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Abstract 

The rotor blades on any helicopter are usally never 
identical in real life, however, most helicopter aeroe­
lastic stability analyses assume the blades are identi­
cal. There is a need to examine this realistic problem 
of how blade-to-blade dissimilarities modify helicopter 
aeromechanical stability and hub loads. The effects of 
blade-to-blade dissimilarities, such unbalance in blade 
mass, and dissimilarities in blade stiffness and aerody­
namics are examined systematically. The results are 
discussed quantitatively and qualitatively. A study 
on blade dissimilarity is carried out using a finite ele­
ment analysis that includes rotor aerodynamics, elas­
tic blade deformations, and body pitch and roll mo­
tions. Results show that dissimilarity in blades' in­
plane stiffness improves the regressing lag stability, 
but with some increase in rotor side forces harmonics 
and 1/rev torque load. Dissimilarity in flap stiffness 
has little effect on aeromechanical stability and hub 
loads. Dissimilarities in blades' mass and lift do not 
affect aeromechanical stability, but severely increase 
hub loads. 

Introduction 

Recently, Wang and Chopra examined the air reso­
nance behavior of dissimilar rotors in hover [1] and in 
ground resonance [2]. The results surprisingly showed 
that dissimilarity in lag stiffness reduces the common 
hingeless rotors' regressing lag instability. However, at 
the same time, it destabilizes other lag modes. This 
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discovery was similarly observed by Pierre and M ur­
phy in the study of jet engine compressor blades with 
mistuned blade assembly [3]. References [3, 4] showed 
that a slight dissimilarity in compressor blades' tor­
sional frequency helps stabilize the least damped mode 
and at the same time destabilizes the most stable 
mode. The effect is to bring the real part ( decay rate) 
of the eigenvalues of the least stable mode and most 
stable mode closer together. Reference [3] also pointed 
out that at the same time the frequencies of the least 
and most stable modes also become farther apart. It 
was pointed out in Ref. [1] that the "total damping" in 
the system between the isotropic and dissimilar rotor 
seems to be conserved at any given rotor speed. 

In Ref.[5], Weller experimentally investigated the 
effects of when the elastomeric dampers on a 4-bladed 
bearingless rotor have different stiffness in hover. 
Weller's data show an increase in rotor damping when 
the blades have dissimilar damper stiffness. 

In Ref.[6], Hammond examined the effects of when 
one lag damper is inoperative on an articulated rotor 
in hover. The effects of multiple dampers failure was 
examined by present authors in Ref.[2]. The results 
show that when one damper is inoperative, the sta­
bility of the collective lag mode is not affected at all. 
However, the stability of the progressing, regressing 
and differential lag modes are reduced uniformly at 
all rotor speeds. But they are still more stable than 
when no mechanical lag dampers are used. 

McNulty [7] pointed out that when the structural 
stiffnesses are different among rotor blades will in­
troduce additional frequency peaks in the frequency 
spectrum to complicate modal indentification in ex­
periments. This additional frequency peak observa­
tion was also pointed out in the mistuned compressor 
blade study of Ref.[3]. 

1· 

Even though dissimilarity in blades may help re­
duce air resonance instability [1], and also helps re­
duce compressor blade flutter [3], but it may cause 
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large increase in blades' oscillatory amplitude, vibra­
tion level and hub loads. It is unclear whether the 
increased amplitude is localized to the mistuned blade 
only, or it affects the amplitude globally. This ques­
tion can be answered by solving coupled blades/body 
equations via time integration. 

For the dissimilar blades problem, there are two in­
teresting areas worth examining. One is the particular 
solution, which yields the steady state rotor response. 
This gives information on how dissimilar blades affect 
hub loads and vibration level. The other area worth 
examining is the homogeneous solution, which gives 
insights as to how dissimilar blades affect aeromechan­
ical stability. In this paper, both issues will be ad­
dressed. Specifically, the aeromechanical stability of 
hingeless rotors with dissimilar blades will be exam­
ined in forward flight. Due to greater control power, 
less parts count and lower maintenance, future heli­
copters will most likely be equipped with hingeless or 
bearingless rotors. Hingeless and bearingless rotors 
are usually designed as soft-inplane rotors to achieve 
manageable bending stresses on the blades. However, 
soft.-inplane rotors are susceptible to aeromechanical 
instabilities. Thus, there is a need to determine pre­
cisely the aeromechanical stability when there are dis­
similarities in soft-inplane rotors. 

Analysis Formulation 

The elastic blade analysis for examining articulated, 
hingeless, and bearingless rotors with and without 
blade dissimilarities was implemented on the Univer­
ity of Maryland Advanced Rotorcraft Code (UMARC) 
[1, 9]. The analysis is based on a finite element method 
in space and time. The blade is assumed as a slender 
elastic beam undergoing flap bending, lead-lag bend­
ing, elastic twist, and axial extension. This Bernoulli­
Euler beam is allowed small strains, and moderate 
deflections. Due to the moderate deflection assump­
tion, the equations contain nonlinear structure, iner­
tia and aerodynamic terms. Typically, these contain 
at leas_t second order geometric terms. The finite el­
ement derivation is based on Hamilton's principle in 
the weak form. The blade is discretized into a number 
of beam elements. Each element has fifteen degrees of 
freedom. Between elements there is continuity of dis­
placement and slope for flap and lead-lag deflections, . 
and a continuity of displacement for axial displace­
ment and geometric twist. The model assumes a cubic 
variation in flap bending, lag bending, and a quadratic 
variation for twist [8, 9]. Quasi-steady strip theory is 
used to obtain the aerodynamic loads. Noncirculatory 
forces based on thin airfoil theory are also included. 

Blade Response and Vehicle Trim 

In forward flight the blades' response and vehicle 
trim are solved as one coupled system using the mod­
ified Newton method. First, a flap only, rigid blade, 
coupled nonlinear vehicle trim is calcutated to derive 

· the initial trim and control settings for the coupled 
elastic blade/trim problem. These initial values ( 075 , 

01c, (Ji., Otr, a., <Pa) are used to calculate a 6x6 Jaco­
bian matrix that will subsequently be used as slopes 
{derivatives of 3 fuselage forces and 3 moments with 
respect to the above six control and trim settings) to 
update new guesses for control and trim settings to 
help reach a convergence in both blade response and 
vehicle trim. 

In each iteration, blade response is solved via finite 
element in time method. The response is assumed pe­
riodic with a period of one rotor revolution. Each rev­
olution is discretized into a number of time elements 
{usually 6 to 8). At each time gaussian integration 
point, a set of spatial finite element equations is de­
rived for the blade. To reduce computation time, the 
spatial finite element equations are transformed to a 
few equations (typically 3 to 6) in the normal mode do­
main using the coupled rotating natural modes of the 
blade. These spatial equations at all the time gaussian 
locations are then assembled into a first order global 
finite element in time equation. The periodicity of re-

. sponse is imposed by connecting the first and the last 
time element. This first order global equation is then 
solved. 

When all blades are identical, only the response for 
one blade needs to be solved. When the blades are dis­
similar, each blade response must be normalized by its 
own normal modes and solve individually. The blade 
loads for each blade are calculated and summed at the 
hub. The resulting hub loads at the hub are trans­
formed to vehicle's fuselage center-of-gravity. A con­
verged trim solution means the six vehicle equilibrium 
equations (3 forces and 3 moment equations about ve­
hicle cg) must be simultaneously satisfied. Since blade 
response has a faster convergence rate·than the vehicle 
trim, hence, a converged solution in vehicle trim also 
implies convergence in blades' response. 

Stability Solution Technique 

The coupled blade/body stability solution is solved 
by linearize the nonlinear blade equations used in re­
sponse calculation. Body equa'tions that are coupled 
to the blades are now added to form a set pf coupled, 
second order, linearized, homegeneous, perturbation 
equations. The free vibration mode shapes about the 
averaged steady state blade response are used to nor-
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malize the linearized finite element equations. This 
reduces the blade equations to n-modal equations and 
the stability solution will yield the familiar founda­
mental flap, lag and torsional modes. 

The linearized perturbation equations .in matrix 
form becomes: 

frequencies are multi-valued and require additional ef­
forts for determining the actual frequency Ref.[l]. But 
the advantage is it yields the decay rate directly which 
tells whether the modes are stable or unstable. 

For the mistuned compressor blade problem [3], 
perturbation eigen analysis method can be used be-

[-M,...M=-;-:-+-=-~-=1-"\-] { x~ } + [-~=
1
-b:-,-~=

1
-b~--] { x~ } 

. · cause there is no periodic coefficient in the equa­
tions. The aerodynamics involve axial flow similar to 
hover, and the problem assumes no inertia coupling 
between the blades or with the engine mount, thus, 

]{x~}=o 
· the equations are solved in the rotating frame. In 

Ref.[3]; the only dissimilarity among blades (56 blades) 
( 1) is the torsion stiffness. The dissmilarity is modeled 

by adding a perturbation term in the stiffness matrix 

Where q is the vector of blade modal degrees of free­
dom for all the blades, and :r: J is the vector of fuse­
lage degrees of freedom. Mbb, Cbb, Kbb are the blade 
mass, damping and stiffness matrices. They represent 
four identical equations describing the blade motions 
in the rotating frame. MbJ, CbJ, KbJ are the coupled 
blade-fuselage mass, damping and stiffness matrices. 

. MJb, CJb, KJb are the coupled fuselage-blade mass, 
damping and stiffness matrices. M JJ, C JJ, K JJ are 
the fuselage mass, damping and stiffness matrices. 

Even though the equations describing the four 
blades in the rotating frame are same, but the ob­
jective of this paper is to examine the effects when the 
blades are dissimilar, hence, the values for lbm' c(m' 
and w(,,. (m th blade inertia, external lag damping, 
and non-rotating lag frequency) maybe different for 
the blades. 

In forward flight analysis the periodic coefficients 
arise from cyclically varying aerodynamic loads across 
the rotor disk. For dissimilar rotors, additional pe­
riodic coefficients arise from structural dissimilarities. 
Floquet analysis or time integration technique are used 
to solve the periodic system. 

For dissmilar blade analysis, such as the effects of 
when one lag damper is inoperative, very surprisingly, 
the familiar constant coefficient approach used in fixed 
frame fails to yield descent results [2). Constant co­
efficient approach can predict the stable modes quite 
accurately, but it fails to capture the unstable modes, 
rather, it predicted the unstable modes as stable. Even 
when using as many as 80 azimuth locations for aver­
aging, it still fails to capture the instablities. 

The disadvantages of using time integration are: 
time consuming, and the integrated time responses 
require post processing, such as Moving Block analy­
sis, to determine the modal frequencies and dampings. 
But the advantage is the results are more physical and 
it can allow all the nonlinear terms to be kept. The dis­
advantage of Floquet analysis is the calculated modal 

(K = K 0 +oK). . 
When the coupled blade/hub equations are writ­

ten in the above manner (Eq. 1), they can be solved 
directly in the rotating frame using Floquet theory. 
The eigenvalues of the Floquet transition matrix de­
termines the stability of the "system". It is interesting 
to point out that solving the above matrix equations in 
the rotating frame yields identical Floquet eigenvalues 
as if they were transformed to the fixed frame and then 
solved using Floquet theory in the fixed frame. The 
reason is that the rotor and body behave as a coupled 
system, and the stability of the system is independent 
of the reference frame. Therefore, the decay rates of 
the modes are same, except the physical interpretation 
of the mode shapes is different. The modal frequencies 
for the collective and differential lag modes and body 
modes are same whether the problem is solved in the 
rotating or fixed frame. But the modal frequencies for 
the cyclic lag modes will differ between rotating _and 
fixed frame by a factor of plus and minus n/no. By 
knowing whether a progressive or regressive mode is 
expected, the eigenvector provides a guide as to add or 
subtract the imaginary part of the Floquet eigenvalues 
to obtain the true frequency. 

Floquet theory always gives the frequency as a num­
ber less than 0/200 , then multiple of 0/20.o must be 
added to obtain the true frequency [l]. Therefore, the 
rotating frame Floquet frequency will always appear 
same as the fixed frame Floquet frequency. If the in­
terest is purely looking at the decay rate to determine 
the system stability, then computation time can be 
save by simply solving the system via Floquet in the 
rotating frame. Solving it in the rotating frame also 
reduces the numerical error accrued from the extra 
fixed frame transformation. 

To solve the system equations ( 1) via Floquet, eigen 
analysis, or time integration, they must be trans­
formed into first order form, 

Y = A(w) Y (2) 
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For example, for. a 4-bladed rotor if only blade lag 
mode and body pitch and roll modes are used, then 
the state vector Y for the rotating frame system is: 

an arbitrary distribution of element properties along 
the blade; however, for this paper only blades with 
uniform spanwise properties are used. Five elements 
are used for each blade. Structural damping and lead-
lag dampers are not included in the baseline configu­

(3) ration. The fuselage is modeled as a rigid body with 

Where ( 1 is the lag displacement for blade 1, and (2 

is for blade 2. o, and <P, are rigid body pitch and 
roll angles. If the system is transformed to the fixed 
frame, then the state vector Y becomes: 

(4) 

Where ( 0 , (1c, (1,, and (d are the collective, cosine, 
sine, and differential lag components, respectively. If 
blade flap and ~orsion modes are used, the state vector 

will include /3, J and /3, J. 

Time Integration 

The first order linearized perturbation equation in 
rotating frame (Eq. 2) can be integrated in time to 
yield time responses for the blade and body motions. 
Time traces provide more qualitative insights than 
eigen analysis because they reveal what each blade 
and body degree of freedom is doing, and how the os­
cillatory amplitude and phase differ among the blades 
as a function of time. On the other hand, Floquet 
and eigen analyses examine the coupled coupled ro­
tor /body system as a whole, and does not reveal what 
individual blade is doing, nor indicate which blade 
is going unstable. Furthermore, Floquet assumes the 
problem is periodic and average the stability over one 
revolution. Time integration provides helpful under­
standing, especially when there are blade dissimilari­
ties. In this paper, the responses are integrate for 40 
rotor revolutions. Uniform blade chordwise initial dis­
placements are given for all blades. The numerical in­
tegration step size ( ~ t/;) must be selected smaller than 
1r /w, where w is the highest frequency in the problem, 
to prevent alias problem in the time response. 

Baseline Rotor Configuration 

A hypothetical soft-inplane hingeless rotor is cho­
sen for the parametric study. It is a four bladed rotor 
with blade structure and fuselage properties similar to 
the B0-105. The properties used for the analysis are 
given in Tables 1 and 2. The blades are treated as 
cantilever beams with blade root starting at 2% ra­
dius location. The UMARC code accepts blades with 

· pitch and roll degrees of freedom (o,, <P,). For the sta­
bility solution, three coupled rotating normal modes 
are used (first flap, first lag, and first torsion). The 
nominal operating speed for this rotor is chosen to 
be 424 rpm. At this rotor speed, the rotating fun-
damental natural frequencies of the blades are: flap 
frequency = 1.15/rev, lag frequency = .74/rev, and 
torsion frequency = 4.67 /rev, which represent a typi­
cal soft-in plane hingeless rotor. The- total number of 
eigen states from the Floquet analysis is 28. (It is a 
4 bladed rotor system, and each rotor mode yields 8 
states. Since three normal modes are used, this gives 
24 states. Two rigid body modes are used, and each 
mode yields 2 states.) For this study, GT/ O" = .07 is 
used throughout, representing a typical thrust loading. 

Results and Discussion 

In this paper, a parametric study of six different 
rotors is conducted. Figures 1 through 7 present the 
lag mode stability results. The fixed frame lag mode 
dampings are plotted for advance ratio from µ = 0 to 
µ = 0.3. All stability results are presented in terms of 
a decrement ratio: 

DECREMENT RATIO= -r.(j 
Ure/ 

(5) 

The decrement ratio is defined as the real part of the 
complex eigenvalue with a negative sign, and nondi­
mensionalized by the reference rotor speed. A positive 
value of decrement ratio represents a stable condition, 
where as a negative value represents instability. 

Figures 9 through 14 give the harmonics of the fixed 
frame hub loads for the six rotors atµ = 0.2. The axis 
system for the three hub forces and three moments 
are defined in Figure 8. The forces are normalized 
by steady rotor thrust. The moments are normalized 
by steady rotor torque. The 0th harmonic for Fz and 
M z are not shown because they would equal 100%. Fi­
nally, Figures 15 and 16 present the time responses for 
two dissimilar rotors in hover. The traces are gener­
ated by integrating the linearized coupled blades/body 
perturbation equations (Eq. 1) for 40 revolutions. 

Before delving into the stability results, a brief ex­
planation of fixed frame lag modes is offered here. 
Collective, differential, progressing and regressing lag 
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Reduced Blade Lag Stiffness modes are rot.or natural modes in the inplane direction 
as seen by an observer standing on the ground in the 
nonrotating frame of reference. The first dissimilar rotor case represents a rotor 

Progressing lag mode is due to a coupling between where lag stiffness (Elz) is reduced by 10 percent 
the (1e and (

11 
motions. It appears as a forward along the entire span for just one of the blades. The 

whirling of the rotor mass in the same direction as the other three blades have the same lag stiffness as the 
rotor's rotation. This is called a "progressive" forward - baseline configuration. For all the dissimilar rotors 
whirling of the rotor center-of-mass. Using a 4-bladed used in this paper, blade number 2 was arbitrarily se­
rotor as example, this phenomenon is due to one pair lected as the dissimilar blade. By reducing the inplane 
of blades causes a lateral shift in rotor's center-of-mass stiffness ( E lz) of one blade, the regressing lag mode 
due to (1e motion, then the pair of blades located becomes more "stable," in particular at advance ratio 
90 degrees ahead causes a longitudinal shift in rotor's less than 0.1. As shown in Fig. 2, the collective lag 
center-of-mass shift due to (1,. Due to a time delay mode has become less stable. It seems that the en­
between the (

1
e and ( 1• motions, this sequential relay ergy feeding in from the coupled blades/body motion 

action appears to an outside observer as if the center- to destabilize the regressing lag mode has been chan­
of-mass of the entire rotor is whirling forward in the neled partially to other lag mode. As shown in the 
direction of the blade rotation. The rate that the mass eigenvectors of Ref.[1], for dissimilar rotors, regress­
is whirling is the progressing mode natural frequency. ing, progressing, collective, and differential modes be­
The progressive whirling is illustrated in Ref.[2]. come highly coupled. For example, the collective mode 

Regressing lag mode is also due to a coupling of shows almost equal participation from collective lag (o 
the (1e and ( 11 motions. For an articulated or a soft- and reactionless lag (d components. Similar is true for 
inplane hingeless rotor (wcfO less than 1/rev), the re- differential lag mode. Hence, for dissimilar rotors, the 
greasing lag also shows "progressive" forward whirling names collective and differential are more for tagging 
of the center-of-mass, but the whirling rate is at the purpose, rather than describing the modal motions. 
regressing lag mode frequency. For a stiff-inplane hin- Figures 15a through 15c present the time responses 
geless rotor (wcfO greater than 1/rev), the regress- for the reduced inplane stiffness rotor in hover. At 
ing lag mode shows a regressive whirling of the rotor t=O, all four blades are given identical chordwise dis­
center-of-mass opposite to the direction that the rotor placements. Figure 15a shows the initial lag displace­
is spinning. ment is 2° for each blade. The initial flap and torsion 

Figure 1 gives the stability results for the baseline responses at t=O are non-zero because the collective 
hingeless rotor. It shows that the regressing lag mode pitch is at 8.5°, hence a chordwise displacement also 
is the least stable rotor mode. Progressing, collective, introduces flap and pitch displacements. The time re­
and differential lag modes are slightly more stable. sponses are shown for hover to illustrate that the out 
Since structural damping is not included, therefore, of phase oscillations are due to blade dissimilarities, 
all dampings originate from aerodynamics. The damp- and not due to forward flight. Because in hover, if all 
ings reach a minimum atµ= 0.15, and grow steadily the blades are identical, the four blade responses will 
as advance ratio is increased. The point of minimal be identical. 
lag damping corresponds to translational lift condition In the first few rotor revolutions, all four blades 
where minimal power is required to produce constant have similar lag, flap, and torsion traces. But after 
thrust. It is well known that lag damping is propor- three or four revolutions, the dissimilar blade (blade 
tional to collective pitch. To sustain Cr/u = 0.7, 8.5° 2 which has softer inplane stiffness) starts to deviate 
collective pitch is needed at hover; while only 6.5° away from the pack. As shown in Fig. 15a, blade 2 
is needed at µ = 0.15, and almost 9° is needed at has longer oscillatory period because it is softer. The 
µ = 0.3. consequence is to ruin the rotor symmetry and causes 

In Figs. 9 through 14, the hub loads for baseline an inplane excitation to whirl the rotor shaft. Fig­
rotor have only 0th and 4th harmonics. 0th harmon- ure 15a shows after five revolutions, the rotor induced 
ics represent the steady forces and moments required noticeable body pitch and roll oscillations. The body 
to keep the helicopter in trimmed flight. The 4/rev motions grow steadily for about 10 revolutions, and 
harmonics are the vibratory loads due to it is a 4- they reach their peak around 20th revolution. Then, 
bladed rotor in forward flight: each blade encounters body motions start to decay because blade motions 
the same aerodynamic asymmetry in one revolution, are decaying, too. . 
hence 4/rev loads. It is interesting to point out that the softer blade 

(blade 2) undergoes larger lead-lag amplitude as ex­
pected because it is easier to bend. Surprisingly, it is · 
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the adjacent blade (blade number 3) that shows the 
second largest oscillatory amplitude, and not the op­
posing blade (blade 4). Instead, for the first 30 revolu­
tions, blade 4 shows the smallest oscillatory amplitude, 
but after 30 revolutions, blade 1 's motion becomes the 
smallest. 

As time goes on, the phasings between all four 
blades become completely off. The consequence is to 
smear the familiar progressing, regressing, collective, 
and differential modes together. Now all the modes 
contain large ( 0 , ( 1c, (ia, and (d components. This 
helps make all the modes loose their original identity 
and look more like each other. This effect can best 
be seen in the eigenvector diagrams of Ref.[l]. Due to 
this closer resemblence among the modes, their damp­
ing values also become closer together. As shown in 
Fig. 2, the least stable mode becomes more stable, and 
the most stable mode becomes less stable. If the dis­
similarities are severe and random enough, the eigen 
structure of the modes may be destroyed and all four 
fixed frame. lag modes may have almost same decay 
rate. 

Increased Blade Lag Stiffness 

Figure 3 shows the effects of increasing the inplane 
stiffness of one blade by 10%. Near hover condition, 
regressing lag is improved even more than the reduced 
inplane stiffness rotor (Fig. 2). But for advance ratio 
greater than 0.1, the improvements for the two cases 
are comparable. 

The consequence of having one blade softer or stiffer 
in the lag direction may be utilized as an advantage 
from the air resonance stability point of view, be­
cause it allows a sharing of the body excitation energy 
between regressing and other lag modes. However, 
these dissimilar rotors will affect hub loads and vibra­
tions. Hub load results in Figs. 9 through 14 show 
appearence of 2/rev harmonics in rotor drag force and 
side force. Since the amplitudes are less than 1 %, 
hence, they are relatively weak. However, large 1/rev 
harmonic appears in rotor torque, Mz. This is due 
to the dissimilarity in inplane stiffness introduces out 
of phase lead-lag motion among all the blades. This 
causes oscillatory torque load on the main shaft. 

The inplane drag and side forces created are 2nd 
harmonics in nature because it is a 4-bladed rotor. 
When two opposing blades swing toward the same side 
of the rotor disk, rotor's center-of-mass is shifted away 
from the center of the hub. Since 4-bladed rotor has 
two pairs of blades, hence, the sideward center-of-mass 
shift occurs twice per revolution. ( (1c is a lateral shift 
of rotor center-of-mass which results in 2/rev Y force. 

(i, is a fore/aft shift of rotor center-of-mass which 
results in 2/rev H force. [2]) For a 6-bladed rotor, the 
side forces created will be 3rd harmonics. 

Reduced Blade Flap Stiffness 

Figure 4 presents the stability for a case when the 
flap stiffness (Ely) of one blade is reduced by 10%. 
Compared to the baseline results of Fig. 1, there is 
no discernable change in air resonance stability. Anal­
ysis shows that even the lag mode eigenvectors and 
modal frequencies are almost identical to the baseline 
case. Since flap modes damping are very high, so there 
is no need to worry that the flap modes can become 
unstable. 

Figures 9 through 11 show negligible changes in any 
of the hub forces, except minute buildup of 2nd har­
monic forces. However, Figs. 12 through 14 show large 
increase in first harmonic rolling, pitching and torque 
moments. The 1/rev moments are created because the 
single flapwise dissimilar blade tracks differently from 
the other blades. A single blade out of track always 
produce 1/rev vibrations. When the dissimilarity is in 
flapwise stiffness, the blades will flap differently, hence 
a rotor moment change is created. When the dissim­
liarity is in inplane stiffness, the rotor disk will not 
change its tilt, hence there is little change in rolling 
or pitching moment, and the 2nd harmonic side forces 
and torque change are solely inertia effects. Therefore, 
stability changes due to inplane stiffness dissimilarities 
can exist even in vacuum. 

Unbalance Rotor Mass 

The next dissimilar rotor case considered is when 
there is a mass unbalance. The total blades' mass is 
preserved at a constant, but one blade's mass is 10% 
less than the other three blades. The damping results 
for this case (Fig. 5) looks somewhat similar to the 
case when blade 1 's lag stiffness is increased (Fig. 3). 
Both show similar improvement in regressing lag mode 
damping. This is due to reducing blade 2's mass is 
similar to increasing blade 2's inplane stiffness: both 

. will increase blade 2's non-rotating lag frequency. If 
the. time response for these two dissimilar rotors are 
plotted, they probably look very similar: both may 
show blade 2 has shorter period. On the other hand, 
increasing blade 2's mass will probably yield similar 
stability results as reducing blade 2's inplane stiffness. 

Even though unbalanced mass rotor shows im­
proved lag stability, but Figs. 9 through 14 show se­
vere increase in all hub loads. This is expected because 
anytime a spinning rotor is unbalanced, severe 1/rev 
vibration is introduced from whirling of rotor center-
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of-mass. As shown in Figs. 9 through 14, the inplane 
whirling of the unbalance mass rotor causes severe side 
forces; the 1/rev amplitude of H and Y forces are as 
high as 63% of the steady thrust force. Even the 1/rev 
rolling and pitching moments are 35 and 32% of the 
steady rotor torque. 

Figures 16a through 16c show the time responses· · 
for the unbalanced mass rotor in hover. Figure 16a 
shows the initial lag displacement for all blades is 2°. 
Due· to a red~ction in blade mass, the oscillatory pe­
riod for blade 2 is much shorter than other blades. 
The unbalanced mass configuration accentuates the 
coupling between blades and body motions. It only 
took two rotor revolutions for the unbalanced rotor 
to induce body pitch and roll oscillations. After 15 
revolutions, the coupled blade/body responses become 
very chaotic. Even the flap and torsion responses in 
Figs. 16b and 16c show strong, unsteady, out of phase 
oscillations. 

Reduced Blade Lift, Co= Co - 0.1 

The last dissimilar rotor examined is what happens 
when aerodynamic lift of one blade is reduced. Blade 
2's lift is reduced by subtracting 0.1 from its steady 
lift coefficient, C1 = ( Co - 0.1) + C1

0 
o. The conse­

quence is as if the blade pitch link is adjusted inprop­
erly which causes one blade out of track. As we already 
know from the reduced flap stiffness configuration, ro­
tor tracking problem causes severe 1/rev rolling and 
pitching moments (Figs. 12 and 13). Noticeable 1/rev 
harmonic is seen in vertical force Fz. This is simply 
because blade 2 produces less lift than other blades 
per revolution, hence a 1/rev lift variation. The strong 
2/rev harmonics in H and Y side forces and moments 
are similar in nature to the 2/rev forces generated in 
inplane stiffness dissimilar rotor configurations. The 
inplane stiffness dissimilar rotors cause 2nd harmonic 
forces because the rotor center-of-mass shifts twice per 
revolution. In the lift dissimilar rotor configuration, 
the 2nd harmonics are due to two pairs of blades are 
flapping up and down in each revolution (/31c causes 
M9 , and /31, causes Mz). The moments are conse­
quences of flapping, and side forces arise from lead-hg 
induced by flapping through coriolis. 

Conservation of Total Energy Dissipation 

It was mentioned earlier that when the stability of 
one mode is improved, the stability of other modes 
reduces. This conservation effect is best demonstrated 
in Table 3. Table 3 compares the sum of the decrement 
ratios for the baseline and dissimilar rotors at different 

advance ratios. Each number represents the sum of 
decrement ratio from all the lag modes. It can seen 
that at any advance ratio, the sum is almost the same 
among an rotors. 

Conclusion 

The aeromechanical stability and hub loads of five 
dissimilar rotors have been examined. It is observed 
that none of the dissimilar rotors worsen the regress­
ing lag mode stability. On the contrary, some of the 
dissimilar rotor configurations improve lag mode sta­
bility. Specific conclusions that can be drawn from 
this investigation are: 

1. Reducing or increasing the inplane stiffness of one 
blade improves regressing lag mode stability. But 2nd 
harmonic rotor drag and side forces are introduced 
due to rotor center-of-mass shifting twice per revolu­
tion. First harmonic torque load is also introduced. 
2. Reducing the mass of one blade improves regress­
ing lag stability, but increases all hub loads, especially 
I/rev side forces and I/rev pitching and rolling mo­
ments. 
3. Reducing the flap stiffness does not affect aerome­
chanical stability and hub forces, it only increases 
I/rev rolling and pitching moments. 
4. Reducing the lift of one blade does not change 
aeromechanical stability, but increases all hub forces 
and moments. 
5. For 4-bladed rotors, dissimilarities do not change 
4/rev vibratory loads significantly, only 1st, 2nd, and 
3rd harmonic hub loads are introduced. 
6. The amount of "total" energy dissipation, or "to­
tal" damping in the system seems to be conserved. 
For all dissimilar rotor cases, when the stability of one 
mode is improved, the stability of another mode is de­
creased. 
7. For dissimilar rotors, the time responses show all 
blades undergo different flap, lag, and torsional mo­
tions. 
8. When the rotor is dissimilar, a substantial 
amount of coupling is introduced among all lag modes 
(progressing, regressing, collective, and differential 
modes). 
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Table 1: Rotor and Fuselage Data 

Number of blades, Nb 
Rotor radius, R 
Chord/Radius 
Lock number, "'f 

Solidity ratio, u 
Nominal rotor speed, Ore/ 
Blade flap and lag inertia, h 
Blade reference mass, mo 
Airfoil, 
Lift Coef., c, 
Drag Coef., Cd 
Pitching moment, Cm 
Blade linear twist, 8Tw 
Blade elastic axis 
Blade CG location 
Precone, /3p 

Rotor shaft height, h/ R 
Fuselage mass, g:;,R 
Fuselage pitch inertia, ~R mo 
Fuselage roll inertia, I;R3 mn 

4 
16.16 ft 
.055 
5.2 
.07 
424 rpm 
161.9 slug-ft2 
0.1149 slug/ft 
NACA0012 
6.0a 
.006 + .2 a 2 

0.0 
oo 
25 % 
25 % 
oo 

0.2 
77.24 

7.43 

2.73 

Table 2: Baseline Soft-Inplane Hingeless 
Blade Properties 

Element Flapwioe Chordwiae Touion Radiu, of Length 
Gyraiion 

Ely E]z GJ km t 
mnn2R4 mnn2R4 mnn2R4 R R 

1 - 4 .01080 .02680 .00615 .029 .20 
5 .01080 .02680 .00615 .029 .18 

. Table 3: Sum of the Decrement Ratio 
Reduced lncreaaed Reduced 
blade 2 blade 2 Blade 2 Reduced 

JJ Baoeline lag lag flap Mau blade 2 
rotor atiffneu atiffneu 1niffneu unbalance lifl 

o.o .0274 .0271 .0277 .0279 .0268 .0289 
0.1 .0110 .0169 .0173 . 0174 .0166 .0179 
0.2 .0168 .0166 .0171 .0172 .0165 .0177 
0.3 .0292 .0288 .0291 .0291 .0279 .0293 
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Figure 2 Reduced one blade's lag stiffness by 10%. 
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Figure 3 Increased one blade's lag stiffness by 10%. Figure 4 Reduced one blade's flap stiffness by 10%. 
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Figure 5 Reduced one blade's mass by 10%. 
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Figure 7 Comparing regressing lag modes' stability. 
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Figure 8 Rotor hub loads In nonrotatlng frame: H = drag force, 
Y = aide force, Fz = vertlclll force, Mx = rolling moment, 
My = pitching moment,_ Mz = torque. 
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