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Abstract 
A fundamental study of vibration prediction and vi­

bration reduction in helicopters using active controls 
was performed. The nonlinear equations of motion for 
a coupled rotor 1 flexible fuselage system have been de­
rived using computer algebra on a special purpose 
symbolic computing facility. The details of the deriva­
tion using the MACSYMA program are described. The 
trim state and vibratory response of the helicopter are 
obtained in a single pass by applying the harmonic bal­
ance technique and simultaneously satisfying the trim 
and the vibratory response of the helicopter for all rotor 
and fuselage degrees of freedom. The influence of the 
fuselage flexibility on the vibratory response is studied. 
It is shown that the conventional single frequency 
higher harmonic control (HHC) capable of reducing ei­
ther the hub loads or only the fuselage vibrations but 
not both simultaneously. It is demonstrated that for 
simultaneous reduction of hub shears and fuselage vi­
brations a new scheme called multiple higher harmonic 
control (MHHC) is required. The fundamental aspects 
of this scheme and its uniqueness are described in de­
tail, providing new insight on vibration reduction in 
helicopters using HHC. 

Nomenclature 

a Rotor blade lift curve slope 

ACX, ACY, ACZ Acceleration components at the 
fuselage C.G. with HHC 
in the x, y, z directions, 
respectively 

ACXb, ACYb, ACZb Baseline acceleration compo­
nents at the fuselage C.G. 
in the x, y, z directions, 
respectively 

b Blade semi chord 

Cdo Blade drag coefficient 

Cmo Blade moment coefficient 

Cw Weight coefficient 

C, c,, C, Blade damping constants 

[i] Ph.D. Candidate 
[ii] Associate Research Engineer 
[iii] Professor and Chairman 

e 

f 

FHX, FHY, FHZ 

FHXb, FHYb, FHZb 

leu' lcyy' leu 
lcxy' Icrz' lc:u 

J, 
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Hinge offset 

Fuselage equivalent flat plate 

drag area = f 
2bR 

Vibratory hub shears with 
HHC in the longitudinal, 
lateral and vertical 
directions, respectively 

Baseline vibratory hub shears in 
longitudinal, lateral and verti· 
cal directions, respectively 

Blade flap inertia about hinge 

Fuselage mass moments and 
products of inertia about 
the fuselage center of mass 

Blade inertia about 
the feathering axis 

Blade spring constants 

Dimensional blade mass 

Fuselage mass 

N urn ber of blades 

Vector of the degrees of 
freedom of blade, fuselage rigid 
body modes, fuselage elastic 
modes and trim variables 

Harmonic components of blade 
response 

Harmonic components of fuse­
lage rigid body response 

Harmonic components of fuse­
lage elastic response 

Dimensional rotor radius 

Elastic coupling coefficient 

Position vector of hub 

Translational degrees of free­
dom of C.G of the helicopter 



T,TAFt T FA 

u,v,w 

X 

Yo,Zo 

z, 

y 

e 

a 

y't, PSI 

H HC Transfer matrices 

Blade displacements 

Position along the blade 
from the hinge offset point 

X and Z position of the fuselage 
aerodynamic center from point 
M on the helicopter 

X and Z position of the fuselage 
center of mass from point 
M on the helicopter 

X and Z position of the rotor 
hub center from point 
M on the helicopter 

Y and Z position of the point 
"p" on the cross section 
of the blade 

Vectors of vibratory response 

Vector of baseline vibrations 

Fuselage attitude in pitch 

The k·th blade rotating flap, 
lead-lag and torsional 
degrees of freedom 

Lock number 

Blade pitch settings for 
equilibrium 

Blade twist distribution 

Total blade pitch angle 

Higher Harmonic Control input 

Vector of HHC inputs 

Collective, lateral and longi­
tudinal HHC inputs in the 
nonrotating frame 

Fuselage roll, pitch and yaw 
degrees of freedom 

Total inflow 

Advance ratio 

air density 

S I'd' . 2Nbb o 1 1ty ratiO = -"--

Phase angles of collective, 
lateral and longitudinal 
HHC inputs 

Fuselage attitude in roll 

Blade azimuth angle 

w Vector of angular velocity 

Vector of angular velocity at 
hub due to fuselage motion 

Fundamental fuselage natural 
frequencies in vertical bending, 
horizontal bending and torsion 

Second fuselage natural 
frequencies in vertical bending, 
horizontal bending and torsion 

Rotating first flap, lag, and 
torsional blade frequencies 

Frequency of the HHC input 

Rotor R.P.M 

(j Overbars indicate 
dimensional quantities 

Introduction 
Vibrations in helicopters are caused by a variety of 

sources, such as rotor systems, engine, transmission etc .. 
Vibratory loads lead to fatigue damage of structural 
components, human discomfort, difficulty in reading 
instruments and reduced effectiveness of weapon sys­
tems. These oscillatory loads are often sensitive to the 
design 'parameters of the rotor and fuselage system. 
Furthermore, these loads increase with advance ratio 
and depend on flight conditions. With increasing de­
mand for high speed and higl) maneuvrability for both 
military and civilian applications, vibration analysis of 
helicopters plays a key role in helicopter design. 
Therefore, during the last decade a substantial amount 
of research by both industry and academia has been 
aimed at improving the fundamental understanding of 
the effect of various blade and fuselage parameters on 
the vibration levels encountered in coupled rotor­
fuselage systems. Excellent reviews on the sources of 
vibrations in helicopters and a description of the meth­
ods for reducing vibration levels were presented by 
Reichert[!] and Locwy[2]. 

Traditionally, vibration analysis in helicopters has 
been performed in two stages. In the first stage, the 
rotor blade and hub loads are evaluated by rotor load 
codes representing the complex structural and aero­
dynamic characteristics of the rotor system. The re­
sulting hub loads are then introduced as forcing 
functions to either a detailed finite element model of the 
fuselage or to a ground shake test to estimate the 
fuselage vibration levels. Often this approach leads to 
unreliable prediction of vibratory levels in helicopters. 
By using a simple model of a coupled rotor-fuselage 
system and following an impedance matching tech­
nique, it was shown by Staley and Sciarra[3] that the 
hub loads evaluated from a fixed hub condition cannot 
be applied as direct forcing functions to a fuselage since 
such a procedure does not adequately represent the 
coupled rotor-fuselage system dynamics. The principal 
reason for this inaccuracy is due to the fact that 
fuselage motions cause the hub to translate and rotate 
which in turn modifies the hub loads. As an extension 
of Ref.[3 ] several studies have been performed using 
a simple coupled rotor-fuselage model and impedance 
matching techniques. In Ref. [ 4] it was shown that by 
tuning the fuselage natural frequency to the blade pas­
sage frequency, it is possible to eliminate the hub loads. 
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However Hsu and Peters[5] concluded that such a re­
duction in hub loads does not necessarily mean a re­
duction in the fuselage vibratory response. 
Furthermore. it is shown that the fuselage vibratory 
motion and hub loads are sensitive to the placement of 
the fuselage and blade natural frequencies.This conclu­
sion was obtained using impedance matching tech­
niques in Ref. [5] and [6] , with a simple finite element 
representation of the fuselage in a coupled rotor­
fuselage model in Ref.[?] and with a fully coupled lin­
car rotor-fuselage model in Ref. [8]. These studies 
illustrate the significance of rotor-fuselage coupling in 
the vibration analysis of helicopters. However it is im­
portant to recognize that most of these studies were 
based on linear mathematical models for the coupled 
rotor-fuselage dynamic system. These linear models use 
only flapping motion of the blade and a rigid fuselage 
with a spring restraint between the fuselage and the 
rotor hub. An exception is Ref.[?] where the fuselage 
was modelled as an elastic beam, however the blade 
model was restricted to one having flapping motion only 
and the vibratory loads considered were the.vertical hub 
shears; shears in the hub plane and the hub moments 
were neglected. While these studies represent signif­
icant contribution toward the understanding of the 
mechanism of helicopter vibration, they do not include 
some important effects, such as: lag and torsional de­
formation of the rotor blades, the nonlinear gyroscopic 
and other coupling terms involving the rotor-fuselage 
degrees of freedom, the elastic modes of the fuselage in 
addition to the rigid body modes. Realizing the need 
for a general nonlinear mathematical model, Kunz [9] 
and Venkatesan and Friedmann[lO,ll] have developed 
a nonlinear mathematical model for a coupled rotor­
fuselage dynamic system. Only limited numerical results 
were presented in Rcf.[9] while Refs.[lO,ll] were 
aimed at the study of aeromechanical stability problems 
in a coupled rotor-fuselage system. 

Intimately linked to the problem of vibration predic­
tion is the problem of vibration reduction in helicopters. 
Among the various schemes available for vibration re­
duction [ 1,2] vibration reduction using higher harmonic 
control (1-!1-IC) appears to have considerable promise. 
Vibration reduction using 1-IHC has been demonstrated 
by analytical simulation [12-17] ,wind tunnel tests 
[18-21] and flight tests [22-24]. The analytical studies 
and wind tunnel tests have shown that under a fixed 
hub condition, the use of high frequency blade pitch 
inputs (HHC) reduces hub loads. These studies essen­
tially assume that a reduction of hub shears is equiv­
alent to reducing the vibrations in the flexible fuselage. 
It should be noted that the purpose of the analytical 
and wind tunnel studies was not only to assess the efw 
fectiveness of various control algorithms for HHC but 
also to demonstrate the technical feasibility of the ap­
proach. On the other hand, flight tests have demon­
strated fuselage vibration ( usually acceleration levels 
at the pilot scat) reduction by using 1-IHC inputs to the 
main rotor. In some flight tests it was observed that re~ 
duction of acceleration components at the pilot seat was 
accompanied by increases in hub and blade loads from 
their baseline values. In flight fuselage vibrations are 
caused by a combination of many sources in addition 
to the main rotor, such as tail rotor, transmission, rotor 
fuselage aerodynamic interactions, the engines etc .. 
Ft.;.rthermore fuselage vibration characteristics are sig~ 
nificantly influenced by the complex structural dynamic 
behavior of the flexible fuselage. Therefore vibration 
reduction by 1-IHC in a flight test can be interpreted as 

using the main rotor as an active vibration absorber, 
which cancels vibrations in the fuselage by modifying 
the unsteady aerodynamic, elastic and inertial loads on 
the rotor. Thus a number of fundamental questions 
pertaining to vibration reduction using HHC can be 
posed, such as : 
(!) Is vibration reduction at the hub, using HHC, 
equivalent to vibration reduction at a particular lo­
cation in the fuselage ( pilot seat ) ? 
(2) What is the influence of the fuselage flexibility on 
the vibration reduction schemes ? , 

To provide answers to these questions, one has to 
develop a consistent nonlinear mathematical model for 
the coupled rotor-flexible fuselage dynamic system in 
forward flight. Experience has shown that the deriva­
tion of the mathematical model for the coupled rotor­
fuselage system becomes quite complex and 
algebraically tedious due to the presence of a large 
number of terms representing the dynamic and aero­
dynamic loads. Therefore, the development of a non­
linear mathematical model, representing the coupled 
rotor-fuselage dynamic system, by computer algebra is 
significant because it relegates these tedious tasks to the 
computer. Only a limited number of papers were pub­
lished on computerized symbolic derivation of dynamic 
equations of motion for helicopters. Automatic gener­
ation of these equations, based on an explicit formu­
lation using a special purpose symbolic manipulator 
written in FORTRAN was first done by 
Nagabhushanam ct al. [25]. These equations were 
further refined and combined with numerical tech­
niques to perform acroclastic calculations for hingcless 
rotor blades in forward flight [26]. Another approach 
was to use commercially available symbolic manipu­
lation packages, such as REDUCE or MACSYMA to 
generate the explicit nonlinear equations of motion. The 
methodology of deriving flexible blade equations using 
MACSYMA on a dedicated LISP computer is dis­
cussed in ref. [27]. 

The main objectives of this study are : 
1. To demonstrate the symbolic derivation of the 

nonlinear equations of a coupled rotor-flexible 
fuselage dynamic system in forward flight, using 
a symbolic computing facility. 

2. To determine whether reduction in hub shears 
by 1-IHC is equivalent to reducing the fuselage 
vibration levels at a particular location in the 
fuselage and vice versa. 

3. To determine the influence of the fuselage flexi­
bility and modal characteristics of the fuselage 
[30] on the vibratory response of the coupled 
rotor-fuselage system. 

4. To explore the feasibility of the simultaneous re­
duction of both the hub loads and the fuselage 
accelerations at any location, for example the 
C.G.. This is accomplished by a modified 
scheme for HHC denoted in this paper by the 
expression '" Multiple Higher Harmonic Control 
'" ( MHHC ). 

Coupled Rotor/Fuselage Model 
The first step in studying the vibration problem in 

helicopters is the formulation of the nonlinear differen­
tial equations of motion representing the dynamics of 
the coupled rotor-flexible fuselage system in forward 
flight. Due to the complexity of the problem, certain 
simplifying assumptions have been made in the 
idealization of the rotor-fuselage system, as shown in 
Fig. 1 . In this model, the rotor blades are idealized as 
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rigid blades with three orthogonal root springs repres­
enting the flexibility of the blade in the flap, lag and 
torsion respectively. The fuselage is idealized as a uni­
form beam having bending deformations in the vertical 
and horizontal planes and elastic torsion about the x1 
axis. In addition to the elastic deformations, the 
fuselage has five rigid body degrees of freedom namelly, 
pitch, roll and three translations. The rotor system is 
connected to the flexible beam through a rigid shaft at 
point "D". 

The equations of motion of the.coupled rotor-flexible 
fuselage system are derived using force and moment 
equilibrium conditions. The rotor blade equations are 
obtained by enforcing moment equilibrium at the root 
of the blade; the rigid body equations of motion of the 
fuselage are obtained using force and moment equilib­
rium at the C. G. of the fuselage; and the elastic mode 
equations of the fuselage are formulated using general­
ized force and moment equilibrium in various general~ 
ized modes representing the elastic deformation of the 
fuselage. 

The final equations contain a provision for incorpo­
rating HHC type of pitch inputs. These pitch inputs, in 
the rotating frame, are represented by: 

+ [BsH sin(wHHJ/1 + ¢ 511)] sin 1/1 (I) 

Using this pitch input the influence of HHC on the vi­
bration levels of the coupled rotor-fuselage system in 
forward flight is studied in detail. 

Symbolic Manipulation 
The nonlinear equations of motion representing the 

dynamics of the coupled rotor-fuselage system were de­
rived using a special purpose symbolic computing facil­
ity consisting of a Symbolics 3650 machine equiped 
with the MACSYMA symbolic manipulation program, 
and networked with a SUN 3/280 computer on which 
the numerical computations are carried out. The sym­
bolic manipulation program MACSYMA is used to 
generate the mathematical expressions of the equations 
of motion, in a format suitable for their incorporation 
in the FORTRAN code needed to perform the numer­
ical computations. A brief description of the method­
ology employed in formulating the equations of motion 
using symbolic manipulation together with the basic 
features of such a scheme are provided below. 

The MACSYMA commands that appear in this pa­
per and their detailed description can be found in the 
MACSYMA Reference manual [28] . The various 
steps followed sequentially in the derivation of the 
equations of motion and the associated algebraic ma­
nipulations can be classified as follows: 

I. Definitions 
2. Algebraic manipulations 
3. Conversion to FORTRAN format 
(I) Definitions: Initially, all the system degrees of 

freedom such as blade flap-lag-torsional deformations, 
fuselage rigid body motions and elastic deformations, 
along with their functional dependencies on time (PSI) 
and space (X) variables are defined, by using the 
MACSYMA command "DEPENDS". For example ,the 
expression 

DEPENDS ([U,V,W, ... ],PSI, [U,V,W, ... ],X)$ 

defines that the variables U, V, W, ... depend on the 
nondimensional time (PSI) and the space variable (X) 
along the blade span. 

In the next step, the coordinate transformation ma­
trices between the various rotating and nonrotating, 
deformed and undeformed coordinate systems are de­
fined. For example, the transformation between the hub 
fixed rotating and nonrotating coordinate systems is 
defined by using the command 

T21 :MATRIX ([ COS(PS!), SIN(PSI), 0 ], 

[ -SIN(PSI), COS(PSI), 0 ], 

[0,0,1])$ 

This statement provides the coordinate transformation 
of a vector expressed in the hub fiXed nonrotating sys­
tem "I" to the hub fiXed rotating system "2k": 

{ }2k = [T21] { }I 

It must be pointed out that for the present coupled 
rotor-fuselage vibration analysis, 9 different coordinate 
systems were used. The matrices corresponding to the 
transformations between these coordinate systems are 
all defined in this first stage of the formulation of the 
equations of motion. 

The assignment of the order of magnitude to the 
various quantities was performed using the 
MACSYMA command 

RATWEIGHT ( VAR 1, 11 , VAR2 , I2 , ... )S 

where VAR 1 , VAR2 , ••• represent quantities, such as 
U, V, W, ... and 11 , 12 , ... define the orders of magni­
tude of those quantities. It is important to point out 
that MACSYMA can only handle integer values 
(0,1 ,2,3, ... ) for the order of magnitude. In the present 
formulation, the fuselage motions have been defined to 
be of the order O(e312). This order of magnitude for the 
fuselage motions is proved to be fairly accurate in cap­
turing the essential features of the rotor-fuselage coupl­
ing [29]. To incorporate the definition of O(e312), in the 
present analysis, the orders of magnitude of all the 
quantities are multiplied by a factor of 2, so that in the 
symbolic manipulation program, only integer numbers 
appear as orders of magnitude. Based on these modi­
fied orders of magnitude definitions of the various 
quantities, the implementation of the ordering scheme 

(2) 

which states that terms of order e2 are negligible relative 
to terms of order unity was also modified in the sym­
bolic manipulator program to 

(3) 

which states that terms of order e" are negligible relative 
to terms of order unity. The quantity e is a small non­
dimensional parameter, chosen to define what a "small" 
term is. In the context of this research e is equal to the 
blade slopes in flap and lag, which for the offset hinged 
restrained blade model are equivalent to the flap and 
lag angles of the blade. To systematically eliminate the 
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higher order nonlinear terms the MACSYMA com­
mand 

RATWTLVL: n $ 

is used to set the "rational weight level" to n, which 
causes the terms whose order of magnitude is greater 
than O(e") to be deleted. 

In addition, the position vector R, of a material 
point "p" on the cross-section of the deformed blade and 
the angular velocity vector w are defined as : 

(4) 

and 

(5) 

The first terms on the right hand side of Eqs. (4) and 
(5) represent the contribution of the hub motion. The 
second term in Eq. (5) represents the blade rotation at 
a constant angular speed. The unit vectors in equations 
(4) and (5) are associated with the coordinate systems 
described below. The "I" system is body fixed to the 
fuselage with its origin located at the hub center. The 
unit vector zl always points upward along the rotor 
shaft and ~ 1 and y1 point to the rear and to the pilot's 
right side. The "2" or "2k" system can be defined by 
taking the "I" system and rotating it around the shaft 
axis so that the ~2 axis is rotating with the k-th blade. 
The "3" system is tilted by a constant precone angle P, 
from the "2" system so that the unit vector y3 points in 
the same direction as y2 • The "4" system is fixed in a 
cross section of the rotating blade. Since we are using 
the offset hinged spring restrained approximation for a 
hinge!ess blade, the "4" system is attached to the blade 
so that ~. is along the length of the blade and it coin­
cides with the elastic axis of the hingeless blade. The 
coordinate transformation from "3" to "4" follows the 
sequence of flap-lag-torsion type of blade deformation. 
All these definitions are stored in a MACSYMA pro­
gram module which is executed in batch mode to create 
the environment for the next stage, the algebraic ma­
nipulation, in order to obtain the inertial and aero­
dynamic loads. An additional advantage of this 
modular approach consists of the ability to select any 
ordering scheme and thereby retain nonlinear terms up 
to any desired order. 

(2) Algebraic manipulation: Using the definitions of 
the position vector of a material point and the angular 
velocity vector, the necessary differentiations and the 
associated algebraic, matrix and trigonometric rnanipu~ 
lations are performed symbolically to obtain the ex­
pressions for the velocity and acceleration components 
of the material point. The symbolic differentiation is 
performed by the MACSYMA command 

DIFF(FUNC, VAR, n )S 

which evaluates the nth order derivative expression of 
function FUNC with respect to the variable VAR. 
Based on D' Alembert's principle, the inertial forces per 
unit volume and the inertial moments per unit volume 

about the elastic axis at the location· of the typical 
cross-section of the blade are formulated. Performing 
an integration over the cross-section, the distributed 
inertial loads per unit span of the rotor blade are ob­
tained. In this step the cross-sectional inertia properties 
( IM 02 , '""'' X1 ) are essentially substituted for the ap­
propriate integrals via the MACSYMA command 

RATSUBST (A, B, EXP )$ 

which substitutes A forB in expression EXP. 
Next, using the aerodynamic load expressions (based 

on Greenberg's theory with quasi-steady assumption) 
and the velocity components at various cross-sections 
of the blade, the distributed aerodynamic blade loads 
per unit span are formulated. 

In the load expressions, obtained in this manner by 
MACSYMA, standard mathematical operators, such 
as 

d() d() 

"dY'<iX' 
powers, divisions, matrix forms are displayed in a visu­
ally comprehensive format that is not in a form read­
able by MACSYMA. In order to save the various load 
expressions in a form which is suitable for further ma­
nipulations with MACSYMA, the command "GRIND" 
combined with "WRITEFILE" and "CLOSEFILE" is 
used as shown below. 

WRITEFILE ("FILENAME"); 

GRIND (LOAD!); 

GRIND( LOAD2 )-; 

CLOSEFILE ( ) ; 

The sequence of MACSYMA commands, presented 
above, saves the MACSYMA readable display of load 
expressions, produced by the commands "GRIND", in 
the file FILENAME ( which is automatically created 
by MACSYMA in the LISP machine file system and 
saved as soon as "CLOSEFILE" is reached). 

(3) Conversion to FORTRAN: The various inertia 
and aerodynamic load expressions have to be converted 
to a form suitable for FORTRAN coding. This trans­
lation is performed in two steps. In the first step, the 
differential and trigonometric expressions are substi­
tuted by FORTRAN compatible variable names. Next, 
using the MACSYMA command "FORTRAN" com­
bined with "WRITEFILE" and "CLOSEFILE", the 
load expressions are stored after being converted to 
FORTRAN readable statements. The files containing 
these statements are then transferred to the SUN 3/280 
trough the network and incorporated in the 
FORTRAN 77 code which is used to obtain the nu­
merical results. It is important to note that all the dif­
ferentiations, integrations, coordinate transformations 
and associated algerbraic manipulations are performed 
using the symbolic manipulator, thereby substantially 
reducing the time involved in formulating the equations 
and reducing the potential for human error. 

Method of solution 
The procedure used for calculating the equilibrium 

state and the vibratory loads on the helicopter is based 
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on a harmonic balance technique. In Ref.[31], differ­
ent methods of solving the coupled rotor-fuselage prob­
lem are discussed. Usually, the trim state representing 
the equilibrium condition of the helicopter is solved 
separately from the response problem. When following 
this approach, only the flapping blade degree of free­
dom is considered in evaluating the equilibrium state 
of the helicopter. In this study, the trim state of the 
helicopter and the response solution are obtained in a 
single pass by simultaneously satisfying the trim equi­
librium and the vibratory response of the helicopter for 
all the rotor and fuselage degrees of freedom. This is an 
extension of the method developed for aeromechanical 
stability control problem, in Refs 32 and 33. For the 
sake of clarity a brief description of the method is pro­
vided below. The equations of motion for the coupled 
rotor-flexible fuselage system can be symbolically writen 
as: 

fb(q, q, q, q,; r/1) = 0 (6) 

f~q. q, q, q,; r/1) = 0 (7) 

f0(q, q, q, q1; r/J) = 0 (8) 

f,t(q, q, q, q,; r/1) = 0 (9) 

The vector fb represents the flap,lag and torsional blade 
equations. The vector fr represents the fuselage rigid 
body motion equations. The vector f, represents th"e 
fuselage elastic deformation equations. Finally, f, re­
presents the inflow equation. The trim solution is the 
vector qt , representing the quantities 
A, 8o, e\c! 8\SI CXR, and 4>s . The response solution re­
presented by q , consists of the following : 

( 1 0) 

The vector qb contains the blade degrees of freedom 
{3,, (,, and cJ>. • The vector q, consists of the five 
fuselage degrees of freedom RMX! RMY' RMzl ex, ey. 
The fuselage yaw degree of freedom is not considered in 
the present analysis. The vector q, represents the gen­
eralized displacements ~' of the fuselage elastic modes. 
In forward flight a periodic solution in the form of 
Fourier series is assumed: 

NHb 

qb = qbO + L %nc cos nr/lk + %ns sin nr/lk (11) 
n=l 

NHr 

qr=qro+ LqfnccosnNbr/J+qr05 sinnNbr/J (12) 
n=l 

NHc 

where NHb' NHr' NHe represent the number of har­
monics for the blade, fuselage rigid body and fuselage 
elastic mode response, respectively. 

It is known that only those components of the loads 
that are integer multiples of the rotor passage frequency 
n x Nb will be transmitted to the fuselage through the 
rotor hub. Hence the response of the fuselage rigid 
body and elastic degrees of freedom contains only inte­
ger multiples of Nb per rev harmonics. The vibratory 
response of the fuselage rigid body degrees of freedom 
was evaluated about an equilibrium state. Hence the 
constant pitch and roll attitudes of the fuselage are not 
included in the response expressions and they appear 
only in the trim vector q, . The substitution of 
equations Eqs. (II) - (13) in equations Eqs. (6) - (9) 
combined with the harmonic balance technique yields 
a system of nonlinear coupled algebraic equations. 
Solution of the nonlinear algebraic system is obtained 
using a Newton algorithm. 

The global model of the helicopter response to HHC 
assumes linearity over the entire range of control appli­
cation: 

Z=Zo+T8 

where 8 is the HHC vector, defined as: 

T 
0 = {8oc Oos Occ Ocs Bsc Oss) 

(14) 

( 15) 

The individual components of this vector are the cosine 
and sine components of the collective, lateral and lon­
gitudinal HHC inputs, OoH• OcH• OsH respectively. The 
vibration vector Z is equal to the baseline vibration Z0 
plus the product of the transfer matrix T and the HHC 
vector 0 

From the solution of the response problem , rotor 
hub forces and moments and C.G. accelerations are 
available in three orthogonal directions. Sine and 
cosine components of the 4/rev. harmonics are also 
available. Any combination of these quantities can be 
used as a measure of vibration levels and thus can be 
selected as the objective which is to be minimized. In 
this study the cosine and sine components of the 4/rev. 
hub forces or C.G accelerations in the longitudinal, !at· 
era! and vertical direction are to be minimized. The 
vector of hub vibratory shears Zr is defined as: 

T 
ZF = {FHx4c FHx4s FHy4c FHy4s FHz4c FHz4sl (16) 

The vector of C.G. accelerations ZA is defined as: 

T 
ZA = {Acx4c Acx4s Acy4c Acy4s Acz4c Acz4sl (17) 

Equation (14) is used to estimate the transfer ma­
trix, T. The columns of the matrix are formed by using 
a small HHC input of .005 rad for each component of 
the vector 0 separately (with all the other components 
set to zero) and calculating the resulting change in the 
4/rev components of the hub loads or C.G. acceler­
ations. The HHC input vector is evaluated using the 
relation: 

O=-[Tr1 z0 ( 18) 

If we decide to minimize Zr the matrix will be T AF and 
qe = qeO + L qenc cos nNbr/1 + qens sin nNbr/1 

n=l ' 
(13) HHC vector will be OAr· If we chose to minimize ZA the 

matrix will be T FA and H HC vector will be OrA" The 
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two inputs are generally ditferent and it is our objective 
to study how they vary with respect to the fuselage 
flexibility. It is also important to determine how hub 
shears and moments change when eFA is applied and 
similarly, how C.G. accelerations and hub moments 
change When 8 AF is USed. 

If all 12 components of the 4/rev harmonics of the 
hub shears followed by the 4/rev harmonics of the e.G. 
accelerations are to be simultaneously minimized the 
vibration vector, Z will be defined as: 

(19) 

The HHC input vector 8 will now have 12 components 
and will be defined as: 

(20) 

where {p,q) indicate the two H HC frequencies, wHH 

applied to the pitch input. The transfer matrix T will 
now be of size 12 x 12 and will again be calculated from 
Eq. (14). 

Results and Discussion 
The results presented in this section are for a coupled 

rotor/ fuselage system which has the following degrees 
of freedom: coupled flap-lag-torsional deformation in 
each blade of a four bladed rotor system, five rigid body 
degrees of freedom for the fuselage, and two flexible 
modes for bending in the vertical plane, bending in the 
horizontal plane and torsion along the xl axis, respec­
tively. The final set of equations representing the equi­
librium and response of the coupled rotor-fuselage 
system are nonlinear algebraic equations and the un­
knowns are the harmonic components of the response 
and trim settings of the helicopter. Five harmonics were 
used for the blade response (33 unknowns), one har­
monic was used for the fuselage rigid body respose {I 0 
unknowns), one harmonic for the fuselage elastic re­
sponse (18 unknowns) and five trim variables (5 un­
knowns) were included in the analysis. Thus the total 
number of unknowns in this model is 66. 

The results presented are for an advance ratio of 
fl.= 0.3 The data used is presented in Table I. 

Figures 2 and 3 show the variation of the vibratory 
hub loads .as a function of the fundamental frequency 
of the fuselage in vertical bending. It can be seen from 
these figures that when the fundamental frequency of 
the fuselage is near 1.45/rev or 4/rev the vibratory hub 
loads exhibit either a peak or a dip. It should be pointed 
out that when the fundamental frequency is near 
1.45/rev, the frequency of the second bending mode of 
the fuselage is near 4/rev. Therefore, the response 
characteristics indicate that whenever a fuselage fre­
quency is near 4/rev, a resonance occurs in the response 
of the hub loads. From Fig. 2, it can be seen that while 
the longitudinal and lateral vibratory hub shears exhibit 
a roller-coaster behavior at resonance, the vertical hub 
shear shows a sharp resonance peak only. Similarly the 
hub moments in pitch and roll also exhibit a roller­
coaster behavior (Fig. 3). Such a behaviour in the re­
sponse is consistent with the observations made in Refs. 
[4],[6] and [8]. 

Figure 4 shows the variation of the acceleration of 
the C. G. of the fuselage (point C in Fig. 1'). While the 
longitudinal acceleration shows a roller-coaster behavior 
near resonance, for this case, the vertical acceleration 
exhibits only a resonance peak. From the results 
shown in Figs. 2 through 4, one can conclude that the 

resonant behavior of the response occurs over a very 
narrow range of fuselage frequency. 

Next, the effect of introducing open loop HHC pitch 
variation in collective, lateral cyclic and longitudinal 
cyclic modes is studied, in order to determine the rela­
tive influence of these three control inputs on the vi­
bratory response of the coupled rotor/fuselage system. 
A preliminary check showed that our assumption about 
the linearity of the HHC model is valid in the range of 
0 to 0.005 rad for w 8 v1 = 4/rev at various fixed phases. 
This study is performed for three different configura­
tions where the fuselage bending frequency in the verti­
cal plane has different values, namely: (a) rigid fuselage 
{b) the fundamental frequency of the fuselage in vertical 
bending is w 8 v1 = 4/rev and (c) the fundamental fre­
quency of the fuselage in vertical bending is 
w8 v1 = !/rev . Figures 5 to 7 show the influence of 
collective, lateral cyclic and longitudinal cyclic HHC 
inputs on the vibratory hub shears. The results are ob­
tained by keeping the amplitude of the HHC at .005 
rad, while the phase is varied from o• to 360•. In these 
figures FHXb,FHYb,FHZb refer to the baseline values 
obtained without HHC inputs and are plotted using the 
dotted, broken and solid lines, respectively. Similarly, 
the vibratory hub shears FHX,FHY,FHZ after the ap­
plication of HHC are represented by the same lines 
which are marked with the symbol "x", to distinguish 
them from the baseline case. It can be seen from Fig. 
5 that the phase of the collective HHC input has a large 
influe)lce on the vibratory vertical hub shears when the 
fuselage frequency in the fundamental mode is 
w8 v1 = !/rev or when the fuselage is rigid. However, it 
should be noted that in these cases the collective HHC 
input increases the vibratory hub shears from their 
baseline values. When the fuselage frequency in the 
fundamental mode is w8 v1 = 4/rev, the collective HHC 
input has less influence on the vertical hub shears. 
Furthermore, collective HHC input has a limited effect 
on the hub shears in the longitudinal and lateral di­
rections. 

Figure 6 shows the influence of lateral HHC input 
on the vibratory hub shears. In this case, the lateral 
HHC control input has a large influence on the vertical 
hub shear for all fuselage frequencies considered. It is 
important to note from this figure that the lateral con­
trol input reduces the vibratory hub shears in the verti­
cal direction and this reduction does not depend on the 
fuselage frequencies. When the fuselage is rigid or when 
the fuselage frequency is 1/rev, the vertical hub shear is 
reduced below the baseline value for the range of phase 
angles between 240°-360° . When the fuselage fre­
quency is 4/rev, the phase angle range required for a 
reduction in vertical hub shears is 15o•-3oo•. 

Figure 7 shows th_e influence of longitudinal HHC 
input on the hub shears. The influence of longitudinal 
HHC input on the vibratory loads is more pronounced 
when the fuselage is either rigid or has a fundamental 
frequency of !/rev. Also, for all fuselage frequencies 
considered , the longitudinal HHC input reduces the 
vibratory hub shears. 

The influence of HHC inputs on the fuselage accel­
erations at the C.G. is shown in Figures 8 through 10. 
In these figures ACXb,ACYb,ACZb refer to the 
baseline values obtained without using HHC inputs and 
are plotted using the dotted, broken and solid lines, re­
spectively. Similarly, the vibratory C.G. accelerations 
ACX,ACY,ACZ after applying HHC are represented 
by the same lines which are marked with the symbol 
"x", to distinguish them from the baseline case. Figure 
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8 shows the influence of collective HHC input on the 
C.G. acceleration. It can be seen from this figure that 
when the fuselage is treated as a flexible body, the col­
lective HHC input reduces the vertical C.G acceleration 
from the baseline value. When the fuselage is assumed 
to be a rigid body, collective HHC input increases the 
vertical C. G. acceleration from the baseline value. 

Figure 9 illustrates the influence of lateral HHC in­
put on the e.G. accelerations. It is evident that the 
lateral HHC input is very effective in reducing the 
fuselage C.G. accelerations, for all fuselage frequencies 
considered. A similar observation can be also made for 
the longitudinal control input shown in Fig. 10 

From the results presented in Figs. 5 through 10 , 
one can conclude that the cyclic HHC input is the most 
effective means for reducing the hub shears or C.G. ac­
celerations for all fuselage frequencies considered. The 
influence of the collective HHC input in reducing the 
fuselage C.G. accelerations or hub shears depends on 
the modelling of the fuselage flexibility (or its frequency 
). When the fuselage is treated as a rigid body, collec­
tive HHC input can actually increase the vibratory hub 
shears and C.G. accelerations from their baseline val­
ues. 

Using an open-loop control model, the HHC inputs 
required to minimize the hub shears or C.G. acceler­
ations ·were obtained for various fuselage represent­
ations. Figure II shows the amplitude of the 4/rev hub 
loads when HHC pitch inputs to the blade are aimed 
at minimizing C.G accelerations. When the fuselage is 
treated as a flexible body and the HHC for minimizing 
the C.G. accelerations is applied, the fourth harmonic 
component of the vertical hub shear increases by a 
factor of six from its baseline value. However when the 
fuselage is treated as a rigid body, the vertical hub shear 
is reduced almost to zero. It is also evident from this 
figure that the inplane hub shears are reduced to zero 
when HHC inputs are provided. This result indicates 
that when the fuselage is treated as a flexible structure, 
a minimization of the C.G. acceleration by HHC in­
creases the vertical hub shear. Whereas when the 
fuselage is treated as a rigid body, the HHC inputs re­
quired to reduce the C.G. acceleration will also reduce 
the hub shears. 

Figure 12 shows the amplitude of the 4/rev harmon­
ics of the C.G. acceleration when the HHC input is 
aimed at minimizing hub shears. Again it is evident 
that for a flexible fuselage model, the vertical C.G. ac­
celeration increases by a factor of 3-5 from its the 
baseline value, when an HHC input aimed at minimiz­
ing the hub shears is introduced. On the other hand 
when the fuselage is treated as a rigid body, a reduction 
in hub shears and C.G accelerations occurs simultane­
ously. 

The results shown in Figs. II and 12 indicate that in 
the presence of fuselage flexibility, introduction of HHC 
inputs aimed at reducing hub shears can cause an in­
crease in the vertical C.G acceleration. Similarly, intro­
duction of HHC inputs aimed at reducing accelerations 
at the C.G , causes increases in the vertical hub shears. 
Simultaneous reduction of both C. G. accelerations and 
hub shears was observed only when the fuselage was 
treated as a rigid body. Table 2 shows the HHC pitch 
angles, in the nonrotating frame, required for minimiz­
ing either the hub shears or the fuselage C.G. acceler­
ations for w8 v1 = 4/rev. Figure 13 shows the variation 
of the pitch angle as experienced by the blade, in the 
rotating frame. It can be seen that the maximum HHC 
pitch angle is about -0.8'. However the azimuthal 

vanat1on of the HHC angle experienced by the blade 
has fundamentally different characteristics depending 
on whether the hub shears or the fuselage vibrations are 
being minimized. 

Based on the results presented here, it is evi'dent that 
a single frequency HHC input ( which in this case is 
4/rev) was incapable of producing a simultaneous re­
duction of hub shear and fuselage C.G accelerations 
when the fuselage is treated as a flexible body. 

In order to reduce the hub loads and C.G. acceler­
ations simultaneously, for the case where the fuselage is 
treated as a flexible body, a new scheme of HHC is 
proposed which is denoted by the term " Multiple 
Higher Harmonic Control" ( MHHC ). In this scheme, 
instead of providing a single frequency HHC input (as 
with the conventional HHC ), an HHC input with a 
combination of two frequencies, such as 3/rev and 4/rev 
or 3/rev and 5/rev or 4/rev and 5/rev, is applied to the 
blades in the nonrotating frame. 

Before describing the results for the new M H H C 
scheme for simultaneous reduction of vibratory hub 
loads and C.G. acceleration levels, it is important to 
review the method of formulation and solution of this 
new problem. For conventional HHC input of fre­
quency N,Jrev, superimposed over the trim control in­
puts, for a Nb bladed rotor system, the control pitch 
angle experienced by each blade is the same at any 
given azimuth. Therefore, under the assumption of 
identical blades and no random excitation, the steady 
state response of all the blades is identical with the ap­
propriate phase shift of 

~: (k-1), k = 1,2, ... 

for the k-th blade. Hence, in the formulation of the 
rotor response problem, a set of flap-lag-torsion 
equations for only one blade is used. Such a represen­
tation, denoted herein as "Single Blade Tracking" 
(SBT), is usually employed in the aeroelastic stability 
and response analysis of isolated rotor systems as well 
as in the solution of coupled rotor/fuselage problems. 

By introducing a higher harmonic control input with 
a frequecy other than integer multiples of N,Jrev, the 
individual blades will no longer have the same control 
pitch angle at any given azimuth. In this case, even un­
der the assumption of identical blades and no random 
excitation, the steady state response of the individual 
blades in the rotor system will not be identical. There­
fore, the motion of each blade has to be represented by 
an independent set of equations and their response 
should be tracked individually. This type of treatment 
of the problem is denoted in this paper as "Multi-Blade 
Tracking" (MBT). Under these conditions, all the har­
monics of the rotor loads are transmitted to the fuselage 
, and hence all the harmonics of the vibratory response 
of the fuselage rigid body and elastic degrees of freedom 
have to be included in the analysis. 

For the present problem, the total number of un­
knowns which for the case of single blade tracking is 66 
becomes 253 for multi-blade tracking. In this case five 
harmonics were used for the response of each blade (132 
unknowns), five harmonics were used for the fuselage 
rigid body response (50 unknowns), five harmonics for 
the fuselage elastic response (66 unknowns) and five 
trim variables (5 unknowns) were included in the anal­
ysis. Due to the large increase in the size of the problem, 
an approximate treatment with "SBT" and an exact 
treatment with "MBT" were both investigated, for this 
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new MHHe sceme. Two sets of results are presented 
below: set (!) corresponds to "SBT" and set (2) corre­
sponds to "M BT". 

(I) Single Blade Tracking: To determine the effec­
tiveness of the MHHe scheme, the worst possible case 
of the fuselage configuration (w 8 v1 = 4/rev) is selected, 
where the fuselage vibratory e.G. accelerations and 
hub loads are large. The consequences of applying this 
improved vibration reduction scheme are illustrated in 
Fig. 14. In this figure the amplitudes of the hub shears, 
hub moments and fuselage e.G. accelerations are 
shown for the baseline case (without HHC) and the 
cases with MHHe. It can be seen from this figure that 
by providing MHHe ( a superposition of 3/rev and 
4/rev or 3/rev and 5/rev H.He inputs ),the hub loads ( 
both shears and moments) and e.G. accelerations are 
reduced simultaneously. It is important to recognize 
that while this new MHHe scheme was aimed at the 
reduction of hub shears and e.G. accelerations, the 
results show that in addition to a hub shears and e.G. 
accelerations reduction between 600 % - 1500 % , the 
hub moments are also significantly reduced. These re­
sults clearly indicate that this approach is potentially 
very valuable for practical vibration reduction appli­
cations. 

The MHHe inputs required for the two cases of 
3,4/rev and 3,5/rev, are presented in Table 3. In order 
to assess (a) the feasibility of MHHe and (b) the 
uniqueness or nonuniqucness of the pitch input re~ 
quirement for the hub load and vibration reduction 
scheme, it is important to evaluate the MHHe pitch 
angle experienced by the blade in the rotating frame. 

In figure Fig. I 5 the pitch input in the rotating frame 
is shown for the two cases of MHHe namely the 3,4/rev 
and 3,5/rev combinations, which are both successful in 
reducing the hub loads and fuselage accelerations. From 
this figure it is interesting to note that both 3,4/rev and 
3,5/rev combinations of MHHe provide identical pitch 
angle variations as experienced by the blade in the ro­
tating frame. A fourier analysis of this input indicates 
that the harmonic content of the MHHe in the rotating 
system is predominantly 2/rcv with a 17% content in 
3/rev and a 4% content in 4/rev. This result clearly in­
dicates that there is a unique higher harmonic blade 
pitch input which reduces the hub loads and fuselage 
accelerations and it is independent of the higher har­
monic input frequency introduced in the nonrotating 
frame. Furthermore, it is also important to note t~at 
the maximum pitch angle requirement for MHHe input 
is about 1.5' which can be easily implemented in prac­
tice. It should be mentioned that the 4,5/rev combina­
tion MHHe scheme was not successful in reducing the 
vibrations and loads simultaneously. The reason for 
this failure can be easily understood by recognizing that 
a 4/rev or 5jrev pitch input in the nonrotating frame 
will not produce the required 2/rev pitch variation in 
the rotating frame. However the 2/rev pitch variation 
can be obtained if one of the frequencies of the MHHe 
scheme is 3/rev . 

(2) Multi-Blade Tracking: Using the multi-blade 
tracking treatment, the uncontrolled baseline vibratory 
response was calculated and was found to be equal to 
the baseline response obtained with SBT. In order to 
determine the effect of M BT on the new M M He 
scheme, the MHHe signal ( 3,4/rev combination ) ob­
tained for the SBT case was applied to the rotor system 
and the resulting vibratory response was computed with 
M BT. The results of this study are shown in Fig. 16. It 

can be seen that the peak-to-peak hub shears,momcnts 
and e.G. accelerations are reduced by over 600 % . 

In order to check the validity of the new MHHe 
scheme on a different helicopter configuration, the re­
sponse problem was solved using the set of 
rotor/fuselage data, representative of the MBB 105 hel­
icopter, given in Table 4. 

In this case, the solution was obtained using multi­
blade trncking. The results of the analysis are shown in 
Fig. 17. From these results, it is evident that the vibra .. 
tory hub loads and e.G. accelerations were again dras­
tically reduced from their baseline values, with an 
exception of the rolling hub moment which increased 
by 70 % . The M H He signal for this case is shown in 
Fig. 18, which again indicates the predominance of the 
2/rev content in the rotating frame. 

The physical explanation for the large 2/rev compo­
nent in the higher harmonic input pitch angle variation, 
in the rotating frame, can be explained by analyzing the 
influence of the control pitch input on the aerodynamic 
loads of the blade. The principal term in the blade 
aerodynamic loads for the case of forward flight is pro­
portional to 112 sin2 t/1, 80 ,where 80 represents the total 
sectional blade pitch angle due to the control pitch set­
ting (for trim), the HHe pitch input, elastic twist and 
built in twist. Since sin2tjJ, can be replaced by 
0.5 ( I - cos 21/1,) , it can be seen that a 2/rev pitch 
variation in 00 will directly influence the 4/rev blade 
loads. Using conventional higher harmonic control with 
a 4/rev input, in the nonrotating frame, for a 4 bladed 
rotor, the pitch input variation -in the rotating frame is 
restricted to 3,4 and 5/rev harmonics only. On the 
other hand, using MHHe with 3,4/rev or 3,5/rev com­
bination of control inputs in the nonrotating frame, the 
pitch variation in the rotating frame contains the key 
2/rev harmonic, in addition to other higher harmonics. 
Therefore, the 4/rev blade loads are adjusted by using 
the principal aerodynamic term, 112 sin2 t/1, 00 ,with 
2jrev variation in 00 . 

Concludl!!g Remarks 
The equations of motion representing the dynamics 

of a coupled rotor/flexible fuselage model were derived 
using a symbolic computing facility. These equations 
were used to study the vibratory behaviour of a model 
helicopter so as to develop an improved fundamental 
understanding of this coupled rotor-fuselage system. 
Furthermore, the model was also used to assess the ef­
fectiveness of various HHe pitch inputs for reducing 
vibrations at the hub or at specific locations on the 
flexible fuselage. The most important conclusions ob­
tained in the course of this study are summarized below: 

(!) Use of a symbolic computing facility based on 
MAeSYMA is an effective means for deriving math­
ematical models capable of modeling coupled rotor­
fuselage vibration problems. 

(2) Examination of the characteristics of the vibra­
tory response at the hub and fuselage reveals that when 
the fuselage frequency is near 4/rev ( for a 4 bladed 
rotor) the vertical hub loads and vertical e.G acceler­
ation exhibit a resonance peak. On the other hand, the 
other hub shears, hub moments and C.G accelerations 
in the longitudinal direction show both positive and 
negative peaks which are denoted by the term " roller­
coaster " behaviour. 

(3) For all fuselage frequencies considered, the cyclic 
HHe inputs are the most effective in reducing the hub 
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shears or C.G accelerations. On the other hand, the in­
fluence of collective HHC input in reducing the vibra­
tory response of the vehicle depends on the modfling of 
the fuselage flexibility. 

(4) When the fuselage is treated as a flexible struc­
ture, a minimization of the C.G acceleration by HHC 
results in an increase in vertical hub shear. Similarly, a 
minimization of the hub shears by HHC produces an 
increase in the vertical C.G acceleration. However, 
when the fuselage is treated as a rigid body, a simul­
taneous reduction of both hub shears and C.G acceler­
ations by HHC is observed. 

(5) When the fuselage is treated as a flexible body 
introduction of a single frequency HHC pitch input ( 
or conventional HHC input ) was incapable of produc­
ing a simultaneous reduction of both hub shears and 
fuselage accelerations at the C.G. However when two 
HHC pitch inputs having different frequencies ( 
MHHC ) were introduced, a large simutaneous re­
duction of both hub loads and fuselage e.G acceler­
ations was obtained. It was shown that for this 
simultaneous vibration reduction there is a unique 
higher harmonic pitch angle variation in the rotating 
frame having predominantly 2/rev content, with 15% 
- 17% content in 3/rev and 3% - 5% content in 4/rev. 
The magnitude of this higher harmonic pitch angle is 
of the order of 1 to 2 degrees. 

(6) The MHHC signal obtained by tracking the re­
sponse of a single blade (SBT) is a very good approxi­
mation that can be successfully used to minimize the 
vibratory (peak-to-peak) hub loads and fuselage C.G. 
accelerations. This was shown by applying the signal as 
input to an exact coupled rotor/fuselage representation 
where the response of each blade is individually tracked 
(M BT) and all the harmonics (up to the 5th) for the 
fuselage response are included in the analysis. 

(7) The MHHC scheme for simultaneous reduction 
of hub shears and fuselage C.G. accelerations was 
shown to be successful for two different helicopter con­
figurations, indicating that MHHC has tremendous po­
tential for practical vibration reduction in helicopters. 
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TABLE I 

Data for the full coupled rotor.:fusclagc model with flap~ lag -torsion dy­
namics in free !light condition. 

Characteristic Dimensions 
!2::1" ~ 52 kg 
Q ~ 425 RPM 
R ~ 6.812 m 

Rotor Data 
J! = variable 
R, ~ 0.0 
~b ~ 3.406 m 
1, ~ 804.3 m 2 kg 
J, ~ .241 m2 Kg 
wr, ~ 1.15 
wu ~ 0.57 
WTI ~ 4.5 
PA ~ 1.23 kg/m 3 

Cmo ~ -.02 
Fuscla~ Data 

Mr ~ 8363 kg 
~"" ~ 1.333 m 
Z" 11 ~ 1.3624 m 
~.\lA ~ 1.333 m 
?,A ~ 0.0 m 
len 1248 m2kg 
Tc,.,. ~ 4994 m2kg 

a ~ 5.7 
<;:,0 ~ .0 I 
b ~ .1337 m 
N, ~ 4 
(ir ~ 0 rad 
£, ~ 0.0 
<;:., ~ 0.0 
c, ~ 0.0 
Y ~s 
(J ~ .05 

N-m-sec 
N-m-sec 
N-m-sec 

Cw ~ 0.005 
R"c ~ 1.533 m 
?"c ~ 0.00 m 
f~J.44m2 

TABLE 2 

HHC input:-. to minimize the hub shears or the e.g. accckratinns ( rad ). 

case component 

Collective 
4/rev Lateral 

Longitudinal 

HHC input for min. 
e.g. accelerations 

cosine sine 

0.002 0.006 
-0.004 0.0 
0.002 ·0.008 

ll1.7.3.12 

HHC input for min. 
hub shears 

cosine sine 

·0.014 -0.002 
·0.001 0.001 
0.0 -0.004 



TABLE 3 

MHHC inputs for lo<1d and vibration minimization ( angles in rad ). 

3/rev 4/rev 

case component cosine sine cosine sine 

----
Collective -0.062 0.046 -0.009 0.029 

3/rev, 
4/rev Lateral -0.007 -0.036 0.060 -0.045 
comb. 

Longitudinal -0.021 -0.026 0.045 0.059 

3/rev 5/rev 

case component cosine sine cosine sine 

Collective -0.003 0.001 0.0 0.0 
3/rev, 
5/rev Lateral -0.023 0.005 0.007 -0.014 
comb. 

Longitudinal 0.022 -0.008 0.012 0.009 

TABLE 4 

Data, representative of the MBB 105 helicopter with nap-lag -torsion dy­
namics in free !light condition. 

Characteristic Dimensions 
MB ~ 52 kg 
Q ~ 425 RPM 
R ~ 4.9 m 

Rotor Data 
l ~ 4.165 m 
f.1 = variable 
R, ~ 1.0 
xb ~ 1.764 m 
Yb ~ 224.7 m2 kg 
J, ~ .I 873m2 Kg 
WFI ~ 1.15 
Wu ~ 0.62 
WT! = 3.0 
PA ~ 1.23 kg/m 3 

Cmo ~ -.02 
Fuscla!l"_ Data 

MF ~ 1664 kg 
~MH ~ 0.96 ffi 

~H ~ 1.1437 m 
~MA ~ 0.96 ffi 

;z.MA ~ 0.0 nl 
!c., ~ 1248 m2kg 
Icyy = 4994 m2kg 

c ~ .735 m 
a ~ 5.9 
s;:,, ~ .01 
b ~ .1347 m 
Nb ~ 4 
!!r ~ 0 rad 
G ~ 0.2357 N-m-sec 
~' ~ 14.96 N-m-sec 
C, ~ 29.05 N-m-scc 
Y ~5 
0 ~ .05 

Cw ~ 0.0042 
ZMc ~ 0.96 m 
?Me ~ 0.00 m 
f ~0.79 m2 
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(ol Diode model 

i1, ~· ll - llub Center 

E - Uinge Offset Point 

A - Point Hk on ic-th Blade 

B - Blode Center of Mess 

C - Fuselage Center of Moss 

(b) Coupled rotor-fleulble fuselage model 

Figure 1: Idealization of the coupled rotor -fuselage system 
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