
0 l 0 0 0 B" -2 0 0 0 3' 0 pz-1 0 0 0 8 

s s s 

0 0 l 0 0 , .. 
' 

+ 0 0 0 0 ,. 
' 

+ 0 0 W2-l 

' 
0 0 ,, -0 (3) 

0 0 0 l -t h , .. 0 0 -2 0 0 ,. 0 0 0 w2-l 0 ,, 
s s ' 

-l 0 0 -1 n l 0" 0 -2 0 0 0 0' 0 0 0 0 
2Ie 

W.~ 0 bi ' 

The equations for the 1;, 8 degrees of freedom are similar in form to 
the e, X degrees of freedom, Eq. (2). The effect of inertial coupling is now 
dependent on body geometric and inertia parameters h and ~' in addition to ~· 
The rotor flap degrees of freedom couple with body pitch oniy when p > 1.0 and 
coupling between rotor flap and lead-lag motions occurs only indirectly through 
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Fig. 4. Effect of flapping stiffness 
on rotor-body ground resonance 
in vaouo, S, t;, 0 degrees of freedom, 
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body pitch motion. Typical results for 
the S, t;, 0 system are shown in Fig. 4 
for several different values of the blade 
flap frequency p. When p = 1.0, the 
system represents an articulated rotor 
without rotor flap-body pitch coupling. 
The stability boundaries are virtually 
identical to the t;, X system except 
for differences in the definition of 
we and wx· 

When flapping stiffness is intro­
duced, p > 1.0, the rotor becomes 
coupled to the pylon by the blade flap­
ping springs resulting in two coupled, 
rotor flap-body pitch modes. Both of 
these modes may couple with the regres­
sing lead-lag mode. The first mode is 
the primary ground resonance mode that 
derives from the uncoupled body pitch 
mode We and the second mode is a new 
mode that derives from the uncoupled 
p - l flap regressing mode. The 
resonances of these two modes with the 
regressing lead-lag mode is shown in 
Fig. 5 in the we, wt; plane for 
p = 1.1. The uncoupled frequency reso­
nances we = l - ;;;, and p - l = l - w, 
yield straight lines but the coupled 
frequencies yield approximate resonance 
bands sketched in Fig. 5. 

w 
~ 
~ 

~ , I I 

couPLEDA ', I Both of the frequency resonances 
FREQUENCIES ~ ", 1 produce mechanical instability in vacuo 

% ":, but instability due to the higher Wt; 
~ 

1 
', ~ resonance band is very weak compared to 

~ 1 "- '-:. the lower Wr resonance band. It is 
o;-----~----~~----~----~~~~----~----'~' usually unst~ble only in the absence of 
·
4 

·
5 

·
6 

·
7 

·
8 

·
9 1 aerodynamics and structural damping. LEAD·LAG FREQUENCY, w

1 

Fig. 5. Resonance 
conditons for the 
rotor-body system, 

frequency 
S, t;, 0 
p = l.l. 

The lower wt; resonance band produces 
the important ground resonance instabil­
ity. At high values of we it is only 
slightly affected by rotor flap stiff­
ness, but at low values of we flap 
stiffness is more significant. In the 

case of very low we values, the rotor flap stiffness will be stronger than the 
body stiffness (landing gear) and the ground resonance mode will begin to assume 
the character of air resonance instability. In the limit as We + 0 in Fig. 4, 
the low Wt; mechanical instability is essentially air resonance in vacuo. Com­
paring the results in Fig. 4 for different values of p indicates that increas­
ing p generally stabilizes the system by reducing the lead-lag frequency above 
which ground resonance cannot occur, but destabilizes it by broadening the region 
of instability. The lower boundary of the unstable region is also shifted to 
significantly lower values of body pitch frequency. The effects of flap stiff­
ness are therefore dependent on specific values of other configuration parameters 
and simple generalizations are difficult to make. 

Another way•of observing the frequency coalescence and mechanical stabil­
ity behavior is to plot the frequency and damping as a function of lead-lag 
frequency for a given value of body pitch frequency. A typical result is shown 
in Fig. 6; coupled and uncoupled frequencies and damping are included. It can 
be seen that the instability associated with the rotor flap mode is much weaker 
than the ground resonance instability. 
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It was noted in Ref. 5 that flap­
lag structural coupling has a signifi­
cant destabilizing effect on ground 
resonance of hingeless rotorcraft in 
vacuo. Figure 7 illustrates some typi­
cal results as 88 varies for p = 1.1. 
The broadening of ~he region of 
instability as Bs increases confirms 

0 the earlier result. The effect of flap-
lag structural coupling can become very 
pronounced for some configurations. 
When both body pitch and roll rotations 
are included, and the body pitch and 
roll inertias are small and equal to 
each other, the destabilizing effects 
are very large. One stability boundary 
included in Fig. 7 for the 8, (, 0, ¢ 
system shows the region of instability 
extending beyond ws = 1.0 to stiff 
inplane configurations. Also, the 
separate instability region associated 
with the p - 1 = 1 - ws resonance is 
no longer present. 

5. Rotor-Body Ground Resonance in 
vacuo with Structural Damping 

Without aerodynamics or 
structural damping, ground resonance 
occurs only as a result of inertial 

. and elastic forces. With the addition 
of structural damping, the stability 
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Fig. 6. Frequency and damping of 
rotor-body system vs lead-lag frequency, 
8, (, 0 degrees of freedom, in vacuo, 
n, = ne = o . 

.7 

.6 a5 "0.2 
0 • 

of the system becomes considerably more 
complex and the problem becomes an 
important subclass of the more general 
ground and air resonance problem. It 
is important for two reasons: first, 
structural damping itself plays an 
important direct role in the general 

'problem; and second, some of the 
effects of aerodynamics can be 
understood more readily if they are 
considered in terms of equivalent 
structural damping behavior. 

13.5 
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' 
In the present investigation, 

it was found that the effects of 
structural damping can lead to very 
unusual and subtle changes in 
mechanical stability characteristics. 
A complete discussion of these changes 
is beyond the scope of this paper; 
therefore, only the most pertinent 
results will be presented, It may 
be noted that the effects of 
structural damping (or equivalent 

il 
w 
ff: .3 
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.1 

--~.t.e 
__ - p, ~. 0. <1> (W0 " W0 ) 

0 .1 .2 .3 .4 .5 .6 
LEAD· LAG FREQUENCY, W1 

Fig. 7. Effect of flap-lag structural 
coupling on rotor-body ground resonance 
in vacuo, 8, s , 0 and 8, s , 0, ¢ 

degrees of freedom, ~ = 0.2, p = 1.05, 
n, = ne = o. 

viscous damping) on the classical ground resonance problem ((, X, Y) have been 
studied by Coleman. 1 The present investigation is aimed at the slightly more 
general rotor-body problem (8, (, 0) which includes body-pitch and rotor-flap 
coupling dynamics of a hingeless rotor configuration. 
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One of the characteristics of structural damping is that the qualitative 
behavior of the rotor depends strongly on the relative damping of the blade 
lead-lag motion compared to the damping of the body motion. When the ratio of 
blade damping to body damping is near unity or less, the effects of structural 
damping are relatively straightforward; but when the ratio of blade damping to 
body damping is sufficiently large, unusual behavior generally occurs. Fig­
ures 8-10 give results for a range of different damping configurations. In 
Fig. 8, the blade lead-lag structural damping and body-pitch structural damping 
are equal. Blade-flap structural damping is not included. As the level of 
damping increases, the unstable region in the W8 , Ws plane is reduced compared 
to the zero damping configuration. Note that the boundary generally recedes 
along the We, 1- Ws resonance line to lower Ws values as damping increases. 
There are some unusual characteristics, however. For very low We values, 
structural damping is destabilizing as evidenced by the broadening of the 
unstable region as we + 0. This is caused by the combined structural damping 

·'. ' I I \ \' \ 
.6 ,,, '1r t' io.410.3 \ ~ 

~ .2 ~ . STABLE _,_ 
UNSTABLE 

0 .1 . 2 9 

Fig. 8. Effect of structural damping 
on rotor-body ground resonance in 
vaauo~ S, s, 0 degrees of freedom, 
ne = n,. 
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Fig. 10. Effect of structural damping 
on rotor-body ground resonance in 
vacuo, a, ?;, 0 degrees of freedom, 
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Fig. 9. Effect of structural damp­
ing on rotor-body ground resonance 
in vacuo~ 8, S, 0 degrees of free­
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of body pitch and rotor flap motions 
becoming vanishingly small as 
we + 0, this is because the total 
body damping (2newee') goes to 
zero, even when the damping ratio 
ne # 0, and because flap structural 
damping is not included. Thus, the 
ratio of blade lead-lag damping to 
flap and pitch damping becomes 
infinite, leading to a condition 
where unusual destabilizing 
behavior occurs. Typically, it 
is found that when either n~; or 
ne is zero and the other is non­
zero, the system will be unstable 
for any combination of we and w,. 
This is not necessarily of practical 
concern, however, since it is impos­
sible to have zero structural 
damping in a real physical system. 
The instability region associated 
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with the p - 1 = 1 - w, resonance is eliminated by very small amounts of 
structural damping and is therefore not included in Figs. 8-10. 

Figure 9 illustrates the stability of configurations having small blade 
lead-lag damping and large body pitch damping. Because of the large difference 
in ns and ne, some regions are destabilized in comparison to the configurations 
without any structural damping. This particular damping combination is analogous 
to the more complete problem including aerodynamics where rotor flap aerodynamic 
damping moments produce a large effective body-pitch damping for hingeless rotor 
configurations. The last result in Fig. 10 is intended to illustrate the 
extreme effects of structural damping for very unusual configurations. In this 
case, the body-pitch damping is extremely small in comparison to the blade lead­
lag damping. It is observed that as the damping increases, instabilities of 
stiff inplane configurations are produced. It should be emphasized that this is 
not of great practical significance but it is an interesting and unusual mathe­
matical result. 

6. Rotor-Body Ground Resonance with Aerodynamics 

We now continue to generalize the physical system by including rotor 
aerodynamic forces. The zero collective pitch operating condition is the 
simplest case because many of the aerodYnamic terms in the equations vanish for 
e = 0. The first results are given in Fig. 11 for the typical p = 1.1 
configuration with equal blade inplane and body-pitch structural damping. The 
blade Lock number and rotor solidity are 5 and 0.05, respectively. The stability 
boundaries are well-behaved, receding continuously with increasing structural 
damping, but a few details deserve 
comment. First, with zero structural .7 

damping, the effects of aerodynamics 
alone are strongly destabilizing 
compared to the undamped configura­

.6 

tion in vacuo. This is the result 
of an unfavorable effective damping 
combination where the blade aerody­
namic lead-lag damping is very 
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small and the body aerodynamic 
damping is very large, similar to 
Fig. 9. Only a small amount of 
blade lead-lag structural damping 

g .2 -

is required to rectify this imbal­
ance and the stability boundary 
quickly recedes. It is also 
evident that the high we, w, 
portion of the boundary is much 
less sensitive to structural 
damping than the lower we, w, 
boundary. 

It should be noted that 
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Fig. 11. Effect of aerodynamics and 
structural damping on rotor-body ground 
resonance, S, ~' 0 degrees of freedom, 
ne=n,,e=O. 

stability variations for rotor speed changes can be only approximately inferred 
from Fig. 12 when p > 1.0. Rotor speed operating lines passing through the 
origin define the body pitch and blade lead-lag frequency variations but not the 
flap frequency variations as p varies with n. 

p =~1 + (p2 - l)j(n/n )2 (4) 
0 0 

Nevertheless, one may still infer the general effects of rotor speed variations 
near the nominal configuration point we

0
, w,

0
, by ignoring the small shift in 

the stability boundary location as p changes with n/n0 • In particular, it 
can be appreciated that a practical concern would be nominal design configura­
tions having rotor speed operating lines crossing the "nose" (high w;;, low we) 
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of the stability boundaries in Fig. 11. 
For example, ignoring the effect of 
small p variations with 0, a nominal 
configuration with ws

0 
= 0.8, W

80 
= 0.3, 

and 1% blade and body structural 
damping (ns = ne = 0.01) would cross 
into the unstable region with a slight 
increase in rotor speed, and then 
become stable again as rotor speed 
increased further. 

An important characteristic of 
hingeless rotors is the high angular 
rate damping of the coupled rotor-body 
system produced by aerodynamic forces 
acting on the blades that are trans­
ferred to the body by the flapping 
stiffness of the rotor. The body-mode 
damplng increases in proportion to the 
flapping stiffness which in turn is 
generally defined in terms of the 
uncoupled blade-flap frequency 

p =~1 + Ks/In2 where Ks is the spring restraint stiffness of the idealized 
centrally hinged rigid blade. Previous investigations have concluded that the 
effective body damping of a hingeless rotorcraft generally contributes a favorable 
stabilizing effect for air and ground resonance phenomena. Because of their 
importance, we will consider the effects of blade-flap stiffness and aerodynamic 
damping in more detail. Two results, at zero collective pitch, will be considered. 

The first result, Fig. 12, is a comparison of in vacuo and in air stabil­
ity boundaries in the p, ws plane for a body-pitch frequency of we = 0.2. In 
this plot, the basic in vacuo mechanical instability is centered in the we, 
1- w, resonance. For p = 1.0, this occurs when 1- ws ~ we = 0.2 or 
ws " 0.8, but as p increased above 1.0, the rotor flap stiffness increases the 
coupled rotor-body pitch frequency and lowers the lead-lag frequency for reso­
nance. This explains the shift of the instability region to lower ws as p 
increases. The region of instability at very low ws < 0.1 is due to the 
effects of structural damping. The effect of aerodynamics is examined by 
increasing the Lock number from zero (in vacuo) to 10. It is assumed that the 
blade mass and inertia properties are held constant and that the Lock number is 
increased by increasing the air density or the blade chord. For y = 5 the 
instability region, compared to the in vacuo case, is reduced for low p, 
high w, values near the frequency resonance, but is expanded for low ws 
configurations. It may be pointed out that the reduction of stability for these 
low w~ configurations is relatively unimportant compared to the increased 
stability for the higher ws configurations. As the Lock number increases, it 
is apparent that the system is further stabilized by rotor aerodynamic flap 
damping in the vicinity of the 1 - w, " we resonance. 

Figure 12 also illustrates that both aerodynamic flap damping (Lock 
number) and rotor flap stiffness p are important in determining hingeless 
rotor stability. For very low values of p, the rotor aerodynamic flap damping 
cannot be effectively transferred to the body due to low blade flap stiffness. 
This explains the small region of instability that remains for y = 10 at very 
low values of p. In fact as p + 1.0, the in-air and in vacuo stability 
boundaries are nearly coincident, indicating that aerodynamics has a negligible 
effect on articulated rotor ground resonance. Figure 12 also indicates that 
too large an increase in p can lead to ground resonance instability. This is 
because the underlying mechanical instability becomes stronger - as p increases 
and ws decreases along the resonance line - and the aerodynamic flap damping 
is not sufficient to suppress it. 
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The second result compares 
ground resonance stability boundaries 
in the We, Ws plane for several 
different values of p. Figure 13 
illustrates that flap stiffness has 
a moderate beneficial influence on the 
upper part of the stability boundaries. 
Increasing flap frequency stabilizes 
the "nose" of the stability boundaries 
by significantly lowering the maximum 
value for which ground resonance 
can occur. The lower portions of the 
boundaries are much more sensitive 
to p and increasing p generally 
enlarges the region of instability. 
This is primarily due to the increas­
ingly strong mechanical instability 
that is produced by high values of 
flap stiffness at low body frequen­
cies, as was evident in the in vacuo 
stability boundaries in Figs. 4 and 12. 
aerodynamic flap damping is insufficient 
instability. 

The next step is to examine 
the influence of collective pitch 
on the ground resonance instability. 
The configuration in Fig. ll that 
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Fig. 13. Effect of flapping stiffness 
on rotor-body ground resonance, B, ~' 
0 degrees of freedom, n, = ne = 0.02, 
e = o. 

.7 

For these configurations, the rotor 
to suppress the underlying mechanical 

.6 . 

had 1% structural damping is 
presented in Fig. 14 for several 
values of collective pitch. It 

13' .5 
>' STABLE 

is clear that the additional 
aerodynamic coupling effects are 
generally destabilizing, particularly 
in lowering the "nose" of the 
stability boundary. The upper and 
lower left portions of the boundary 
are to some extent stabilized, 
however. It is not possible, 
within the scope of this paper, to 
determine the precise reasons for 
the destabilizing influence of 
collective pitch. The discussion in 
Ref. 4 indicates that combined 
effects of collective pitch, induced 
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Fig. 14. Effect of collective pitch on 
rotor-body ground resonance, e, ,, 
0 degrees of freedom. 

inflow, and inertial coupling due to equilibrium flap and lead-lag displacements 
$0 , s0 of the blade all contribute in a complex way. A more complete under­
standing of Fig. 14 and other stability characteristics described in this paper 
must be left for future investigation, 

7. Rotor-Body Ground Resonance with Aeroelastic Couplings 

The previous results for rotor-body ground resonance in air have not 
included any rotor blade aeroelastic couplings such as kinematic pitch-lag 
coupling, or flap-lag structural coupling. These couplings arise in actual 
rotor blades as a consequence of the distribution of bending and torsion stiff­
ness along the radius and as a consequence of configuration details of the rotor 
hub and the blade pitch control system. It is possible to control the magnitude 
of the rotor blade aeroelastic couplings by applying suitable techniques in the 
design of the rotor. Moreover, it is well known that aeroelastic couplings can 
strongly influence a wide range of aeroelastic behavior of hingeless rotors 
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including ground and air resonance stability characteristics. However, not as 
well known are some of the details that determine which couplings are stabiliz­
ing or destabilizing for air and ground resonance, and hmv strong these effects 
are for different hingeless rotorcraft configurations. 

While the present analysis is not capable of treating the coupled elastic 
bending and torsion motions of actual hingeless rotor blades, the introduction 
of representative kinematic pitch-flap, pitch-lag, and structural flap-lag 
couplings allows a fairly general investigation to be conducted of aeroelastic 
coupling effects. The relationship between actual elastic blade properties and 
the effective aeroelastic coupling parameters applicable to an idealized rigid 
blade analysis is discussed in Refs. 10 and 11. Space. limitations do not permit 
the inclusion here of a large number of results and only a summary of the most 
important ones is presented. Two operating conditions at collective pitch 
values of 8 = 0 and 0.3 rad will be considered. Figure 15 presents the zero 
pitch angle results and compares the effects of pitch-lag coupling ec, flap-lag 
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Fig. 15. Effect of aeroelastic 
couplings on rotor-body ground 
resonance at zero collective pitch, 
S, s, 0 degrees of freedom. 
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structural coupling, es and combined 
pitch-lag and flap-lag coupling with 
the baseline configuration having no 
aeroelastic couplings. First, pitch­
lag coupling alone is not beneficial 
in the important regions of the We, 
Wl;; plane; that is, near the ''nose" 
region of the stability boundary. It 
is beneficial near the lower boundary 
but that is a relatively unimportant 
region. Neither is flap-lag structural 
coupling 8 8 beneficial; in fact, it 
is highly destabilizing in important 
regions of the ~e, ~c plane. The 
combination of both couplings is not 
particularly beneficial either, falling 
roughly between the effects of the 
individual couplings. 

The region of instability for 
the baseline configuration is greatly 
enlarged when the collective pitch 
angle is increased above zero. In this 
case, the aeroelastic couplings prove 
to be far more beneficial. As shown in 
Fig. 16, pitch-lag coupling is highly 
stabilizing, but for the configuration 
shown, p = 1.1, n, = ne = 0.01, the 
improvement would not be sufficient for 
moderately large values of body pitch 
frequency. The addition of flap-lag 
structural coupling enhances the effect 
of pitch-lag coupling and produces a 
further substantial reduction in the 
region of instability, particularly in 
the important "nose" region. While 
favorable effects can be obtained with 
aeroelastic couplings for the rotor 
thrusting condition, the specific values 
of the coupling parameters must be 
carefully chosen. It is possible to 
worsen ground resonance instability 
with certain combinations of couplings 
or with excessive amounts of coupling. 
In Fig. 17, for example, the upper 
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boundary of the unstable 
expands for large values 
structural coupling. 

region 
of flap-lag 

These results illustrate the 
potential benefits to the ground reso­
nance problem that may be obtained 
at nonzero collective pitch angles. 
The lack of favorable effects at zero 
pitch angle confirms earlier prelim­
inary findings reported in Ref. 5. 

8. Air Resonance 

Air resonance is usually con­
sidered to be an aeromechanical 
instability of an airborne rotorcraft 
that occurs as a result of resonance 
between the regressing lead-lag mode 

.and a rotor-body coupled pitch or 
roll mode. As such it involves rigid 
body translation degrees of freedom of 

j 
B 
' 

.4 

~ .3 0.2 

Fig. 17. Frequencies of coupled rotor­
body system in air, S, 0 degrees of 
freedom, e 0. 

the fuselage and aerodynamic forces associated with a thrusting rotor. Since 
the helicopter is not restrained by ground contact, the rotor-body pitch or 
roll mode is a "free-free" mode where rotor flapping and body rotation react 
against each other as mass elements joined by the rotor blade flapping springs. 
The coupled rotor-body frequency is determined by the mass, inertia, stiffness, 
and geometric parameters of the rotor and the body. An example of the frequency 
variation with these parameters is shown for the simple rotor flap-body pitch 
(S, 0) system in Fig. 17. For simplicity, the body translation (X) degree of 
freedom is omitted. The coupled rotor-body mode derives mainly from the (p- 1) 
regressing rotor flap mode and thus its frequency is a strong function of the 
blade flapping stiffness and hence p. As p is decreased to 1.0 (articulated 
blade), the rotor and body become uncoupled and the rotor regressing mode 
assumes its uncoupled fixed system frequency p - 1.0 = 0. The coupled rotor­
body frequency is also a strong function of the body pitch inertia parameter 
ky, and increasing inertia lowers the coupled frequency. 

Because the coupled rotor-body frequency is a direct function of blade 
flap frequency, the condition for resonance between a rotor-body pitch or roll 
~requency and the regressing lead-lag frequency is most conveniently depicted in 
the p, we plane. The mechanical stability resonance can be obtained by setting 
the rotor-body pitch-mode frequency of Fig. 17 equal to the regressing lead-lag 
frequency; that is, Wrotor-body = 1 - we for each value of p. This procedure 
yields a reso~ance lin= in the p, Ws plane that_ is :he air resonance counter­
part of the we = 1 - we resonance line in the we, we plane for ground 
resonance. The only difference is that the ground resonance line is a straight 
line, whereas the air resonance line is not. 

The first air resonance stability boundaries in the p, we plane are 
given in Fig. 18 for the flap, lead-lag, and body pitch (S, e, 0) system. The 
body X translation degree of freedom is omitted for simplicity; it will be shown 
that this has a very small effect on the air resonance stability boundaries. 
Figure 18 first shows a stability boundary for the rotor-body system in vacuo 
without lead-lag structural damping to illustrate the basic mechanical instabil­
ity underlying air resonance. It is evident that the instability is associated 
with a Wrotor-body = 1 - we resonant frequency line as discussed above. This 
should be compared to the ground·resonance case in Fig. 3. It is also inter­
esting that the air resonance can be roughly interpreted as a limiting case of 
ground resonance where the uncoupled body frequency we goes to zero. For the 
simple system being studied here, the results given for the in vacuo case in 
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Fig. 18. Effect of aerodynamics 
and structural damping on air reso­
nance stability, B, ~' 0 degrees of 
freedom, e = 0. 

Fig. 18 
results 
;;;8 ~ o. 

are, in fact, identical to the 
on the abscissa of Fig. 4 where 

The 11 in air11 air resonance 
stability boundaries in Fig. 18 are 
given for the somewhat artificial zero 
collective pitch condition. When lead­
lag structural damping is zero, the 
lead-lag damping due to aerodynamic 
drag is very small, and the body damp­
ing is large due to coupling with 
rotor aerodynamic flap damping. (This 
is similar to the in vacuo results in 
Fig. 9 where the body structural damp­
ing was much larger than the blade 
lead-lag damping.) With ns = 0, the 
aerodynamic damping is quite destabil­
izing for the upper and lower stability 
boundaries compared to the in vacuo 
result, except for a small range of 
high lead-lag frequency we > 0.8. As 
lead-lag structural damping is added, 

the stability boundaries contract significantly and only small amounts of 
structural damping are required to eliminate air resonance instability at zero 
blade-pitch angle. As in the case of the in vacuo stability boundary, the 
in-air stability boundaries for the S, s, 0 system represent a limiting case of 
ground resonance, as in Fig. 13 when W8 = 0. 

Both the in vacuo and in-air cases in Fig. 18 illustrate a basic charac­
teristic of air resonance stability, namely, that increasing the flap frequency 
generally reduces the stability of the system. In particular, following the 
trend of the resonant frequency line in the p, we plane of Fig. 18, increasing 
p and decreasing we is highly destabilizing. The higher the flap frequency 
and the lower the lead-lag frequency, the more lead-lag structural damping is 
required to prevent air resonance instability. 

It is of interest to point out that the p, we plane used for air 
resonance stability boundaries can be used to define operating lines for rotor 
speed variations like Fig. 4 and to define certain classes of hingeless rotor 
configurations. Rotor speed operating lines in the p, we plane are defined 
by the equations 

p = v'l + (p2 - l) l((l/(l ) 2 
o I o and (5) 

where Q0 , Ws
0

, and p0 are the nominal rotor speed and blade frequencies at 
nominal rotor speed, respectively. Several typical operating lines are shown 
in Fig. 19. 

It is also possible to construct curves of constant flap-lag structural 
coupling in the p, we plane. Flap-lag structural coupling depends on both 8s 
and the difference in lead-lag and flap stiffness Ks - Ks· Expressed in terms 
of the blade-flap and lead-lag frequencies, the difference in stiffnesses can be 
written as wl = w~ - w~ or wl = 1 + w~ - p2 since w~ = p2 - 1. One con­
figuration of part1cular interest is the matched stiffness configuration where 
the flap and lead-lag spring stiffnesses are equal and wE = 0. A high value 
~f the structural coupling parameter would be w3_= 0.43, corresponding to 
we = 0.8 and p = 1.1. Several loci of constant w3 are plotted in Fig. 19. 
A comparison of Figs. 18 and 19 should make it clear that the closer a config­
uration is to the matched stiffness configuration, the more likely is the chance 
of encountering air resonance stability, all other parameters being held con­
stant. Moving from one constant Wl line to a lower value WE line moves in 
the direction of more severe air resonanceo 
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The effects of body pitch-roll 
coupling on air resonance are briefly 
examined in Fig. 20 for the zero 
collective pitch condition. Using 
typical pitch and roll inertia values, 
the stability of the uncoupled pitch 
and roll modes are shown for the in 
vacuo and in-air conditions. Note here 
that the difference in body inertia 
produces a different resonant frequency 
line in the p, we plane, with the 
pitch mode resonance occurring at larger 
values of ws than the roll-mode 
resonance. Except for the difference 
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in frequency, the pitch- and roll-mode 
instabilities in vacuo are roughly 
similar. With aerodynamics and lead­
lag structural damping included, they 
are quite different, however. The 
pitch-mode stability boundary is 
virtually eliminated, moving to very 

Fig. 19. Rotor speed operating lines 
and loci of constant flap-lag struc­
tural coupling in the p, ws plane. 

high values of p, and low values of 
we, while the roll-mode boundary 
extends down to very low values of 
p. This difference is essentially 
a rotor-body inertia ratio effect 
similar to the mass ratio ~ that 
governs •the classical ground reso­
nance illustrated in Fig. 3. With 
a large pitch inertia, the uncoupled­
pitch-mode air resonance becomes a 
relatively mild instability. In the 
case of the roll mode, the low body 
roll inertia is relatively ineffective 
in opposing instability and roll-mode 
air resonance is relatively 
severe. In the case of the 
fully coupled rotor-body pitch-roll 
system (S, (, 0, ~), the roll mode is 
4ominant and the coupled stability 
boundary is very similar to the 
uncoupled roll-mode air resonance 
boundary. In the presence of 
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Fig. 20. Effect of body inertia and 
pitch-roll coupling on air resonance 
stability, S, t, 0 and S, (, 0, ~ 

degrees of freedom, h = 0.4, ~ = 0.1, 
e = o. 

aeroelastic coupling to be considered below, we will 
roll mode is not necessarily always the least stable 

see that the low inertia 
mode, however. 

As in the case with ground resonance, the effects of rotor collective 
pitch significantly influence air resonance stability. Typical results are 
shown in Fig. 21. Both the upper and extreme lower ws ends of the stability 
boundary recede with increasing collective pitch but the important "nose" 
region expands until the instability follows the resonance line down to the 
p = 1 abscissa. Considerable amounts of lead-lag structural damping are 
required to suppress the air resonance instability at higher blade pitch angles. 

It should be noted that rotor speed variation operating lines are only 
accurate for indicating air resonance stability boundary crossings in the p, 
ws plane when rotor collective pitch is zero, or is invariant with rotor speed. 
To represent the case of rotor speed variations for a helicopter hovering with a 
constant rotor thrust, collective pitch would have to vary as a function of 
rotor speed and the rotor speed operating lines in the p, wt plane would have 
to be used in conjunction with a family of stability boundaries for various 
collective pitch angles. 
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For all the air resonance results 
presented above, the rotor-body system 
has been restricted to rotor flap and 
lead-lag degrees of freedom and body 
pitch or roll degrees of freedom. As 
noted above, the effect of body transla­
tion does not fundamentally change the 
air resonance behavior but other modes w 

~ 

~ ()"0 

u. 1.1 . 

do appear when body translation is per­
mitted. In the interest of completeness, 
a case involving body translation is 
included. The main effect of adding 
body X translation is the appearance 
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Effect of collective 
pitch on air resonance stability, 
S, '' 0 degrees of freedom. 

of the low frequency flight dynamic pitch 
mode (or pitch-roll modes for both X 
andY translations). This mode primar­
ily involves coupling between body pitch 
and translation due to horizontal compo­
nents of the rotor thrust produced by 
pitch rotations of the body. Pitch 

moments are in turn generated by the lifting rotor in response to body transla­
tory velocity. This flight dynamics mode typically is mildly unstable and does 
not normally couple with the air resonance mode which is of considerably higher 
frequency. The stability boundaries for two systems, one without X translation 
(S, (, 0) and the other with X translation (S, (, 0, X), are compared in 
Fig. 22 for a pitch angle of e = 0.1 rad. As can be seen, the difference 
between the two air resonance stability boundaries is very small. A flight 
dynamics mode stability boundary for the S, '' 0, X system is also shown and 
indicates that this mode becomes stable at very large flap frequencies, except 
for w, ~ 1 when regressing lead-lag frequency approaches coalescence with the 
flight dynamics mode frequency. 
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9. Air Resonance with Aeroelastic 
Couplings 
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As in the treatment of ground 
resonance, we will now examine the 
effects of aeroelastic couplings on air 
resonance. Stability boundaries for the 
system at e = 0.2 rad and different 
combinations of pitch-lag and flap-lag 
structural coupling are given in Fig. 23. 
It is noted that the baseline boundaries 
without coupling show a wide region of 
instability. Nearly any rotor speed 
operating line would be expected to cross 
into this unstable region. Consider 
first the effect of flap-lag structural 
coupling. In contrast to ground reso­
nance results discussed above, and even 
air resonance at zero pitch angle, this 
coupling is now seen to be mildly stabil­
izing in some areas. Also superimposed 
on this plot is the p, w, line for 
matched stiffness configurations. Since 
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Fig. 22. Effect of body translation 
on air resonance stability, S, ~' 8 
and S, '' 0, X degrees of freedom, 
e = 0.1. 

flap-lag structural coupling vanishes 
boundaries for the two values of es 
ness line. 

for these configurations, the stability 
coalesce as they cross the matched stiff-

The effect of pitch-lag coupling is also stabilizing but much more so 
than flap-lag structural coupling alone. Nevertheless, for the parameters 
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of Fig. 23, the region of instability 
is probably large enough to produce 
instability at some point along the 
rotor speed operating line. The 
combination of flap-lag structural 
coupling and pitch-lag coupling proves 
to be most effective in preventing air 
resonance instability for the present 
configuration parameters. This 
combination affords a wide range of 
nominal frequency combinations Ws , Po 
that are stable at all points alan~ 
their rotor speed operating lines (here 
we ignore the effect of 8 variations 
with Q), It should be noted that only 
a few results are presented in Fig. 23 
and that many other combinations of 
aeroelastic couplings exist that can be 
destabilizing. Also, large amounts 
of pitch-lag and flap-lag structural 
coupling are not necessarily more 
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Fig. 23. Effect of aeroelastic 
couplings on air resonance stability, 
S, s, e degrees of freedom, e = 0.2. 

beneficial than small amounts. Excessive amounts may also produce new modes of 
instability; for example, flap-lag structural coupling together with large 
negative values of pitch-lag coupling can produce progressing lead-lag mode 
(1 + ws) instability for some configurations. In fact, this mode is unstable 
for very low ws values in Fig. 23. 

To complete this brief investigation of the effects of aeroelastic 
couplings on air resonance stability, a comparison will be made of the effects of 
couplings on the regressing lead-lag mode damping as a function of rotor speed 
for two different rotor-body configurations. The full 8 degree-of-freedom 
rotor-body system will be used (S, s, 0, ~.X, Y), and the rotor thrust will be 
held constant during rotor speed variations by changing collective pitch angle 
accordingly. The two different configurations will be a matched stiffness rotor 
(ws

0 
= 0.5, p0 = 1.118) and a typical nonmatched stiffness rotor (ws

0 
= 0.7, 

p0 = 1.10). Both rotors have 1/2% critical structural damping for lead-lag 
motions. Several results for each configuration are presented to illustrate 
successively the effects of aerodynamics, collective pitch, and aeroelastic 
couplings. Beginning with the matched stiffness configuration in Fig. 24, the 
basic mechanical instability is shown by the in vacuo result where the pitch and 
roll modes become unstable as the regressing rotor-mode frequency crosses the 
body pitch and roll frequencies. The pitch-mode instability is weaker than the 
roll mode since it occurs at a higher lead-lag frequency and because the pitch 
inertia is larger than the roll inertia. The frequencies are shown for the 
in vaauo case and one "in air" case. It may be noted that the regressing 
mode damping in Fig. 24 is given by the real part of the eigenvalue made 
dimensionless by the rotor speed Q, The fraction of critical damping can be 
obtained from the equation 

cr/Q 

where w/n is the frequency of the 1 - ws mode in Fig. 25. 

(6) 

Adding blade structural damping and zero blade pitch aerodynamics to the 
matched stiffness configuration completely eliminates the weaker pitch-mode 
instability and stabilizes the roll mode. A weak but broader n range roll­
mode instability remains, however. When a constant rotor thrust is added corre­
sponding to a collective pitch 80 = 0.15 at nominal rotor speed, the system 
becomes unstable over a much wider rotor speed range. It is of interest to 
note that the damping in the vicinity of the pitch mode appears to increase 
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and thus the air resonance appears to become even more exclusively a roll-mode 
instability. It is not possible to add flap-lag structural coupling to the 
matched stiffness configuration but pitch-lag coupling can be added. As 
anticipated from previous results, pitch-lag coupling does stabilize the roll­
mode instability but, surprisingly, it also destabilizes the pitch mode. Never­
theless, the system is now stable over the entire rotor speed range in Fig. 24 
when pitch-lag coupling is included. A discussion is given in Ref. 11 of how 
pitch-lag coupling can be generated for matched-stiffness rotor blades. 

The nonmatched stiffness configuration damping and frequency character­
istics are shown in Fig. 25. The in vacuo pitch- and roll-mode instabilities 
are weaker than the matched stiffness result because the frequency resonance 
occurs 11 farther down" (lower p and higher Ws values) on the resonance line 
in the p, Ws plane where the mechanical instabilities are weaker. The 
instabilities occur closer to the nominal rotor speed than the matched stiffness 
configuration because the nominal regressing lead-lag mode frequency is nearly 
coincident with the roll-mode frequency. Again, the roll-mode instability is 
stronger than the pitch mode. With lead-lag structural damping and zero pitch 
angle aerodynamics, both the pitch- and roll-mode instabilities are eliminated. 
The damping versus rotor speed shows little evidence of the pitch mode and 
only a slight reduction in damping at the roll mode frequency coalescence. 
With the rotor in a thrusting condition,. e

0 
= 0.15, both the roll and pitch 

modes are destabilized and the roll mode becomes unstable over a moderately 
wide rotor speed range. With the introduction of aeroelastic couplings, 
the air resonance instability can be suppressed for this configuration. 
As in the case of the matched stiffness rotor, pitch-lag coupling is effective 
in stabilizing the roll mode but produces a pitch-mode instability. With the 
introduction of flap-lag structural coupling in addition to pitch-lag coupling, 
it is possible to eliminate both the roll- and pitch-mode instabilities. In 
this case, we set the structural coupling parameter R = 1.0 where es = e. Since 
e increases with decreasing rotor speed to maintain constant rotor thrust, the 
flap-lag structural coupling increases with reduced rotor speed. The final 
configuration is seen to be stable over the entire rotor speed range. 

10. Concluding Remarks 

The intent of the research reported in this paper has been to develop a 
better understanding of some of the fundamental properties of hingeless rotor­
craft air and ground resonance. Listed below are some of the major fundamental 
characteristics of these aeromechanical phenomena. Also included are the major 
effects of aeroelastic couplings on ground and air resonance stability. 

1. Rotor flapping motion and flapping stiffness modify classical ground 
resonance by reducing the maximum value of We at which mechanical 
instability can occur. 

2. Along with the primary ground resonance instability, resonance of the 
regressing flap and regressing lead-lag modes produces a weak mechanical 
instability in vacuo. In the limit as the uncoupled body frequency 
approaches zero, these two modes interchange and the ground resonance 
instability essentially becomes an in vacuo version of air resonance. 

3. The effects of structural damping on ground resonance in vaauo are strongly 
dependent on the ratio of blade lead-lag damping to body damping. When the 
blade and body damping are of the same order of magnitude, damping generally 
stabilizes the system. Unusual results may occur when the rotor and body 
damping are highly dissimilar. In extreme cases, mechanical instability can 
even occur for stiff inplane rotor configurations. 

4. Like certain combinations of structural damping, aerodynamics in the absence 
of structural damping can be destabilizing. Increasing collective pitch is 
also generally destabilizing for ground resonance. 
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5. While the effects of flap damping of hingeless rotors are generally 
beneficial for ground resonance, increased flapping stiffness is not always 
beneficial. For high body frequencies (stiff landing gear), increasing p 
is generally stabilizing but for low body frequencies, increasing p is 
destabilizing. Increasing p is generally beneficial in that it lowers 
the maximum value of Ws at which ground resonance can occur for any body 
frequency. 

6. Air resonance is caused by resonance between the rotor regressing lead-lag 
mode and body pitch (or roll) mode. The body mode is a "free-free" mode 
arising mainly from the rotor-flap regressing mode and is controlled primarily 
by blade flap stiffness and body pitch (or roll) inertia. Increasing p 
and decreasing we generally destabilizes air resonance. 

7. Increasing body inertia strongly stabilizes air resonance. As a result, 
roll-mode air resonance tends to be much more serious than pitch-mode air 
resonance. Pitch-roll coupling does not appear to significantly influence 
air resonance. 

8. Air resonance is generally worsened by increasing the rotor collective pitch. 

9. The effects of aeroelastic couplings are generally not beneficial for 
ground resonance at zero collective pitch. At positive collective pitch, 
pitch-lag coupling and flap-lag structural coupling are effective in 
stabilizing ground resonance. 

10. The combination of pitch-lag and flap-lag structural coupling is found to be 
very important in stabilizing air resonance. Without such aeroelastic 
couplings, increased lead-lag structural damping must be provided. 

11. Matched stiffness configurations without aeroelastic couplings are found to 
be inherently more sensitive to air resonance instability than nonmatched 
stiffness configurations because of the larger p lower we combination of 
blade frequencies. 
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t 

X,Y,Z 

NOTATION 

blade airfoil section lift curve slope, rad-1 (2rr) 

number of blades 

blade chord 

distance from body center of mass to rotor hub, ft 

h/R 

1 2 2 blade inertia about flap and lead-lag hinges, 3 mR , slug-ft 

rotor and body pitch and roll inertia about body center of mass 
r 0 = IY + bi/2 + 3bih2, slug-ft2 

body roll and pitch inertia about body center of mass, slug-ft2 

body mass radii of gyration in roll and pitch, ky = /ry/mf , ft 

k /R 
y 

effective landing gear spring constants for translation in X, Y 
directions, lb/ft 

effective landing gear spring constants for pitch and roll 
rotations, ft-lb/rad 

mass of one blade, slugs 

mass of body, slugs 

total mass of rotor-body, mf + bm, slugs 

dimensionless blade uncoupled flap frequency, I 1 + w~ 

blade radius, ft 

time, sec 

body fixed coordinate system, origin at body center of mass 

rotating rotor fixed coordinate system, origin at rotor hub 
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s 

y 

8 

8 
s 

0 

p 

a 

w 

( ) ' 

blade flap rotation about flap hinge, rad, positive up 

cyclic multiblade coordinates for rotor flap deflections, rad 

blade Lock number, pacR4/I 

blade lead-lag rotation about lead-lag hinge, rad, positive for lead 

cyclic multiblade coordinates for rotor lead-lag deflections, rad 

structural damping ratio of blade lead-lag deflections and body pitch 
motions 

rotor blade collective pitch angle, rad 

inclination of principal axes of blade spring restraint system, 
Fig. 2, Eq. (1) 

value of 8 when 8 = 0 
s 

kinematic pitch-lag coupling parameter, positive if blade pitch angle 
increases when blade moves in direction of rotation (leads) 

body pitch rotation about body X axis, rad 

rotor-body mass ratio, bm/M 

air density, slugs/ft3 

rotor solidity be 
TIR , or real part of eigenvalue, sec 

body roll rotation about Y axis, rad 

rotor blade azimuth position, rad 

imaginary part of eigenvalue, rad/sec 

uncoupled body frequencies in translation wX = /~!M, rad/sec 

uncoupled blade flap (nonrotating) and lead-lag frequencies 

/ KS/I, JK;/I , rad/ sec 

uncoupled body pitch and roll frequencies JK
8
;r

8
, /K/It , rad/sec 

flap-lag structural coupling parameter, w~ - w~ 

rotor angular velocity, d~/dt, rad/sec 

equilibrium deflection (i.e., S
0

, (
0

) 

rotor speed (i.e., Q0 , w( , p0 ) 
0 

d( ) 1 d( ) 

~· "ilctt 

or parameter defined at normal 

made dimensionless by rotor speed, i.e., w, = w,ln 
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