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ABSTRACT 

The aeroelastic stability of helicopter rotors in hovering flight is investigated by a coupled set of generalized 
dynamic wake equations and hybrid equations of motion for an elastic blade cantilevered in bending and having a 
torsional root spring to model pitch-link flexibility. The inflow states are governed by a system of first-order, ordi
nary differential equations in time, with the pressure distribution at the rotor disk expressed as a summation of the 
discrete loading on each blade, accounting simultaneously for a finite number of blades and overall rotor effects. 
The blade equations are simplified by the assumption of uniform blade mass and stiffness; and then they are re
duced to nonlinear differential equations by Galerkin's method. The coupled model establishes nonlinear algebraic 
equations for the equilibrium/steady-state problem, and a standard eigenanalysis for the stability of small motions 
about the equilibrium condition. The model has been applied to a two-bladed, untwisted, stiff inplane hingeless 
small scale rotor with torsionally soft blades, including a blade root offset, and hub designed to permit variation in 
precone, blade droop, pitch control stiffness, and blade pitch angle. Overall results from this research, reinforce 
qualitative and quantitative shortcomings associated with quasi-steady two-dimensional aerodynamic theory for 
aeroelastic applications in hover, and set the present finite-state methodology as a suitable tool to handle helicopter 
integrated dynamics. This is chiefly due to elimination of time-marching and moving block analyses inherent to 
previous approaches to the same problem, implying in substantial savings in computer memory and time, with no 
essential loss of accuracy. This more efficient strategy opens the way for efficient optimization of rotor blades with 
treatment of aeroelastic stability. 

Nomenclature 

induced flow expansion coefficients in the rotating frame, nondimensional 
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1, Introduction 

The physical behavior of helicopter rotor blades has been investigated for many years. At this time, it is well 
known that a continuous pumping of a substantial mass of air (inflow) through the rotor disk (due to the existence of a 
shed wake below the helicopter rotor) implies that its aerodynamic field, in hovering or forward flight, is very different 
and much more complicated than its fixed-wing counterpart. A suitable wake model is necessary not only for perfor
mance predictions (which, in general, rely on average values of the wake geometry corresponding to a given configura
tion and operating condition) but also for any study involving rotor dynamics, as is the case in aeroelastic analysis. The 
advent of hingeless rotors with very flexible blades has made even stronger the already inherent coupling of the aero
dynamic and structural dynamic loads acting upon helicopter rotor blades. Coexisting in a strongly flucruating aerody
namic environment, the elastic deformations conuibute to changes in both the aerodynamic and structural loads acting 
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Figure 1. Aeroelastic Environment of the Helicopter Rotor. 

on the blades, characterizing an aeroelastic phe
nomenon. The aeroelastic environment of the 
helicopter rotor can be modeled as shown in the 
flow-chart in Figure 1. At least three basic tech-
nology modules must be coupled within an 
aeroelastic analysis of the helicopter rotor [1]: 1) 
a structure dynamic model, 2) a induced flow 
model, and 3) an airloads model. The double 
feedback loop emphasizes the important cou
pling between dynamic inflow and rotor dynam
ics through the predicted airloads, that beeome 
the forcing functions for both the structure and 
the induced flow. 

Classically, the aeroelastic problem of ro
tor blades in hovering flight has been ap
proached in two distinct ways: 1) analyses pre
senting either a relatively sophisticated structural 
dynamic model combined with simple, quasi-
steady, two-dimensional aerodynamic theory, or, 
2) analyses with an elaborate free-wake ap

proach in connection with a simple rigid blade structural model. Neither approach leads to consistent insight into the 
complex aeroelastic phenomenon described before. With respect to the induced flow model, it has been treated with a 
two-dimensional, quasi-steady aerodynamics, including a uniform induced flow disuibution [2,3]. That modeling lacks 
some physical information, such as three-dimensional tip relief and unsteady wake vortex alignment, which are very 
important in predicting aerodynamic damping. A much more realistic approach would involve three-dimensional, un
steady aerodynamics, for which global effects and time-history of circulation would be taken into account 

More recently, research work has auempted to bridge the critical gap between structural and aerodynamic opera
tors used in aeroelastic applications such as those in References [2,3]. In References [4,5], a panel code is formulated 
and coupled, respectively, with the nonlinear blade models of References [2] and [3] (both based on the original 
Hodges and Dowell equations [6]). This panel model is based on a piecewise constant distribution of source and dou
blets, with a prescribed tip-vortex geometry and calculated inner wake. Results showed the importance of tree-dimen
sional and unsteady effects in the prediction of lead-lag damping. Due to the nature of the aerodynamic model used, 
where the aerodynamic forces and moments arc expressed as complex nonlinear implicit functions of the blade deflec
tions and motion, in the perturbation analysis the resulting generalized forces can not be linearized explicitly, excluding 
an ordinary eigenvalue analysis. A Fourier analysis associated with a moving block technique is employed to obtain 
damping and frequency of the most lightly damping mode, which has the frequency near the fundamental lead-lag 
bending frequency of the rotating blade. The fact that a standard eigenanalysis is out of the question (meaning that only 
the damping and frequency of the most lightly damped mode can be obtained) and that excessive computer memory 
requirements are inevitable to accomplish convergence (since small time steps and many wake layers underneath the 
rotor must be suitably established) imposes innate limitations to the use of this method in aeroelastic stability investiga
tions. 

Under the present approach the generalized dynamic wake model developed by Peters and He [7 ,8] is coupled 
with Hodges nonlinear blade model [3]. This blend is done in a way such the aerodynamic forces and moments in the 
blade equations, as well as the pressure coefficients in the generalized dynamic inflow equations, are obtained as ex
plicit nonlinear functions of the blade deformation and generalized dynamic inflow state variables, leading to a stan
dard eigenanalysis. Consequently, reliable and computationally efficient results are expected, which would validate the 
generalized dynamic wake methodology as an appropriate alternative to use in rotor design and optimization. 

2. Generalized Dynamic Wake Equations in the Rotating System 

The generalized dynamic wake equations formulated by Peters and He [7,8] are derived from the basic potential 
flow conservation laws, where the spatial variation of pressure across the rotor is related to the variation of velocity at 
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the disk (i.e., to the fluid flow momentum flux) and to the acceleration of the fluid flow through linear matrix opera
tors. Particularized for hovering flight and written in the rotating system, they are given as 

Amo 
{ r, } 

+ =1. (!) 
2 

Am• 
{ r. } 

Such a set of first-order differential equations is based on a nondimensional induced flow distribution at the rotor 
disk expanded in a entire set of harmonic and radial shape functions, including undetermined time dependent coeffi
cients as aerodynamic states: 

I (i-,lif, t) = L ¢: (r) [ 0: (t) cos(m lifl + b: (t) sin(m lf)] 
m,• 

This induced flow representation not only offers a complete description of the flow, which is suitable to incorporate 
three-dimensional effects, but also handles higher harmonic dynamics, by the truncation at any harmonic of interest 

Within the first and second terms on the LHS of Equation (l) one observes, respectively, the "apparent mass" and 
"quasi-steady" operators. The former is obtained in closed form and includes diagonal matrices as elements, and the 
latter has a very simple form for hovering flight, carrying symmetric and diagonal matrices as elements. In Equation 
(!).for the cosine part m assumes values 0, l, 2, ... while for the sine part m has values I, 2, 3, ... The pressure distribu
tion at the rotor disk, as seen on the RHS of Equation (!),is modeled as a summation of the discrete loading on each 
blade, accounting simultaneously for a finite number of blades and overall rotor effects. For instance, the cosine part of 
the wake forcing functions has the form: 

"'me Q [ 1 m ,..., L ] ~ 
r. =~ L J rp. (I')Jo(mb) ~ 

3 
& cos/,mVfq) 

q•t o p..D.R 
(2) 

Ls is the total wake-generating circulatory lift at the blade section [1,6-8] which can be evaluated from a lift theory, 
and p_ is the air density (kg 1m3). The J0 term arises from matching the present inflow model with Theodorsen's lift 
theory [1,9]. This is accomplished when a particular chord wise pressure distribution, which results in no induced flow 
on the airfoil due to bound vorticity, is applied with the inflow distribution defined in Peters' and He's model [7,8]. As 
discussed in Reference [1], when one deals with slender (high aspect-ratio) blades, it is reasonable to set J, to unity. 
This is equivalent to a lifting-line approximation for the lift and induced drag, with the inflow computed on the lifting
line. As a consequence, the nondimensional pressure expansion coefficients at the RHS of Equation (!) have their 
expressions simplified considerably. The present research is based on the above assumptions. 

3, The Hingeless Rotor Blade Model and Blade Equations of Motion 

Blade Configuration 

The blade configuration adopted in this research is shown in Figure 2. The parameters of interest in this study are 
precone, f3P" the inclination of the pitch change bearing with respect to the plane of rotation (positive upwards); 
droop, f3d, the inclination (positive downwards at zero pitch angle) of the blade segment outboard of the pitch change 
bearing; and blade root offset, e" the distance between the center of rotation and the root of the blade. The blade is 
cantilevered in bending, and the kinematics of the pitch-link connection between the outboard segment of the blade 
and the swashplate control system is modeled by a torsional root spring. The blade bending deflections v and w are 
defined parallel to and fixed to the sectional principal axes at the root end of the blade (along y and z axes), as shown in 
Figure 3. This means that the lead-lag (v) and flap (w) are inplane and out-of-plane displacements only at zero thrust 
condition, because they direction is established chord wise after the rigid body rotations, including collective pitch at 
the root (80) and the pitch due to root spring deformation (<P(I)), arc taken. The axial deflection u and the blade elastic 
torsion deformation rp are also sketched in Figure 3. 

Blade Equations of Motion 

The rotor is treated in isolation; no couplings with helicopter body degrees of freedom are accounted for. The 
blade equations of motion are derived from Hamilton's Principle. The cross section structural and inertial properties are 
assumed doubly symmetric with respect to the blade cross section principal axes and no strain energy from restrained 
torsional warping is considered. Furthermore, in this research, mass axis, tension axis, and aerodynamic center offsets 
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Figure 2. Rotor Blade Configuration. 

from the elastic axis are all zero. The structural and inertial 
operators are taken from References [6] and [3], respec
tively. 

The aerodynamic operator is based on thin airfoil the
ory, in a way such that it allows a time domain analysis, 
with a three-dimensional wake-induced flow governed by 
the generalized dynamic inflow model presented in Equation 
(!), according to the development presented in Reference 
[9]. The airfoil lift curve slope and profile drag coefficient 
are assumed constants. The blade section is pivoted at an 
axis at its quarter-chord point (i.e., the x' axis normal toy' 
and z' axes in Figures 4 and 5; it coincides with the blade 
elastic axis intersection at the airfoil and is also the airfoil 
aerodynamic center in the context of thin airfoil theory). 
The deformed blade section is pitching at an angular speed i: 
about x' axis, as shown in those figures. From Figure 4 it 
can be seen that the airfoil velocity components along the 
principal axes y' and z' (through the shear center of the 
section) are Ur f and Up j(. a is the instantaneous angle of 
attack of the blade section and it is defined as the angle 

between the chordline and the resultant velocity at the cross section, :U ~ Ur f + Up )(. Also, the lift per unit of 
length (circulatory, Lc, and noncirculatory, LNc) and pitching moment per unit of length (circulatory and noncircula
tory) are expressed in terms of Ur. Up and i:. Since U7, Up and i: can be expressed in terms of the blade .elastic dis
placements, v, w, and¢, the root pitch <P, and the inflow expansion coefficients.:,. and b~, the generalized aerodynamic 
forces and moments, L., L, Lw, M 1/! and the integral over the blade length of the moment due to the root spring, M "'' 
are expressed in terms of blade displacements 
and inflow expansion coefficients as well. 

In the derivation of the blade equations a 
ordering scheme is employed, based on a small 
parameter of the order of magnitude of the 
bending slopes. Resulting equations are sim
plified by integration of the variational equa
tion for the blade radial displacement to obtain 
the blade tension and by an expression of ten
sion and radial displacements in terms of re
maining blade displacements and torsional root 
spring deformation. In summary, a set of non
linear hybrid equations of motion, consisting of 
one integra-partial differential equation for the 

blade elastic 

Figure 3. Orientation of Elastic Blade Displacements. 

root pitch, and three integra-partial differential equations each for flapwise and chordwise bending and elastic torsion, 
is obtained. 

Concerning the airloads-inflow coupling, three points should be commented: I) under the assumptions of the thin 
airfoil theory (U = U _),and up to the second order, the wake-generating circulatory lift is taken as the circulatory part 

u 

Figure 4. Unsteady Motion of the Blade Section. 

of Lw in this research (rigorously, one should take the circu
latory lift normal to the rotor disk, along the induced flow 
direction, for all operational conditions; 2) a lifting-line ap
proximation is taken by setting J0 to unity in the nondimen
sional pressure expansion coefficients (Equations (!) and 
(2)) implies that effects of bound vorticity on the inflow are 
not eliminated [I]; and 3) under thin airfoil theory, the lift
ing line is placed at the blade quarter-chord, which, typi
cally, has a constant azimuthal coordinate for a re.ctangular 
blade. Since V/,, the azimuthal position of the q-th blade, is 
defined at the blade midchord for the compatibilization with 
Theodorsen's lift theory [1,9], it would, rigorously, be a 
function of the radial coordinate, r. However, numerical re

sults from Reference [1] show that this skewing (yawing) has a negligible effect on the inflow computation. 

4. Coupling Inflow and Blade Equations of Motion -Solution Apmoach 

The first step towards solution is to simplify the blade nonlinear hybrid equations by the assumption of uniform 
mass and stiffness, and to obtain nonlinear ordinary differential equations in time by applying Galerkin's method. 
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Before applying Galerkin's method, the blade nondimensional displacements in lead-lag, flap (both nondimensional on 
(R- e1)), and torsion are expanded, respectively, as 

N - N - N -v ; I [vo, +LlV, (1 l] lfi (x); w = I [Woi +LlW, (1 )] 'I'; (X); "' ; I [ <4l• + .14''<(1 l ]a, (x) 
j,.l i==l 

Each expansion assumes small unsteady perturbation about 
steady equilibrium condition; the variables with "zero" in
dexes are equilibrium generalized coordinates, and the ones 
with "delta" are perturbation coordinates. Modified orthogo
nal Duncan polynomials are taken as mode shapes ('f', (x) 
for lead-lag and flap bending and a, (x) for torsion). 

The pitch angle due to the root spring is expanded 

about the equilibrium condition as cP =<Po + .1 cP (1), with 
no dependence on the blade span wise coordinate. Also, the 
inflow expansion coefficients are split into steady-state and 
perturbation pans as 

m- _m ,..,..m-
a, (1) =a, +a, (1) and 

m- _m ~m-

b. (1) =b. + b. (1) 

Modal Equilibrium Equations 

i"" 1 

u 

Figure 5. Orientation of Aerodynamic Loads. 

The steady-state part of the inflow equations can be expressed in the following short-hand notation 

y 

Since at steady-state the "antisymmetric" part of the pressure (the "sine taus") are zero, the second "row" can be solved 
for the b ·s as 

_/71. -1 -1 T _m 
(b.}=-[V,] [B,] [K] (a.) form=O,Q,2Q,3Q, ... 

Then, substituting back in the first "row", a system of S nonlinear algebraic equations is obtained (Sis the number of 
inflow steady-state expansion coefficients taken), that can be represented in the following form 

_m _m _m 
a, =a, (Voj,Woj,<Poj,<Po,a.) 

As observed in the above representation, the a's are nonlinear related to all blade equilibrium generalized coordinates, 
and to the a's themselves. This is a consequence of the use of the nonlinear version of the inflow equations [10], which 
defines the momentum theory flow parameters as function of the steady, uniform inflow as 

o .ro _o v, =Vr = !3 a,; 
m _o 

V, = 2Vr = 2 f3 a, , (n,m) * (1,0) 

Also, the steady-state lift, within the "cosine taus" involves nonlinear relation between flap and lead-lag. 

In the blade equations, by substituting only the equilibrium and steady-state quantities and dropping out all time 
derivative terms, a set of (3N +I) nonlinear equations for (SV0,, 8W0,, ocP0,, and o<Po) is established. 

Collecting altogether blade and inflow steady-state equations, a set of ((3N +I)+ S) nonlinear algebraic equa
tions in terms of the equilibrium parts of the blade generalized coordinates and the inflow steady-state expansion coef
ficients a's is obtained. 

Eigenproblem for the Perturbation Variables 

The perturbation equations are obtained by substituting the equilibrium (steady-state) and perturbation quantities, 
subtracting off the equilibrium (steady-state) equations, and discarding all nonlinear products of dynamic perturbation 
quantities. The coupled linearized perturbation equations can be set into a state-variable form as shown in Equation (3). 
In Equation (3), the second "row" comes from the blade perturbation equations and the third "row" is from the 
unsteady inflow perturbation equations. At the RHS of the equation one can observe the stability matrix; its elements 
are constant partitioned coefficient matrices which depend on the solution of the equilibrium/steady-state equations. 
(these matrices are defined in Reference [9]) .The column vector (LlZ} contains the perturbation modal generalized 
coordinates from all blades. They are coupled through the inf1ow pressure functions (Equation (2)), that involve 
summations over all blades. The stability of small motions about the equilibrium operating condition is determined by 
the eigenvalues of the stability matrix. It is interesting to observe that by removing last "row" and "column" of 
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* 
[LIZ) 0 I 0 [LIZ) 

-1 -1 -1 

(LIZ ) -[in] [ .lt] -[in] [ 0:] -[in] [«] (LIZ ) 
= (3) 

{;] -1 -1 -1 {;] -[am] [ @i>] -[am] [ l!Tin] -[am] [ qu] 

Equation (3), one basically recovers the same stability problem obtained by Hodges and Ormiston in the 70's [3,2) un
der a quasi-steady aerodynamic model. 

Eigenproblem Solution Approach 

To solve for the eigenproblem, a "harmonic-assumed approach" is adopted [9), Under this solution scheme, one 
takes advantage of multiblade coordinate transformation, and the equations of motion are written for a reference blade, 
with the blade modes of vibration (collective, differential, cyclic) assumed beforehand, by keeping selected harmonic 
numbers in the inflow expansion. This means that the effects of all blades are accounted automatically as the selected 
hannonic numbers in the inflow expansion are varied. 

Taking, for example, a 2-bladed rotor, to obtain the dynamics associated with the collective mode, "even only" 
harmonic numbers are selected within the inflow expansion (pin the following expressions is any integer), 

{ } J
T 

~/'11 2p ....,2p 

~~ = l {···fa. l···}, { ... [b. l···} 
b. 

and the vector of blade states takes the form 

T 

( n} = lLlVj1+LlVp, LlWj1+LlWp, Ll<Pj1+Ll<Piz, Ll<P1+Ll<Pzj, . 
LJ..L., J=l,2,3, ... ,N 

2 2 2 2 

Similarly, to obtain the dynamics of the differential (cyclic) mode, one assumes "odd only" harmonic numbers, 

{ } 

T 
~M 2p+l ...,.2p+1 ~~ = l { ... [a. } .. } , { ... {b n ). •• } J 
b. 

and the corresponding vector of blade states takes the form 

T 

{ n} = lLlVj1- LlVfz, LlWj1- L\Wp, Ll<Pj1- Ll<Pp, Ll<P1 • Ll<Pzj = j= 1,2,3, ... ,N 
2 2 2 2 

For a Q-bladed rotor, under the same solution method, the harmonic number varies as 

collective mode: m = 0, Q, 2Q, 3Q, ... 

differential mode: m =Q , Q + Q, Q + 2Q, ... Q + pQ, ... 
2 2 2 2 

(Q even) 

cyclic mode: m = p, Q ±p, 2Q ±p, 3Q ±p, ... 

5. Results and Discussion 

The rotor configuration and operational conditions for which the results are obtained in this research come from 
Sharpe's experimental investigations [II] (a two-bladed, untwisted, stiff inplane, torsionally soft hingeless model rotor, 
including a blade root offset, tested at a nominal angular speed of 1,000 rpm). The hub was designed to allow variation 
in precone, blade droop, pitch control stiffness and blade pitch angle. Results from the present approach are denoted by 
GDWM (Generalized Dynamic Wake Model) in the following plots. Values assumed for the harmonic numbers (m) 
are shown in the legends, where "(E)" means that "even only" harmonic numbers are taken, and "(0)" means that "odd 
only" harmonic numbers are taken within the inflow expansion. In order to investigate the convergence of the present 
metl1odology, the total number of spatial modes (inflow states) in the inflow expansion is chosen as 15, 45, 66, and 91. 
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Such a selection comes from a mathematically consistent hierarchy presented in Reference [8]. Following this hierar
chy and according to solution approach adopted herein, for the steady-state (equilibrium) investigation, "even only" 
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harmonic numbers are taken leading, respectively, to 6, 15, 21, 
and 28 expansion coefficients (S); for the dynamics analysis, the 
collective rotor mode needs "even only" harmonic numbers, lead
ing to S equal to 9, 25, 36 and 49, respectively, and the differential 
rotor mode needs "odd only" harmonic numbers, leading to S 
equal to 6, 20, 30, and 42, respectively. All results include 5 mode 
shapes for each of elastic torsion, flap bending, and lead-lag bend
ing deflections. Also, the aerodynamic loads to be presented in 
this section have been normalized by twice the product of the dy
namic pressure at the blade tip and the blade length. 

It is important to mention that all the theoretical approaches 
compared herein have the same structural and inertial models 
(from References [6] and [3], respectively), so the differences are 
basically due to the differences in the aerodynamics (that is, in the 
induced flow and or airloads models). 

Steady-Sk1te and Equilibrium Results 

For !his part of the investigation current approach results are 
correlated with those from the two-dimensional uniform momen
tum aerodynamics. 

Figure 6. Span wise Steady-State Inflow 
8o = 8°; soft pitch flexure, {Jpc = [3, = 0° 

Figure 6 shows predictions for the span wise distribution of 
steady-state inflow for the blade at go of collective pitch angle 
( 80). The uniform momentum theory takes the inflow at tl1e 3/4 

blade span. It predicts too large induced flow at !he root sections and too small values at the tip sections. The present 
approach shows nonuniform inflow distributions, and as the number of expansion coefficients increases, the inflow 
begins to climb near !he blade tip, meaning tl1at !hey are converging to the Prandtl "exact" tip correction. This charac
teristic is responsible for !he partial capture of !he tip relief on bolh steady-state induced drag and lift to be shown. On 
the olher hand, since this finite-state inflow model is based on a cylindrical, undistorted wake, no upwash due tip-vor
tex is captured, what would happen if prescribed or free-wake models were used. Since in this case botl1 tl>eories have 
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Figure 7. Spanwise Distributions of Steady-State Aerodynamic Loads 
soft pitch flexure, f3pc = f3d = 0°; Bo = 8°; (a) INDUCED DRAG; (b) LIFT 

also the exactly same airloads model, !he differences in the inflow distributions are !he sole responsible for the differ
ences in the predictions of steady-state loads and blade equilibrium deflections. 

Figure 7 (a) presents correlations for spanwise nondimensional steady-state induced drag for 80 = 8°. Very differ
ent predictions are observed from the two models. The present approach captures !he lhree-dimensional tip relief effect 
as the number of expansion coefficients increases, shown a maximum drag at 92% of the blade span, with sharpe de
creasing towards !he blade tip. Regarding the two-dimensional momentum approach, too much induced drag is ob
tained at bolh blade tip and root sections, which is responsible for large sectional bending moments, leading to higher 
lead-lag equilibrium deflections, specially near !he blade tip, as shown ahead. Correlations for steady-state lift distribu-
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tions are presented in Figure 7 (b). Here the two-dimensional momentum results show too small lift at the root and too 
much lift at the blade tip. Mode shapes for the fmite-state inflow approach are qualitatively similar to the ones shown 
for the induced drag, with more evident three-dimensional tip relief at the blade tip section, though. 

Figure 8 (a) shows correlations for lead-lag deflections at the blade tip as function of the collective pitch angle for 
rotor configurations with no precone or droop and soft pitch flexures. At zero thrust the blade is lagging in the rotor 
disk plane due to the profile drag. As the thrust gets higher, the blades assume positive chordwise displacements. Since 
the profile drag is the same in both approaches, the differences observed at high thrust levels are due to differences in 
the induced drag commented before. Similarly, considerable differences are observed in the flap equilibrium 
deflections at the blade tip, in almost all range of collective pitch (Figure 8 (b)). They are due to the differences in the 
lift distributions from the two approaches. 
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Just to interpret the displacements results above, taking, for instance, the values of lead-lag and flap at the blade 
tip at 80 ; 12° and computing the inplane displacemen~ one finds that the blade tip is lagging 0.0052 m and is above 
the rotor disk about 0.048 m. 

As detailed in Reference [9], relative small differences between the two approaches are obtained for the torsion 
equilibrium deflections at the blade tip. The role of the pitch flexure in the steady-state results was investigated as well. 
Aerodynamic loads and blade equilibrium deflections remain practically the same as the stiffness of the pitch flexure is 
largely varied. 

Dynamics Results- Eigenvalue Analysis 

In all results to be shown in this section the parameter varied from one equilibrium condition to the next, before 
small perturbations are applied to the steady-state blade, is the collective pitch angle. Figures 9 to 11 show correlations 
for the rotor blades in the differential mode of vibration, and Figure 12 shows correlations for the rotor blades in the 
collective mode of vibration. 

For the differential mode, lead-lag damping results are compared with the quasi-steady uniform momentum/blade 
element aerodynamics from Reference [3], the unsteady three-dimensional panel method from Reference [5] and with 
the experimental data from Reference [11]; results for lead-lag frequency are compared with the same approaches, ex
cept the panel method, whose results are not available. 

Figure 9 (a) shows correlations for lead-lag damping as function of the collective pitch angle for blade configura
tions including soft pitch flexures and zero precone and droop. All theoretical models are based on linear aerodynam
ics, meaning that no stall effects are included. At low values of collective pitch the damping comes from the profiled 
drag, that is the same for all models, and one observes that all predictions are approximately the same and close to the 
experiments. As the absolute value of the collective pitch increases, the large "drop off' observed from the quasi
steady results with respect to experiments starts being captured in part by both the finite-state inflow and panel ap
proaches, which account for unsteady and three-dimensional aerodynamic effects. The rest of the drop is most probably 
due to increase in drag with angle of attack (recall that the profile drag coefficient is constant in this analysis). Thus, 
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small variations in airfoil shape on the upper and lower surfaces create asymmeuic changes in drag, explaining the dif
ferences between positive and negative collective pitch in the experimental results. These effects are accentuated at the 
low Reynolds number, Re = 600,000, Also, few corrections in Hodges' previous "PFL T' code and corresponding for
mulation [3) made in Reference [8) (named "new" in the figure legends) are responsible for some improvements in the 
predicted values of lead-lag damping for mid-to-high values of collective pitch within the quasi-steady aerodynamics 
results. Figure 9 (b) presents similar correlations but for the rotor configurations with stiff pitch flexures. Comparing 
the present approach results with the panel counterparts, one recognizes that, for the soft flexure case, the agreement is 
very good up to 80 = 7°, whereas for the stiff flexures the agreement is very good up to so. For values of collective 
pitch higher than those, the finite-state inflow approach shows larger values of lead-Jag damping, 

Figure 10 (a) presents correlations for lead-lag damping as function of collective pitch angle for rotor configura
tions with soft pitch flexures, zero droop and S0 of precone. The best overall correlations with experiments are for the 
quasi-steady aerodynamics, although the minimum damping value from the experiments is better captured by the panel 
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approach. The finite-state inflow results are well converged, and capture the destabilizing effects of positive precone, 
but the correlations are not satisfactory. Figure 10 (b) shows correlations for rotor configurations with stiff pitch flex
ures, zero precone, and -5° of droop. The present methodology correlates better with experiments than the panel 
method, which predicts overly small values of damping at mid-to-high collective pitch. 

Figures 11 (a) and (b) show correlations for lead-lag frequency as function of the collective pitch angle for 
configurations with zero precone and droop, and soft and stiff pitch flexures, respectively. Finite-state inflow results 
are closer to the experiments for higher values of collective pitch, compared with the quasi-steady results, because the 
present analysis includes extra inertia from the air mass. Also, very good correlations with the experiments are 
obtained. At Bo = 0°, soft flexure results are 2.27 Hz larger than the experimental results, and 0.16 Hz larger for the stiff 
pitch flexure configurations. This anomaly raises a question regarding the accuracy of the assumption made in 
Reference [11) that the pitch flexures were much stiffer than the blade chordwise. Adopting a simple mass-spring 
system and considering experimental and theoretical results in Figure 11, it turns out [9) that the ratio between blade 
and flexure chordwise stiffnesses are, approximately, 0.21 and 0.01 for soft and stiff flexure configurations, 
respectively. This means that the assumption of having only blade flexibility in lead-lag in Sharpe's investigation [11) 
seems much more accurate for the stiff than for the soft pitch flexure configurations. Similar offsets are found for 
configurations involving either precone or droop [9). 

For the rotor blades in the collective mode of vibration no experimental results are available, so the present 
approach results are compared to quasi-steady aerodynamics and the panel method. Figures 12 (a) and (b) show 
correlations for lead-lag damping in terms of collective pitch angle, for rotor configurations with zero droop an precone 
and with soft and stiff pitch flexures, respectively. One observes that, starting at very low values of the collective pitch, 
the quasi-steady aerodynamics overpredicts damping. Comparing present approach with thick panel aerodynamics 
results, for the soft flexure case the agreement is very good up to 80 = 8.5° and for the stiff flexures the agreement is 
very good up to 80 = 5.5°. For values of collective pitch angle higher than those, the finite-state inflow approach shows 
slight larger values of damping. 

Dynamics Resulis -Eigenvector Analysis 

To emphasize the importance of three-dimensional and unsteady effects in the aeroelastie investigations of rotors, 
correlations for the span wise distributions of chord wise generalized aerodynamic force (L,) and of circulatory lift 
(circulatory Lw) are shown in Figure 13, for the modal frequency correspondent to first lead-lag mode. As observed 
from Figure 13 (a), at 80 = 4°, the present approach predicts a drop of approximately 50% for the chordwise 
generalized aerodynamic force compared to the quasi-steady aerodynamics results. Due to the predominance of the 
first lead-lag mode at low thrust levels (low pitch angles) a great part of that represents chord wise damping losses (this 
confirms that part of the experimental drop-offs in lead-lag damping observed in Figure 9 is due to unsteady, three
dimensional aerodynamic effects). Also, from Figure 13 (b), it is observed a severe drop in the values for the 
incremental collective and differential circulatory lifts The present approach shows much lower lift fluctuations not 
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only at the tip, which is a three-dimensional tip relief effect, but also at the inboard sections. The integrated value of 
lift fluctuation from the quasi-steady two-dimensional model is about 2 times the value from the finite-state inflow 
applications. Concerning the plots in Figure 13, all the eigenvectors are normalized to have the same lip displacement 
in lead-lag for the comparisons. 

As pointed out in Reference [9], for the number of inflow expansion coefficients chosen in this research and for 
results up to the eigenvalue level, expected savings in CPU range from 16 to 50 times in adopting the present approach 
instead of the thick panel moving-block analysis. This implies potential applications in rotor optimization. 

6 Conclusions 

The present research confirms the importance of three·dimensional, unsteady aerodynamics for aeroelastic 
investigations in hovering flighL The model has been applied to a two-bladed, untwisted stiff inplane hingeless small 
scale (model) rotor with torsionally soft blades, including a blade root offset, precone, blade droop, pitch control 
stiffness, and blade pitch angle. The major conclusions of the present study can be summarized as: 1) Numerical 
results show that three-dimensional tip relief effects within the nonuniform steady-state inflow are significant to predict 
steady-state aerodynamic loads and blade deflections; 2) Eigenvalue results confirmed U1e importance of unsteady, 
three-dimensional aerodynamics in predicting lead-lag damping and frequency, by means of correlations with unsteady 
three-dimensional thick panel theory and with experiments, and 3) Eigenvector analysis correlations reinforced 
qualitative and quantitative shortcomings associated with quasi-steady two-dimensional aerodynamic theory for 
aeroelastic applications in hover. The treatment of the aeroelastic stability through an eigenanalysis as formulated in 
this work is specially convenient when helicopter integrated dynamics are involved. The elimination of lime-marching 
and moving block analyses, present in current state-of·the-art approaches to the same problem, associated with no 
essential loss of accuracy for the obtained results, constitutes the primary contributions of the present methodology. 
The efficiency of this approach makes rotor optimization with aeroelastic stability a practical endeavor. 
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