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Abstract

A method of the flutter phenomenon
analysisis presented in this paper. The analysis has
been performed for a one-main rotor helicopter on
the basis of a complete set of nonlinear differential
equations. This set has been adopted from flight
mechanics. Basic equations have been modified by
taking into account forces and moments produced
by a landing gear. Some selected results of
numerical calculations are presented.

I ntroduction

Numerous investigations of the flutter
phenomenon of the helicopter have been made
/[1] +[4]/. Usudly the flutter for an isolated blade
has only been investigated. In this paper the
complete model of the one-main rotor helicopter
has been described. This model has been adopted
from flight mechanics. Basically, it was applied for
the analysis of flight mechanics problems, for
instance, manoeuvres with stall aerodynamics
effects or flight in failure of the main rotor blade
system.

For the basic analysis it is assumed that the
helicopter fuselage is a rigid body and the main
rotor consists of four rigid blades which are
considered separately. Each blade performs
motions about its horizontal flapping hinge and
vertical lagging hinge. The tail rotor has been
treated as a hingeless and weightless source of
thrust, which equilibrates the drag moment and
ensures directional control of the helicopter.
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The above described model has been modified
for flutter and ground resonance phenomena
anaysis. Following modifications have been
performed:

- the motion of rigid blades about the axial
hinges has been considered;

- landing gear rigidity and damping have been
taken into account.

1. Formulation of the problem

1.1. Systems of coordinates

To determine the mathematical model of a

helicopter, the following systems of coordinates are
assumed:
Ox,y,z, - @ moving coordinate system connected
with the earth, Ox, y,z, - asystem connected with
the fuselage, Px"y'z" - asystem connected with an
element of the main rotor hub with origin at the
centre of hub, P, x,y,z, - asystem connected with
the flapping hinge 7, of i-th blade with the origin
in this hinge, 1}, x,y,z, - a system connected with i-
th blade of the main rotor with the origin in the
lagging hinge 7, of the blade.

All these systems are shown in Fig.1.1 and
they are described in detailsin [11].

Systems  Ox,y,z, and Ox,y,z, ae
interconnected by the angles of yaw W, pitch © and
roll ®. The relation between them has the form:

X, =ax, (1.1)



Fig.1.1 Physical model of the helicopter and
coordinate systems

As regards Ox,y,z, and

systems, they are interconnected by the angle
,, which is that of azimuth of the i-th blade as

measured from the tail boom in the sense of
rotation of the main rotor, the angle 3 which is

that of flapping of the i-th blade about the
horizontal hinge and the angle ¢, which is that of

Bx,yiz;

lagging of the i-th blade about the vertical hinge.
This relation has the form:

X=yX, (12)

The analogous relation between Ox, y, z,

and P, x,y,z, is:

X =y X, (13)
Matrix y, is obtained from matrix y, by
substitution ¢, = 0.
The systems

and PpPx'y'z  ae

interconnected by azimuth U . The relation has the

Ox, Y2y

form:
X' =y'X, (1.4)
Matrix y, is obtained from matrix y, by

substitution {, =0 and 3, =0.

1.2. Determination of the equations of motion

The equations of motion have been
derived on the basis of Newton's second law of
dynamics. They have been applied separately for
the fuselage, elements of each blade, elements of
each connector and elements of the hub. On the
basis of these equations the following equations
have been obtained:
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1. Equations of the

helicopter:
d\7c kK R K Pv'i. .
MKF-‘-Zp[Widm +IZJH’V\/I dm + w5
+fﬂ\f/\/"dm" =F+T+T,

where: M, is the mass of the fuselage, V,- the

trandatory motion of

velocity of the fuselage mass centre, W, W', W'

- the absolute accelerations of the i-th blade
element, the i-th connector element and the hub
element respectively, F - the vector of external
forces acting on the fuselage, T, - the thrust of tail
rotor.

T - the vector of external forces acting on the

rotor:
k BR k Ri

T= .Z iqidri + Z J;qi'dri' +ﬂ}fdlf" (1.6)

“B" is the tip-loss factor, gdr, gdr, dF -
represent vectors of external forces acting on
the
i-th blade element, the i-th connector element and
the hub element respectively.
2. The equation of equilibrium of moments about
the centre of mass of the fuselage:

dK X R k Ra

TR R ¢S [RoW s
+I£TR" xW'dm’ =M + M, +M,

wheree R, R, R ae the vectors which

determine respectively the location of the i-th blade
element, the i-th connector element and the hub
element with reference to the centre of mass of the
fuselage /Fig.1.2/.

k BR k Ri

Mo =3 [Rxadi+y [Roxddis

+ Ef R xdF’

is the moment of external forces about the centre of
mass of the fuselage.

3. The equation describing rotation motion of the
main rotor around the axis of the hub:

ZJ (1, 1) W, + ZJ ey aran.+ 1
I +j£‘[r" xW"drﬁ]Zﬂ :[Mpl’]z“ M,



where M, is the reaction moment of the fuselage

which is at normal flow conditions equal to the
moment of the power system; A7[P is the moment

of external forces with reference to the centre of
the hub P. Its projection on the Pz" is determined
by the relation:;

[MP]Z" :Z\!:[(lm +y, +ri)XQd(]Z-- +

(1.10)

k Rip . o ) )
+3 [l +1)xcicr], +j’fj{r <],

4. The equation of equilibrium of the moments of

forces acting on a blade about the flapping hinge
P .

e

JE[(rw +1)<Wm], +
& (1.112)
v, <l ] <l

Lower index [ ]y, indicates a projection on the
axis P,,y, of this hinge; [MPHi Jy‘ is the external

moment acting on the blade about the axis 7.y, of
hinge 7, :

BR
[MPHi]y“ = J:[(rvl +1;) xqdr, g ¥
i (112)
+ v g,
B

and lI\TBJy‘ is the sum of damping and spring

moments of the flapping hinge:
M, = —CpB = Ks B,

5. The equation of equilibrium of moments of

forces acting on a blade about the lagging hinge
P

i[ﬁ xWdm], =[I\7PWL +[Mf]z (1.13)

Lower index [ ]z indicates a projection on the
axis Pz, of this hinge |_IVFR/i L is the external

moment acting on the blade about the axis £z, of
hinge £, :

v, ], = f[n xgdr], (119

and |_IWZ L is the sum of damping and spring

moments  of the lagging  hinge:
|.MZ L = _CZZi - kZZi :

Z
Fig.1.2 Determination of location of blade,
connector and hub element

These equations completed with:
- thekinematic relations:
©=0cos® - Rsin ®
® =P +(Qsin® +Rcos Pyg®  (1.15)
W =(Osin ® + Rcos D)/ cos ©
- the relations determining coordinates of the
mass centre in the system Ox, y, z,
Xy =Uay, +Va, +Wag,
y, =Ua,, +Va,, +Wa,, (1.16)
Zg = Ua13 +Va23 +Wa33
and
%:3, dd_ztlzzl %ﬁ’:w (1.17)
have congtituted a set of 14+4k nonlinear
differential equations with periodic coefficients,
where k is a number of blades of the main rotor.

They can be expressed in the form:

AT, X)X +B(t, X)) = f"(t,X",S)(1L18)

where X isthe vector of flight parameters:

)T* = (U 1V1W| PlQl ley Bi 1Zi 1Bi lZi l(gU1
0,®,W,x,,Y,,2,)"

and U, V, W are linear velocities of the centre of

fuselage mass in the coordinate system Ox, y, z,

fixed with the fuselage, P, Q, R are angular
velocities of the fuselage in the same coordinate
system, ©, P, Y are the pitch, the roll and the



yaw angles of the fuselage, 3 - the i-th blade
flapping rotation about horizontal hinge 7, {, -

the i-th blade lagging rotation about vertical hinge
P, , w- the angular velocity of the main rotor, -
the azimuth of the main rotor.

A vector S is the vector of control
parameters:

S=(0p Kl b))’

where: 6, is the angle of collective pitch of the
main rotor, Kk, is the control angle in the

longitudinal motion, ), is the control angle in the
lateral motion and ¢_ is the angle of collective

pitch of the tail rotor.

The detailed way of determining the set
(1.18) is shown in [11]. For the determination of
matrix A and vector B there were successively
established: the locations of all helicopter elements,
the absolute velocities of these elements and their
absolute accelerations.

The feathering motions of blades have not
been included in the set (1.18). For analysis of
flutter it is necessary to take into account these
motions and all couplings /particularly between
feathering and flapping/. Because of that, the above
described model of a helicopter has been modified
by assuming that all rigid blades perform motions
about their axial hinges /feathering motions/.
Equations describing self-coupled flapping and
feathering motions have been taken from [1], and
[10]. They have the following form:

CtY)Y +D(t,Y)=g(tVY,S) (119
where Y =(B,6,.9.¢)" .- @ is a feahering
angle of the i-th blade.

On the basis of Egs. (1.18) and (1.19), a
set of 38 nonlinear differential equations has been
obtained (k=4):

A(t, X)X +B(t,X) = f(t,X,5)
where X isthe vector of flight parameters:
X = (U 1V1W1 P1Q’ R’w1Bi 1Zi 1¢Lﬁi 1Zi ’(R’
W,0,0,¥,x,,y,,2,)"

(1.20)

2. Forces and moments acting on a
helicopter

The vector f(t, X,S) on the right hand
side of equation (1.20) determines external forces
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and moments acting on a helicopter and on its parts
and represents also right hand sides of equations
(1.15) +(1.17). These forces and moments may be
divided into three groups: 1. the aerodynamic
forces and moments; 2. the gravitation forces and
moments; 3. the forces and moments produced by
the landing gear.

Detailed method of determining all these
forces and moments is presented in [11]. In this
paper only the main features of this method are
described.

2.1 Aerodynamic forces

The aerodynamic forces and moments
acting on the rotor blades have been determined
making use of static characteristics of the airfail.
Because of specific flow conditions of the blade
airfoil (wide range of the angles of attack, reverse
flow) /cf. [8]/ these characteristics have been
determined for the full range of the angles of attack
for different Mach numbers:

C,, =C,(a, Ma) (2.1)
C., =C_(a, Ma) (2.2)
The  applied  aerodynamic  static

characteristics of the NACA 23012 airfoil for Mach
numbers from 0.3 to 0.8 for the full range of angles
of attack have been taken from [5]. They are shown
inFigs. 2.1 and 2.2.

| Ma=p.3

11j
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Fig.2.1 Thelift coefficient of the airfoil NACA
23012
Components of aerodynamic forces have
been determined for each airfoil /Fig.2.3/:

V2

ap, =c, ——b(r) 23)
Vz

dp, =, 2 —p(r) 24




where b(r) is an aerodynamic chord of the blade
airfail.
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Fig. 2.2 The drag coefficient of the airfoil NACA
23012
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Fig.2.3. Aerodynamic loads of the main rotor blade
element

Specific flow conditions of the main rotor
blades, even in a steady flight, /motion about
hinges, changeability of air velocity flowing around
airfoils depending on the blade azimuth, the reverse
flow region/ cause that the section incidence a
changes within a wide range. The critical angle of
attack is often dynamicaly exceeded. This
phenomenon is particularly visible for “retreating “
blades near to the airscrew hub axis of rotation.
The region within which the angle of stal is
exceeded becomes larger when the speed of flight
increases.

In purpose to include into account changes
of static characteristics due the airfoil pitching
/nonstationary effects/, the method proposed by
Tarzanin has been applied ([6], [7]). The example
dependence of the lift coefficient, on dynamic stall
effects taken into consideration, is presented in Fig.
2.4.
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Fig. 2.4 Dynamic stall influence on ¢_(a, Ma)

Because of changes of the blade azimuth
the sweep angle of the stream A varies /Fig.2.5/.
This effect of spanwise (radial) flow on the lift
coefficient has also been taken into account. It was
performed according to the method described in

(61, [7).

Fig. 2.5 Determination of the sweep angle /A of
the air stream flowing around the blade element

All the aerodynamic forces and moments
acting on blades have been calculated by numerical
integration along each blade. The induced velocity
of each airfoil has been determined by means of
Biot-Savart law — four separated strings of vortex
have been investigated.

Aerodynamic forces and moments of the
fuselage have been calculated on the basis of its
experimental aerodynamic characteristics.

2.2. Landing gear forces and moments

In the present case the flutter phenomenon
for the helicopter staying on the ground has been
investigated. For that reason the landing gear
rigidity and damping have been taken into account.
All forces and moments produced by the landing
gear have been included into the right hand side of
Eqg. (1.20). It has been assumed that the landing
gear consists of three wheels. Configuration of the



landing gear is shown in Fig.1.1. For each whedl its
rigidity, damping and position have been
determined separately.

-

P, =k As
P_ =c ds/dt

Fig.2.9 Linear and nonlinear models of the Iandlng
gear

Two models of landing gear forces have
been used /Fig. 2.9/. The first one, where relations
between forces and displacement and velocity are
linear:

Pei =Ri tFy (2.9)
and the second model where these relations are
nonlinear — for the case where there is no contact
between wheel and the ground. In this case all
forces and moments produced by this wheel are
equal to zero:

. [R;+P; for Ah <O

P - d | (2.6)
" H 0 for ah=20

where “i” is the number of whee! /i=1,2,3/ and Ah

is the distance between the wheel and the ground.
Components of the force R, produced by

the i-th wheel are equal to:

Xigi = KX —Cy %
-k Y —Ci Vi
-k, Az, —c,z

(27)

Igl -

Igl -
where k,, k;;, k, are stiffness coefficients of the
i-th whed; C Cyi s C,

coefficients, Ax,, Ay,, Az are displacements of

it are its damping

the “contact point”
Ox, Y2y

The moment produced by the i-th wheel is
equal to:

determined in the system

Igl ngl Igl (28)
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whereR,, the  vector

= (Xigi» Yigi » Zigi) is
determining the location of the i-th wheel with
reference to the mass centre of the fuselage. It has
the following componentS'

ngi =Z Igi ylgl Iglzlgi
Mlgi - Xlg|ZIg| ZIg|XIg| (29)
ngl Ylglxlgl - Igiylgi

Finaly, forces end moments produced by the
landing gear are equal t0'

Xig = ix@ Z g+ Lig = 22@ (2.10)
L = 2_ Ligi» Mg = .Z Mygi» Ng = 2 Ny (211)

2.3. Thethrust of thetail rotor

As it has been stated at the beginning, the tail
rotor is treated as the hingeless and weightless
source of thrust which equilibrates the drag
moment and ensures (in flight dynamics problems)
directional control of the helicopter. According to
this assumption, the thrust of the tail rotor has been
calculated on the basis of the initial value of the
drag moment M, /Eq.(1.10)/. Making use of this

value and values of coordinates x, and z,
'y, =0/, determining the location of the tail rotor
with reference to the fuselage mass centre one can
obtain:

- thethrust of tail rotor:

T, = e

(2.12)

- the rolling and yawing moments produced by
the tail rotor:

Ltr = _Ttr Z s (213)

Ntr = _-I-tl’ )(tl’

3. Solution of the problem

As it was mentioned above, in the present
case, the flutter phenomenon for the helicopter
staying on the ground has been investigated. The
numerical simulations have been performed
according to results of experiments performed for a
Polish  ,Sokol”  helicopter. During these
experiments, the flutter was excited by changing
the displacements of the mass centre of the blade



airfoil. The flutter phenomenon was simulated in
the same way .

The numerical analysis was based on the
set of Egs.(1.20). Some results of computation are
presented in this paper. For al presented cases the
initial position of the helicopter has been disturbed
/particularly position of the second blade/.
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Fig.3.1.9 Trajectory of the fuselage mass centre on
Ox, Yy, plane

In the first set of figures /Figs.3.1.1 +
3.1.9/ selected parameters of helicopter motion are
shown. One can see that al courses are damped. Of
course this means that helicopter is stable and no
instability can occur. Because only collective pitch
of the main rotor g, is not equal to zero, it is seen
that damped oscillations of blades occur.
Trajectory of the centre of fuselage mass converges
to the point of stability.
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In Figs.3.2.1 +3.2.9 one can observe that
flapping and feathering oscillations don’t increase
and they have almost constant amplitude. This is
typical for non-linear motions. The area of these
oscillations is quite wide — particularly for
feathering. Because of that the lagging angle of
blade is changed — the average value of the drag
coefficient increases. We can also see that the rest
of parameters change because of couplings
between all motions.

In the last figures /Figs.3.3.1 + 3.3.6/
some results of harmonic analysis are presented for
courses obtained for flutter simulation.  All
diagrams have been made according to [12] by
Schuster. Those pictures show power spectrums
obtained for the helicopter motion. From
comparison of our results with those presented by
Schuster a conclusion could be drawn that the
motion of the helicopter is chaotic.
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4. Concluding remarks

This paper presents the method of the
flutter phenomenon analysis for the helicopter
treated as the system, which consists of the
fuselage and four rigid blades. The complete set of
nonlinear differential equations, which describes
flutter oscillations of a one-main rotor helicopter,
has been obtained. This set enabled us to study the
helicopter fuselage motion and motions of al the
blades of the main rotor motions. A numerica
anadysis of the system dynamics has been
performed and some results are given in the paper.
These results show time histories for various
helicopter motion parameters. On the basis of the
obtained results we can conclude that the applied
model of the one-main rotor helicopter enables
more precise study of physical phenomena, which
can occur in the real simulations.

Making use of the model a further more
detailed analysis of the flutter will be performed.
The case of the flutter phenomenon during flight
will beincluded in that analysis.
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