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The present paper focuses on the applicability of statistical methods to helicopter design. Firstly the structure
and statistical dependencies of a database of 150 existing helicopters are investigated by means of principal
component and correlation analysis. The multivariate regression method presented is capable of automated
computation of regression functions for a variety of input and output parameters. Additionally a minimum
degree of complexity of the regression function is estimated by hypothesis testing. In contrast to most of the
approaches used in literature a polynomial regression model was chosen in this paper. The regression result can
be improved by using a partial data set, which can be extracted using manually defined criteria or - statistically
motivated and unsupervised - by clustering. Subject to the underlying database relative errors of less than 10%
for certain design parameters are achievable — allowing for a suitable application in helicopter preliminary

design.

INTRODUCTION

Building upon the knowledge gathered in recent
years concerning fixed-wing aircraft preliminary
design [1], DLR is currently developing an
integrated and automated tool for helicopter
preliminary design and evaluation. In this context
the applicability of statistical methods on
helicopter preliminary sizing and design has been
studied.

The data available for the preliminary sizing of
helicopters is generally very limited since only the
mission and performance specifications are
available at the beginning of the design process. In
many cases conceptual studies are therefore only
based on the experience of the design engineer.
However, the results of the early design stages
have a great influence on the subsequent design
process.

The use of statistical methods in the context of
helicopter design has infrequently been covered in
literature. Recent contributions were made by
Rand and Khromov in 2002 [2] or by Kim and Oh
in 2007 [3], both suggesting potential functions for
regression. Computational methods for helicopter
design not using statistics exclusively are
conventionally designed using iterative algorithms
(e.g. [4], [5]).

This paper studies the applicability of various
statistical methods to the early stages of helicopter
design. Physics-based methods are left out
deliberately in order to find out if fundamental
physical relationships can be reproduced using
sole statistical methods. Consequently the design
process is based on the customer specification of

maximum speed, range and payload only. At worst
this is the only information available to the design
engineer at the beginning of the design task.

HEeLICOPTER DATABASE

An expansive database of existing helicopters is a
cardinal prerequisite for the successful application
of statistical methods. In fact data collection likely
makes up the largest part of the amount of work
required to utilize statistics in preliminary design.
The database used in this paper contains a variety
of different parameters of 159 (conventional)
helicopters, among them main and tail rotor
characteristics and dimensions as well as engine,
performance and mass data. It was compiled using
various sources, mainly [6] and [7]. The studies
described in this paper use a subset of the database
with 16 design parameters. As some of the
methods used for the statistical evaluation require
fully populated matrices the number of helicopters
is reduced to 81 in this subset. The range of
parameters is shown in Table 1.

Correlation Analysis

The aim of correlation analysis is to measure
associations and dependencies between two
measured variables. Those dependencies are
usually quantified by correlation coefficients, the
most common of which is named by its developer
Karl Pearson. Alas, one major drawback of the
Pearson correlation coefficient is its ability to only
detect linear relations between variables.
Therefore the commonly known Kendall Tau rank
correlation coefficient [8] is used here, which only



parameter symbol  unit minimum maximum median

main rotor radius R m 3.6 17.5 6.4

number of main rotor blades bur 2 8 4

main rotor rotational velocity Qur rad/s 12.6 55.5 36.0

tail rotor radius R m 0.3 3.8 1.1

number of tail rotor blades brr 2 13 2

length (fuselage) l m 6.3 33.7 12.2

width (landing gear) w 1.6 7.6 2.5

height (overall) h m 24 11.6 3.8

number of engines N 1 3 2

takeoff power Pro kW 108 14914 962

empty mass mg kg 383 28200 2204

fuel mass mg kg 58 9600 590

maximum takeoff mass myo kg 621 49600 3561

maximum speed v km/h 139 365 259

maximum fuel range R km 213 1204 604

payload mp, kg 139 20000 826
Table 1: Range of parameters in the data set
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Table 2: Kendall Tau Rank Correlation Coefficients



measures the tendency of a variable to increase if
another variable does likewise increase. It can
adopt values between -1 and 1. Considering n
observations of two variables ¢ and w as well as

all possible (different) pairs of observations
(¢iwi),lpjw;) the Kendall tau correlation

coefficient is defined as

N--N
r=Nc=Np

1n(n-1)

where N¢ is the number of concordant pairs, for
which

(oi <oj rvi<vi)voi >0 rvi>v;)

and Np is the number of discordant pairs, for
which in contrast

M<WA%>wWW>WAW<W)

Table 2 shows the correlation coefficients of the
data set described above. Fundamental physical
relations are clearly mirrored by the correlation
analysis. There is a strong inversely varying
relationship between main rotor radius and
rotational speed leading to a bounded blade tip
velocity in order to reduce compressibility effects.
The physical dimensions are related to each other,
the predominant relationship between main rotor
radius and fuselage length is very plausible. The
mass variables are related among themselves and
form the major component of the takeoff power,
which can as easily be comprehended.

In regard to helicopter design it is clearly visible
that speed and range are ill-suited for statistical
evaluation as they show only weak correlation
values to all other variables. Therefore it has to be
kept in mind that the regression analysis following
is also based on a poor statistical basis for these
two input variables.

Principal Component Analysis

The Principal Component Analysis (PCA, e.g. [9]) is
in general used to transform a data set of
(possibly) dependent variables into a set of
independent ones. Those independent variables
(principal components) are linear combinations of
the original variables. Under certain circumstances
it is also possible to use PCA to reduce the
complexity of the data set. In particular, if few
principal components describe the majority of the
variance of the data set and those components are
linear combinations of again only few of the
original variables, it would be possible to describe
the main features of the data set by using only

those variables thus simplifying the data structure
significantly.

The covariance matrix Xy of any data set X holds
the variances of the data set at its main diagonal.
The remainder of the entries can be interpreted as
redundancies of the data set. Hence a
diagonalization of X, will lead to an optimal
representation of the total variance. Given a
standardized data matrix X an orthonormal basis
P is required, such that the covariance matrix of
the transformed data set Y = XP is diagonal. Now,

e (xp)

- L pTXTXP=PT (L XTX]

n-1

-1 yTy_ 1
EY - n—1Y Y= n-1
and therefore
T
ZY = P Z)“(P .

Thus P is the matrix of eigenvectors of Xy, which

in turn are the linear coefficient vectors of the
principal components. Furthermore it can be
shown that the ratio of the specific eigenvalue and
the sum of all eigenvalues of the principal
component concerned is equivalent to the fraction
of the total variance described by this component.
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Figure 1: Pareto diagram of the percentage of total
variance described by the principal components and
pie chart of the composition of the first principal
component

Figure 1 shows the percentage of the total variance
described by the 16 principal components. It is



clearly visible that the first component accounts
for about two thirds of the total variance.
Unfortunately this cannot be exploited to reduce
the complexity of the data set as this very
component is nearly equally dependent on all
original variables. In accordance with the result of
the correlation analysis the performance values
and blade numbers represent the smallest
fractions of the first principal component. As a
consequence a multitude of variables is necessary
to universally describe a helicopter. The use of the
maximum takeoff mass as a single design
parameter will, albeit widely used, statistically lead
to suboptimal results.

MULTIVARIATE REGRESSION

The studies presented in this paper are based on a
regression algorithm which 1is capable of
automated computation of regression functions for
arbitrary  input and output parameters.
Additionally a minimum degree of complexity of
the regression function is estimated by hypothesis
testing. In contrast to most of the approaches used
in literature a polynomial regression model was
chosen in this paper. Polynomial regression can be
carried out without iterative calculations and
provides a high level of flexibility.

Methodology

The well-known method of least squares estimates
an approximate solution of overdetermined
systems and is widely used for data fitting
problems. Given a data set

X112 o X1k V1
X=|: . y=|:

Xp1 0 Xpk Yn

of n observations of a dependent variable y and

n observations x; of k independent variables

& ...& and considering a linear regression
function with k coefficients b;

F(Err ol )=bg +by&y +...+ by

the sum of squared residuals is
n ~

Se = Z(Yi — Fxigreaxi )P -
i=1

By finding the roots of the partial derivatives of S,

with respect to the dependent variables the
minimum sum of squared residuals can be

obtained. Hence, the vector of coefficients can be
calculated with

b= (ZTZTIZT y

where
1
Z=|: X|.
1

Polynomial regression models can be implemented
by substituting every monomial by a single
independent variable and expanding the data
matrix accordingly. For polynomial regression
models (allowing the coupling of input variables)
of the degree g and k independent variables of

the form

g k k k
F(Ernli)=bo+ Y D b+ > > [T bigass

e=1 j=1 p=1q=2 a,b>0
g>p a+b<g

the number of monomials (and thus the number of
input variables for the linear regression problem)
is

m:(g+kJ:(g+k)!_

g gl k!

Hence the applicability of the algorithm is affected
by the size of the data set available. If the number
of observations (here: helicopters) is lower than
the number of monomials the system is not

overdetermined, ZTZ becomes singular and can
therefore not be inverted.

The maximum degree of the regression model that
can be obtained depends on the number of
observations and the number of independent
variables. Figure 2 shows that the number of
observations needed is rapidly rising with an
increasing number of independent variables. Thus
higher order relationships cannot be taken into
account if the size of the data set is limited.
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Figure 2: Maximum degree of the regression
polynomial g depending on the number of

observations n and independent variables k

There are a number of requirements for the
regression function. The data set should be
described by the regression function as accurate as
possible. For the sake of calculation effort a
minimum complexity of the regression function
leading to acceptable results could be desirable.
This becomes even more relevant if the regression
function is used for exploratory studies and must
hence be evaluated countless times.

Regression analysis can lead to very small
coefficients which do not have a substantial
influence to the overall result but can considerably
increase the complexity of the regression function.
By neglecting those coefficients a compromise
between the conflicting objectives (accuracy and
simplicity) can be found.

Hypothesis testing is a common way to determine
if a coefficient is zero with respect to a defined
significance level and can thus be neglected. For
every coefficient the null hypothesis (the
coefficient is zero)

Hoib,-=0.

is tested against the alternative hypothesis (the
coefficient if not zero)

Hy:b; #0

using the test statistic

where the variance of the coefficient is the
corresponding element of the main diagonal of the
data set’s covariance matrix

var(b;)==; = {SV_S(ZTZTI}

i

The number of degrees of freedom v of the
regression problem can easily be calculated as the
difference of the number of observations
(helicopters) n and the number of coefficients m

v=n—-m.

Given a significance level (probability of
incorrectly rejecting the null hypothesis) « the
null hypothesis is rejected if the test statistic is
bigger than the critical value of the
(1—%)-quantile of Student’s t-distribution [10]

t,12 (see figure 3).
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Figure 3: Student’s t-distribution with significance
level a

This method is remarkably useful for the chosen
polynomial regression model. There is no a-priori-
knowledge about the natural degree of the
polynomial best describing the data set. Eventually
a data set with p+1 observations can always be

exactly modelled by a p-th order polynomial

(assuming an injective relation).

The algorithm used here gradually increments the
degree of the polynomial model and uses the t-test
described above to afterwards simplify the
coefficient vector by neglecting the coefficients for
which the null hypothesis is not rejected. If all
coefficients belonging to monomials of the highest
and second highest order have been set to zero the
algorithm stops since the last two increases of the
degree of the polynomial did not improve the
result. The regression function resulting in the



smallest sum of residuals so far is considered the
best regression function found.

Results

The application of the described algorithm to the
helicopter data set results in 13 regression
functions for the dependent variables, which are
summarized in table 3. Although the number of
helicopters in the data set (81) would allow for a
fifth order polynomial with 56 monomials, the null
hypothesis approach effectively reduces the
number of coefficients resulting in first and second
order polynomials with two to five monomials. The
significance level was set to 0.1 for all subsequent
calculations. Almost every variable is dependent on
the payload being the only input variable with
second order relations as well. Speed appears in all
but 4 equations while range occurs in less than half
of the regression functions.

variable constant dependent on number. of
term V R mp monomials

MR v v 2

bur v v v 3

Qumr v v 2

rrr v v v 3

brr v v 2

l v v v 3

w v v v v 5

h v v v v 5

N v v v 3

Pro v v 3

mg v 4 2

m v v v 3

mro v 2

Table 3: Summary of the regression function
obtained using the data set of 81 helicopters

In order to quantify how well the data set is
represented by the regression functions the mean
absolute relative error over the whole data set was
calculated by comparing the values computed
using the regression functions with the original
helicopter data. Figure 4 (black bars) shows that
the mean error ranges from 10 to 45 per cent. The
physical dimensions are captured best while the
estimated values of masses and takeoff power are

less accurate. The large deviation of the number of
tail rotor blades can easily be explained by the
presence of helicopters with conventional tail
rotors as well as fenestrons in the data set.
Fenestrons consist of eight to thirteen blades while
blade numbers of conventional tail rotors do not
exceed five.

0% 25% 50% 75% 100%

Figure 4: Mean absolute relative errors of the
regression function obtained using the full data set
(81 helicopters, black bars) and the manually
reduced data set (36 helicopters, grey bars)

As the range of helicopters in the data set is still
widespread in terms of the dependent variables
the result could probably be improved by
extracting a smaller data set, which contains
helicopters of a similar class. As an initial approach
the reduction of the data set can be done manually.
Exemplarily a subset was extracted containing
helicopters with a payload centred around the
Eurocopter EC 135 payload of 785 kg. The upper
and lower bounds of the subset payload where
determined such that 36 helicopters (being the
minimum number of observations to allow for 4th
order polynomials) remain in the subset. The
regression functions were obtained for this subset
using the same algorithm. The mean absolute
errors are shown in figure 4 (grey bars). Compared
to the global regression the errors are of a similar
magnitude. The estimations of the physical
dimensions are slightly better whereas the discrete
variables (number of blades and engines) and most
of the mass parameters show even larger errors.
Using payload as the sole datum for the extraction
of a data subset does not account for any
differences in structural or system weights. Using



the maximum takeoff weight instead would
obviously produce better results (as can also be
seen by comparison of the correlation coefficients
for payload and takeoff mass, see table 2).
However, as the takeoff weight is not known by a
minimal design specification (consisting of
payload, range and speed only) it can not be used
in this case.

DATA CLUSTERING

Based on the results described in the previous
section statistical methods for the extraction of a
suitable subset were studied.

Clustering Method

The k-means algorithm [11] was selected for
clustering the data due to its straight-forward
implementation and well-established use in
science. Given a data set of n observations x; the

algorithm tries to partition the data set into k
clusters by minimizing the distance between the
data points and the corresponding cluster
centroids u;:

k
argsminz > d(x,-,,uj).

s j=1 x€S,

A variety of metrics can be used to obtain the
distances and cluster centroids, which in turn have
a considerable influence on the result. Four
different metrics have been compared in this
study:

a) Lz (Euclidean) distance

The most common distance metric is the Euclidean
distance

d=

Xi— ﬂJH .
b) L1 (Manhattan) distance
Using the absolute differences along the coordinate

axes as a distance measure results in the L; metric

d=

Xi_.”j"

c) Cosine distance

The cosine distance metric is based on the angle
between two observations which can be calculated
using the dot product

Xj Hj

d= cos(é(x,- —yj)):m.

d) Correlation distance
The correlation distance uses the (Pearson)
correlation coefficient r to define the distance

dzl—r(x,-,yj).
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Figure 5: Mean silhouette coefficients for different
numbers of clusters and distance metrics

The k-means algorithm requires the number of
clusters to be preset. The silhouette coefficient is
an appropriate measure to determine the natural
number of clusters of a given data set. It can be
determined for every observation and is defined as

1-2  jfa<b
-1 ifaxb

where a is the average distance of the observation
to the other points of the cluster and b is the
minimum average distance to the points of the
other clusters. Thereby the silhouette coefficient
combines cluster cohesion (the similarity of the
cluster and the observations within, a) and the
cluster separation (the dissimilarity of the clusters
to each other, b). The mean value of s can be used
to measure how appropriate the data has been
clustered. Figure 5 shows that the mean silhouette
value is mostly decreasing with an increasing
number of clusters indicating that only few
clusters are existent in the data set. Using only two
clusters is nonetheless inappropriate due to the
fact that the algorithm plainly sorts out the three
or four heaviest helicopters leaving the wvast
majority of the data set in the second cluster.
However, the number of clusters cannot be
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Figure 6: Clusters obtained using L; (Euclidean) distance (a), L1 (Manhattan) distance (b), cosine distance (c)
and correlation distance (d) metrics with centroids where applicable (crosshairs) as well as the corresponding
mean errors of the regression functions determined within the cluster containing the Eurocopter EC 135 (grey
bars) compared to the manual EC135-centred subset (black bars)



increased freely, because the number of
observations within each cluster is rapidly
decreasing, eventually rendering the regression
algorithm useless. Comparing the distance metrics,
the Euclidean distance yields a much better
grouping of the clusters than the other metrics.

Results

These considerations in mind the data set has been
clustered into four clusters leading to average
cluster sizes of about twenty helicopters. Figure 6
shows the distribution of the clusters (by way of
example on a plane of payload and main rotor
diameter). The L; and L; metrics mainly divide the
data set into clusters of helicopters with similar
mass parameters, whereas the other metrics
incorporate other variables to a much higher
degree. Nevertheless, none of the metrics is
capable of grouping the different anti-torque
devices together as one would probably prefer if
the clustering would be done by hand.

Comparing the resulting regression functions for
the clusters containing the Eurocopter EC 135 as
an example (see figure 6 on the right) to the ones
obtained by the manually extracted (payload-
bounded) subset there are no significant
improvements. The cosine distance metric leads to
slightly better estimations only, although of almost
all variables. All but the Euclidean metric cause the
regression algorithm to eliminate all coefficients of
some regression functions resulting in a constant
zero estimation and thus logically generating an
error of 100%. This is mainly attributable to the
small size of the resulting clusters. The significance
level should be gradually increased with
decreasing size of the data set in order to obtain
regression functions with reasonable levels of
complexity. Yet this is avoided here for the sake of
comparability.

APPLICATION

Although the effect on the average errors over a
subset is small, clustering can lead to significant
improvements in regard of a single helicopter.
Figure 7 shows the errors for the estimation of the
Eurocopter EC 135 data with the regression
functions obtained using different data sets. For
most of the design variables the results obtained
using the clustered or reduced subsets show a
significant improvement. The majority of variables
is estimated with an error of about 10% or less
using the cluster determined by the k-means
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Figure 7: Relative errors of the estimated values
obtained by the regression functions for the whole
data set (black bars), the manually reduced data set
(grey bars) and the cluster determined by the k-
means algorithm in conjunction with the Euclidean
distance metric (white bars), each compared to the
real Eurocopter EC 135 data

algorithm. Height and maximum takeoff mass even
show errors of less than 1%. The major
discrepancy regarding the tail rotor cannot be
solved as there are still helicopters with
conventional tail rotors and fenestrons present.

SUMMARY AND CONCLUDING REMARKS

A data set of 81 helicopters was studied. Speed,
range and payload have been selected as
independent variables being the essential part of
the customer specification. The 13 design variables
selected show considerable differences in their
statistical properties. The mass properties and
physical dimensions show the strongest
correlation to other variables. The performance
parameters (speed and range) are only weakly
related to the data set. This leads to a poor basis
for the estimation of design parameters using the
customer specification.

The regression algorithm presented is able to
automatically determine regression functions of an
appropriate complexity. The polynomial regression
model proves advantageous. The results show
minimum errors of about 10%, although rising to
more than 40% for certain parameters. The
extraction of a suitable subset as a basis for the
regression analysis can improve the result to some
degree, although it is important to maintain a
minimum cluster size to achieve acceptable results.



Applied to a specific helicopter the significant
improvements can be demonstrated for the
majority of parameters.

Statistical methods are well suited for the early
stages of helicopter design if a sufficiently large
database is available to base the calculations on.
Especially for unconventional configurations this
poses a problem as only few of those helicopter
models exist.

Concerning DLR research activities the method will
be used to obtain initial values for the helicopter
geometry and mass data, whereas simple physics-
based methods will be favoured for performance
and power calculations.
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