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Abstract

 A method of the flutter phenomenon
analysis is presented in this paper. The analysis has
been performed for a one-main rotor helicopter on
the basis of a complete set of nonlinear differential
equations. This set has been adopted from flight
mechanics. Basic equations have been modified by
taking into account forces and moments produced
by a landing gear. Some selected results of
numerical calculations are presented.

Introduction

Numerous investigations of the flutter
phenomenon of the helicopter have been made
/[1] ÷[4]/. Usually the flutter for an isolated blade
has only been investigated. In this paper the
complete model of the one-main rotor helicopter
has been described. This model has been adopted
from flight mechanics. Basically, it was applied for
the analysis of flight mechanics problems, for
instance, manoeuvres with stall aerodynamics
effects or flight in failure of the main rotor blade
system.

For the basic analysis it is assumed that the
helicopter fuselage is a rigid body and the main
rotor consists of four rigid blades which are
considered separately. Each blade performs
motions about its horizontal flapping hinge and
vertical lagging hinge. The tail rotor has been
treated as a hingeless and weightless source of
thrust, which equilibrates the drag moment and
ensures directional control of the helicopter.

The above described model has been modified
for flutter and ground resonance phenomena
analysis. Following modifications have been
performed:
- the motion of rigid blades about the axial

hinges has been considered;
- landing gear rigidity and damping have been

taken into account.

1. Formulation of the problem

1.1. Systems of coordinates

To determine the mathematical model of a
helicopter, the following systems of coordinates are
assumed:
�� � �

� � �
 - a moving coordinate system connected

with the earth,�� � �
� � �

 - a system connected with

the fuselage, �� � �
� � �  - a system connected with an

element of the main rotor hub with origin at the
centre of hub, � � � �

�� � � �

� � �  - a system connected with

the flapping hinge �
��

 of  i-th blade with the origin

in this hinge, � � � �
�� � � �

 - a system connected with i-

th blade of the main rotor with the origin in the
lagging hinge �

��
 of the blade.

All these systems are shown in Fig.1.1 and
they are described in details in [11].

Systems �� � �
� � �

 and �� � �
� � �

 are

interconnected by the angles of yaw Ψ, pitch Θ and
roll Φ. The relation between them has the form:

� �� �= �α          (1.1)
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Fig.1.1 Physical model of the helicopter and
coordinate systems

As regards �� � �
� � �

 and � � � �
�� � � �

systems, they are interconnected by the angle
ψ

�
,  which is that of azimuth of the i-th blade as

measured from the tail boom in the sense of
rotation of the main rotor, the angle β

�
 which is

that of flapping of the i-th blade about the
horizontal hinge and the angle ζ

�
 which is that of

lagging of the i-th blade about the vertical hinge.
This relation has the form:

� �� �= �γ                            (1.2)

The analogous relation between �� � �
� � �

and � � � �
�� � � �

� � �  is:

� �� �

� �
�= γ       (1.3)

Matrix �

�γ �  is obtained from matrix �γ
�
 by

substitution ζ
�
= � .

The systems �� � �
� � �

 and �� � �
� � �  are

interconnected by azimuth ψ . The relation has the

form:

� � �

� �
�= γ        (1.4)

Matrix �

�γ �  is obtained from matrix �γ
�
 by

substitution ζ
�
= �  and 0=iβ .

 1.2. Determination of the equations of motion

The equations of motion have been
derived on the basis of Newton’s second law of
dynamics. They have been applied separately for
the fuselage, elements of each blade, elements of
each connector and elements of the hub. On the
basis of these equations the following equations
have been obtained:

1. Equations of translatory motion of the
helicopter:

tr

V

k

i

P

P

ii

k

i

R

P

ii
c

k

TTFdmW

dmWdmW
dt

Vd
M

Vi

HiVi

++=+

+++

∫∫∫

∑ ∫∑ ∫
==

""

1

''

1      (1.5)

where: �
�
 is the mass of the fuselage, cV - the

velocity of the fuselage mass centre, iW , '
iW , ''

iW

- the absolute accelerations of the i-th blade
element, the i-th connector element and the hub
element respectively, F  - the vector of external
forces acting on the fuselage, trT  - the thrust of tail

rotor.
 T - the vector of external forces acting on the
rotor:
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“B” is the tip-loss factor, iidrq , ''
ii drq , "dF  -

represent vectors of  external  forces  acting  on
the
 i-th blade element, the i-th connector element and
the hub element respectively.
 2. The equation of equilibrium of moments about
the centre of mass of the fuselage:
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where: iR , '
iR , "R  are the vectors which

determine respectively the location of the i-th blade
element, the i-th connector element and the hub
element with reference to the centre of mass of the
fuselage /Fig.1.2/.
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is the moment of external forces about the centre of
mass of the fuselage.
3. The equation describing rotation motion of the
main rotor around the axis of the hub:
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where �
��

 is the reaction moment of the fuselage

which is at normal flow conditions equal to the
moment of the power system; �

�
 is the moment

of external forces with reference to the centre of
the hub P. Its projection on the �� �  is determined
by the relation:
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4. The equation of equilibrium of the moments of
forces acting on a blade about the flapping hinge
�
�

:
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Lower index [ ]
�

�

�
 indicates a projection on the

axis � �
�� �

�  of this hinge; [ ] '
iHi yPM  is the external

moment acting on the blade about the axis � �
�� �

�  of

hinge �
�

:
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and [ ] '
iy

M β  is the sum of damping and spring

moments of the flapping hinge:

iiy
kcM

i
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'

5. The equation of equilibrium of moments of

forces acting on a blade about the lagging hinge
�
�

:

[ ] [ ] [ ]
iiVi

Vi

i zzP

R

P
ziii MMdmWr ζ+=×∫ (1.13)

Lower index [ ]
�
�

 indicates a projection on the

axis � �
�� �

 of this hinge; [ ]
iVi zPM is the external

moment acting on the blade about the axis � �
�� �

 of

hinge �
�

:
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and [ ]
iz

M ζ  is the sum of damping and spring

moments of  the lagging hinge:
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Fig.1.2 Determination of location of blade,
connector and hub element

These equations completed with:
- the kinematic relations:
            � ��� ���Θ Φ Φ= −� �

� � ��� ��� �Φ Φ Φ Θ= + +� � � ��       (1.15)

            � � ��� ��� � � ���Ψ Φ Φ Θ= +� �

- the relations determining coordinates of the
mass centre in the system �� � �

� � �
:

312111 WaVaUaxg ++=
�

322212 WaVaUayg ++=
�

           (1.16)

332313 WaVaUazg ++=
�

and
d

dt
i

i

β
β= � ,     

�

��

�

�

ζ
ζ= � ,    ωψ =

dt

d       (1.17)

have constituted a set of 14+4k nonlinear
differential equations with periodic coefficients,
where k is a number of blades of the main rotor.
They can be expressed in the form:

),,(),(),( ****** SXtfXtBXXt =+�A (1.18)

where *X  is the vector of flight parameters:

T
ggg

iiii

zyx

RQPWVUX

),,,,,

,,,,,,,,,,,,(*

ΨΦΘ
= ψζβζβω ��

and U, V, W  are linear velocities of the centre of
fuselage mass in the coordinate system �	 
 �

� � �

fixed with the fuselage, P, Q, R  are angular
velocities of the fuselage in the same coordinate
system,  Θ Φ Ψ� � are the pitch, the roll and the
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yaw angles of the fuselage, β
�
 - the i-th blade

flapping rotation about horizontal hinge �
�

, ζ
�
 -

the i-th blade lagging rotation about vertical hinge
�
�

, ω - the angular velocity of the main rotor, ψ -

the azimuth of the main rotor.
A vector S  is the vector of control

parameters:
T

sossS ),,,( 0 ϕηκθ=
where: θ

�
 is the angle of  collective pitch of the

main rotor, κ
�
 is the control angle in the

longitudinal motion, η
�
 is the control angle in the

lateral motion and ϕ
��

 is the angle of collective

pitch of the tail rotor.
The detailed way of determining the set

(1.18) is shown in [11]. For the determination of
matrix A and vector B  there were successively
established: the locations of all helicopter elements,
the absolute velocities of these elements and their
absolute accelerations.

The feathering motions of blades have not
been included in the set (1.18). For analysis of
flutter it is necessary to take into account these
motions and all couplings /particularly between
feathering and flapping/. Because of that, the above
described model of a helicopter has been modified
by assuming that all rigid blades perform motions
about their axial hinges /feathering motions/.
Equations describing self-coupled flapping and
feathering motions have been taken from [1], and
[10]. They have the following form:

)S,Y(t,g)Y(t,DY)Y(t,C =+�       (1.19)

where T
iiiiY ),,,( φφββ ��= . iφ  is a feathering

angle of the i-th blade.
On the basis of Eqs. (1.18) and (1.19),  a

set of 38 nonlinear differential equations has been
obtained (k=4):

),,(),(),( SXtfXtBXXt =+�A      (1.20)

where X  is the vector of flight parameters:

T
ggg
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zyx

RQPWVUX

),,,,,,
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ψ
φζβφζβω ���

2. Forces and moments acting on a
helicopter

The vector )S,X(t,f on the right hand

side of equation (1.20) determines external forces

and moments acting on a helicopter and on its parts
and represents also right hand sides of equations
(1.15) ÷(1.17). These forces and moments may be
divided into three groups: 1. the aerodynamic
forces and moments; 2. the gravitation forces and
moments; 3. the forces and moments produced by
the landing gear.

Detailed method of determining all these
forces and moments is presented in [11]. In this
paper only the main features of this method are
described.

2.1 Aerodynamic forces

The aerodynamic forces and moments
acting on the rotor blades have been determined
making use of static characteristics of the airfoil.
Because of specific flow conditions of the blade
airfoil (wide range of the angles of attack, reverse
flow) /cf. [8]/ these characteristics have been
determined for the full range of the angles of attack
for different Mach numbers:

� � ���� ��= � � �α                (2.1)

� � ���� ��= � � �α                 (2.2)

The applied aerodynamic static
characteristics of the NACA 23012 airfoil for Mach
numbers from 0.3 to 0.8 for the full range of angles
of attack have been taken from [5]. They are shown
in Figs. 2.1 and 2.2.
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Fig.2.1 The lift coefficient of the airfoil NACA
23012

Components of aerodynamic forces have
been determined  for each airfoil /Fig.2.3/:

�� �
�

� 	�� ��=
ρ �

�
� �                 (2.3)

�� �
�

� 	�� ��=
ρ �

�
� �                 (2.4)
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where � �� �  is an aerodynamic chord of the blade

airfoil.
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Fig. 2.2 The drag coefficient of the airfoil NACA
23012
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Fig.2.3. Aerodynamic loads of the main rotor blade
element

Specific flow conditions of the main rotor
blades, even in a steady flight, /motion about
hinges, changeability of air velocity flowing around
airfoils depending on the blade azimuth, the reverse
flow region/ cause that the section incidence α
changes within a wide range. The critical angle of
attack is often dynamically exceeded. This
phenomenon is particularly visible for “retreating “
blades near to the airscrew hub axis of rotation.
The region within which the angle of stall is
exceeded becomes larger when the speed of flight
increases.

In purpose to include into account changes
of static characteristics due the airfoil pitching
/nonstationary effects/, the method proposed by
Tarzanin has been applied ([6], [7]). The example
dependence of the lift coefficient, on dynamic stall
effects taken into consideration, is presented in Fig.
2.4.
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Fig. 2.4 Dynamic stall influence on � ��
��

� � �α

 Because of changes of the blade azimuth
the sweep angle of the stream Λ  varies /Fig.2.5/.
This effect of spanwise (radial) flow on the lift
coefficient has also been taken into account. It was
performed according to the method described in
[6], [7].

Fig. 2.5 Determination of the sweep angle Λ  of
the air stream flowing around the blade element

 All the aerodynamic forces and moments
acting on blades have been calculated by numerical
integration along each blade. The induced velocity
of each airfoil has been determined by means of
Biot-Savart law – four separated strings of vortex
have been investigated.

Aerodynamic forces and moments of the
fuselage have been calculated on the basis of its
experimental aerodynamic characteristics.

2.2. Landing gear forces and moments

In the present case the flutter phenomenon
for the helicopter staying on the ground has been
investigated. For that reason the landing gear
rigidity and damping have been taken into account.
All forces and moments produced by the landing
gear have been included into the right hand side of
Eq. (1.20). It has been assumed that the landing
gear consists of three wheels. Configuration of the
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landing gear is shown in Fig.1.1. For each wheel its
rigidity, damping and position have been
determined separately.
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Fig.2.9 Linear and nonlinear models of the landing
gear

Two models of landing gear forces have
been used  /Fig. 2.9/. The first one, where relations
between forces and displacement and velocity are
linear:

cikii PPP +=lg             (2.5)

 and the second model where these relations are
nonlinear – for the case where there is no contact
between wheel and the ground. In this case all
forces and moments produced by this wheel are
equal to zero:
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iciki
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h     forPP
P       (2.6)

where “i” is the number of wheel /i=1,2,3/ and ih∆
is the distance between the wheel and the ground.

Components of the force iPlg  produced by

the i-th wheel are equal to:
                     

ixiixii xcxkX
�

−∆−=lg

iyiiyii ycykY
�

−∆−=lg
                  (2.7)

                      
iziizii zczkZ

�
−∆−=lg

where xik , yik , zik  are stiffness coefficients of the

i-th wheel; xic , yic , zic  are its damping

coefficients; ix∆ , iy∆ , iz∆  are displacements of

the “contact point” determined in the system
�� � �

� � �
.

The moment produced by the i-th wheel is
equal to:

     iii PRM lglglg ×=  (2.8)

where ),,( lglglglg iiii zyxR =  is the vector

determining the location of the i-th wheel with
reference to the mass centre of the fuselage. It has
the following components:
             iiiii zYyZL lglglglglg −=

iiiii xZzXM lglglglglg −=                      (2.9)

             iiiii yXxYN lglglglglg −=

Finally, forces end moments produced by the
landing gear are equal to:
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2.3. The thrust of the tail rotor

As it has been stated at the beginning, the tail
rotor is treated as the hingeless and weightless
source of thrust which equilibrates the drag
moment and ensures (in flight dynamics problems)
directional control of the helicopter. According to
this assumption, the thrust of the tail rotor has been
calculated on the basis of the initial value of the
drag moment 0PM  /Eq.(1.10)/. Making use of this

value and values of coordinates trx  and trz

/ 0=try /, determining the location of the tail rotor

with reference to the fuselage mass centre one can
obtain:
- the thrust of tail rotor:

tr

P
tr

x

M
T 0= (2.12)

- the rolling and yawing moments produced by
the tail rotor:

 trtrtr zTL −= ,      trtrtr xTN −=       (2.13)

3. Solution of the problem

As it was mentioned above, in the present
case, the flutter phenomenon for the helicopter
staying on the ground has been investigated. The
numerical simulations have been performed
according to results of experiments performed for a
Polish „Sokol” helicopter. During these
experiments, the flutter was excited by changing
the displacements of the mass centre of the blade
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airfoil. The flutter phenomenon was simulated in
the same way .

The numerical analysis was based on the
set of Eqs.(1.20). Some results of computation are
presented in this paper. For all presented cases the
initial position of the helicopter has been disturbed
/particularly position of the second blade/.
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Fig.3.1.4 Angular rolling velocity )(tP
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Fig.3.1.5 Angular pitching velocity )(tQ
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Fig.3.1.6 Angular yawing velocity )(tR
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Fig.3.1.9 Trajectory of the fuselage mass centre on

gg yOx plane

In the first set of figures /Figs.3.1.1 ÷
3.1.9/ selected parameters of helicopter motion are
shown. One can see that all courses are damped. Of
course this means that helicopter is stable and no
instability can occur. Because only collective pitch
of the main rotor 

0θ  is not equal to zero, it is seen

that damped oscillations of blades occur.
Trajectory of the centre of fuselage mass converges
to the point of stability.
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Fig.3.2.4 Angular rolling velocity )(tP
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Fig.3.2.5 Angular pitching velocity )(tQ
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Fig.3.2.6 Angular yawing velocity )(tR
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Fig.3.2.7 Lagging of the second blade )(2 tξ

��

��

��

�

�

�

�

�




�

� � � 	 �� �


� ���

β�
��
	


�

Fig.3.2.8 Flapping of the second blade )(2 tβ
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Fig.3.2.9 Feathering of the second blade )(2 tφ

In Figs.3.2.1 ÷3.2.9 one can observe that
flapping and feathering oscillations don’t increase
and they have almost constant amplitude. This is
typical for non-linear motions. The area of these
oscillations is quite wide – particularly for
feathering. Because of that the lagging angle of
blade is changed – the average value of the drag
coefficient increases. We can also see that the rest
of parameters change because of couplings
between all motions.

In the last figures /Figs.3.3.1 ÷ 3.3.6/
some results of harmonic analysis are presented for
courses obtained for flutter simulation.  All
diagrams have been made according to [12] by
Schuster. Those pictures show power spectrums
obtained for the helicopter motion. From
comparison of our results with those presented by
Schuster a conclusion could be drawn that the
motion of the helicopter is chaotic.
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Fig.3.3.1 Linear velocity )(tU

�������

�������

������	

������


�������

�������

�������

� �� 	� �� � ���

ω ����	��

�
��

��
�

Fig.3.3.2 Linear velocity )t(V
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Fig.3.3.3 Linear velocity )(tW
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Fig.3.3.4 Angular rolling velocity )(tP
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Fig.3.3.5 Angular pitching velocity )(tQ
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Fig.3.3.6 Angular yawing velocity )(tR

4. Concluding remarks

This paper presents the method of the
flutter phenomenon analysis for the helicopter
treated as the system, which consists of the
fuselage and four rigid blades. The complete set of
nonlinear differential equations, which describes
flutter oscillations of a one-main rotor helicopter,
has been obtained. This set enabled us to study the
helicopter fuselage motion and motions of all the
blades of the main rotor motions. A numerical
analysis of the system dynamics has been
performed and some results are given in the paper.
These results show time histories for various
helicopter motion parameters. On the basis of the
obtained results we can conclude that the applied
model of the one-main rotor helicopter enables
more precise study of physical phenomena, which
can occur in the real simulations.

Making use of the model a further more
detailed analysis of the flutter will be performed.
The case of the flutter phenomenon during flight
will be included in that analysis.
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