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Abstract: In this paper a time/frequency domain approach to rotorcraft model identification is presented and
discussed. The approach uses data collected in different identification experiments (corresponding to the
application of frequency sweeps, 3211 and doublet input sequeneces) to estimate both parametric black-
box state-space models using a subspace method and non-parametric estimates of the frequency response
function. Results obtained in the flight testing campaign for the identification of linear models of a light utility
helicopter are presented to illustrate the performance of the approach.

NOMENCLATURE

a position of Laguerre pole
f, p future, past horizon lengths

in CT-PBSID algorithm
q, p, r pitch, roll, and yaw angular rate

v output noise of state space model
w process noise of state space model
x state vector of state space model
y output vector of state space model

Nx, Ny, Nz longitudinal, lateral, and vertical
accelerations in body reference

δlon, δlat longitudinal and lateral cyclics
δcol, δped collective and pedal

1. INTRODUCTION AND MOTIVATIONS

The problem of rotorcraft model identification has
been studied extensively over the last few decades
and many methods and tools to handle it have been
developed [1,2]. In most of the rotorcraft identification
literature either frequency-domain methods or time-
domain ones are used. Frequency-domain meth-
ods assume that identification-oriented flight testing
consists in (manual or automatic) frequency sweep-
s, through which accurate non-parametric estimates
of the frequency response functions associated with
the flight dynamics of the helicopter can be comput-
ed. Time-domain methods, on the other hand, rely on
excitation inputs such as, e.g., the 3211 sequence [3],

which excites a wide frequency band within a short
time period. Both approaches have advantages and
disadvantages, but surprisingly enough no significant
effort has been made so far to combine the two view-
points to develop a unified approach allowing the re-
finement of parametric models using information com-
ing from the two domains. Furthermore, most existing
methods solve the parameter estimation problem iter-
atively, and thus call for an initial guess to start the
process which may not be easy to define particularly
in multivariable problems.

In the system identification literature, on the oth-
er hand, multivariable, non-iterative identification of
linear models is routinely addressed using the so-
called Subspace Model Identification (SMI) method-
s [4,5], which have proven extremely successful in deal-
ing with the estimation of state space models for MI-
MO systems. Even though SMI methods are particu-
larly well suited for rotorcraft problems (the subspace
approach can deal in a very natural way with MI-
MO problems; in addition, SMI algorithms can be im-
plemented with numerically stable and efficient tools
from numerical linear algebra; finally, information from
separate data sets, such as data collected during d-
ifferent experiments on the system, can be merged
in a very simple way into a single state space mod-
el), until recently these methods have received limited
attention from the rotorcraft community, with the par-
tial exception of some contributions such as [6,7,8,9] in
which however only methods and tools going back 10
to 15 years in the SMI literature (such as the MOE-
SP algorithm of [10] and the bootstrap-based method
for uncertainty analysis of [11]) have been considered.
Therefore, the further potential benefits offered by the
latest developments in the field have not been fully ex-



ploited. Among other things, present-day approaches
can provide:

• unbiased model estimates from data collected
under feedback (see, e.g., [12,13,14]), as is fre-
quently the case in experiments for rotorcraft i-
dentification [1];

• analytical [12,15] and numerical [11,16] methods to
compute the variance of the estimates, which can
be used in the eventual assessment of model
quality;

• continuous-time models from (possibly non-
uniformly) sampled input-output data [17,18], us-
ing data transformations based on, e.g., the La-
guerre basis [19].

Preliminary results obtained using continuous-time S-
MI on data collected in piloted simulations have been
presented in [20], while a detailed case study dealing
with the attitude dynamics of a multirotor UAV has
been presented in [21]. Since then, a systematic ap-
proach consisting of a multi-step procedure exploit-
ing the best features of a number of existing methods
and tools to achieve identified models of improved ac-
curacy has been developed at Leonardo Helicopters
and applied to the problem of characterising the flight
dynamics of several prototypes at different forward
speeds, altitudes and take-off weights. The identified
models have been successfully used for the assess-
ment of the Automatic Flight Control System (AFCS)
and for the dynamics validation of a nonlinear physical
model.

In this paper the proposed time/frequency domain
approach to rotorcraft model identification will be p-
resented and discussed and results obtained in the i-
dentification of linear models of a flying helicopter pro-
totype in several flight conditions will be presented.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the linear, time-invariant continuous-time
model

ẋ(t) = Ax(t) +Bu(t) + w(t), x(0) = x0

y(t) = Cx(t) +Du(t) + v(t)(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are, respectively,
the state, input and output vectors and w ∈ Rn and
v ∈ Rp are the process and the measurement noise,
respectively, with covariance given by

E

{[
w(t1)
v(t1)

] [
w(t2)
v(t2)

]T}
=

[
Q S
ST R

]
δ(t2 − t1).

The system matrices A, B, C and D are such that
(A,C) is observable and (A, [B,Q1/2]) is controllable.
Assume that the following measurements are avail-
able:

• datasets {u(ti), y(ti)}j , i ∈ [1, N ], j ∈ [1,K] of
sampled input/output data (possibly associated
with a non equidistant sequence of sampling in-
stants) obtained from the true system are avail-
able. Specifically, data corresponding to the re-
sponse of the helicopter to frequency sweeps,
3211 sequences and doublets have been collect-
ed.

• similarly, estimates T (jωi), i ∈ [1, nω] of the fre-
quency response function of the helicopter, ob-
tained from measured responses to frequency
sweeps, are available, together with the corre-
sponding values of the coherence function.

Then, the problem is to provide estimates of the s-
tate space matrices A, B, C and D (up to a similar-
ity transformation) on the basis of the available da-
ta. Note that unlike most identification techniques, in
this setting incorrelation between u and w,v is not re-
quired, so that this approach is viable also for systems
operating under feedback.

3. ROTORCRAFT LINEAR MODEL IDENTIFICA-
TION

The approach presented in this paper focus on the
identification of linear models for flight dynamics, rely-
ing on the idea that low amplitude helicopter dynamics
is well described by a linear model, assuming that air-
speed, weight, centre of gravity, and altitude remain
fixed. For this reason the three considered inputs se-
quences are applied to each axis in the same flight
condition, while remaining close to the trim point.

More precisely, the approach to linear model identi-
fication for rotorcraft dynamics discussed in this paper
follows the procedure depicted in Figure 1. As can
be seen from the figure, and as mentioned in Sec-
tion 2, the identification procedure uses input/output
data collected in flight experiments in which three dif-
ferent types of input sequence are used, i.e., frequen-
cy sweeps, 3211s and doublets. Frequency sweep-
s are the main source of information to identify the
helicopter dynamics, while the doublets are used to
cross-validate the identified models. At the end of
the procedure data corresponding to the application
of 3211 sequences is used to validate the results.

In the following subsections the main steps in the
overall identification procedure are discussed.

3.1 Nonparametric frequency response function
estimation

The commercial tool CIFER [1] is used to compute
nonparametric estimates of the frequency response
functions of the helicopter, using the measured time
responses to the frequency sweeps. As is well known,
CIFER is a very reliable tool to carry out this task, as



Figure 1: Scheme of the model identification procedure.

it has the desirable features of being able to extract
frequency response function estimates from data al-
so for multivariable systems, suitably taylored for the
needs of rotorcraft identification problems. The output
of this step is the set of estimates T (jωi), i ∈ [1, nω]
of the frequency response function of the helicopter
mentioned in Section 2.

3.2 Parametric black-box identification

The model identification of helicopter dynamics
is performed using the Continuous-Time Predictor-
Based Subspace IDentification (CT-PBSID) black-box
algorithm, which uses time-domain data to compute
a black-box estimate of a linear state-space model in
the form (1). A detailed presentation of CT-PBSID can
be found in previous publications [18]; in this paper only
a concise description of the algorithm is provided:

• the time-domain data is converted to the La-
guerre domain by means of the transformations

ũ(k) =

∫ ∞
0

`k(t)u(t)dt

ỹ(k) =

∫ ∞
0

`k(t)y(t)dt(2)

where ũ(k) ∈ Rm, ỹ(k) ∈ Rp and `k(t) is the im-
pulse response of the k-th Laguerre filter, defined
as

(3) Lk(s) =
√
2a

(s− a)k

(s+ a)k+1
.

• Using the transformed data, algebraic data equa-
tions are formed, to represent the input-output
behaviour over a ’past’ horizon p and a ‘future’
horizon f (in terms of the index k, now interpret-
ed as a discrete-time index).

• From the data equations an estimate of the mod-
el order and of the state sequence of the system
over the future horizon can be computed.

• Finally, the state space representation of the sys-
tem in the discrete-time k can be estimated and
the original continuous-time dynamics is recov-
ered.

3.3 Cross validation

The CT-PBSID algorithm depends on some hyper-
parameters, namely

• Laguerre pole a, i.e., the position of the dominant
pole of the Laguerre filters used to filter the input
and output signals (see equation (3)). It should
be greater than the dominant poles of the system
and small enough to avoid numerical issues;

• past and future windows lengths, supposed e-
qual (f = p).

Note that the choice of model order, i.e., the supposed
black-box model order, not directly linked to the ex-
pected physical differential equation order, must be
also selected at this stage. The values of the hyper-
parameters and the order of the model are chosen in
the cross validation step, by minimizing

• the time-domain simulation error of the cross-
validation data, i.e., the difference between mea-
sured and simulated outputs;

• the frequency response function error, i.e., a
weighted combination of the magnitude and
phase errors between the frequency response
function estimates provided by CIFER and the
frequency response functions of the identified
models provided by CT-PBSID.

More precisely, the three hyper-parameters are s-
elected using two time-domain metrics (JTDmax and
JTDmedian

) of the simulation error, i.e., the difference
between simulated and measured outputs, and four
frequency-domain metrics (JFDmaxDA

, JFDmedianDA
,

JFDmaxCA
, and JFDmedianCA

) of the frequency re-
sponse error, i.e., the difference between transfer
functions and frequency responses.

The metric JTDmax is defined by adapting the root
mean square fit error JRMS

[2] for the multi-output
case taking the maximum, as follows

JTDmax = max
j∈outputs

JRMS(j)

= max
j∈outputs

√√√√ 1

N

N∑
i=1

(zj(ti)− yj(ti))2.

It provides a useful overall measure of time-domain
accuracy of the model. The simulation of unstable
models, required by the computation of JRMS , could
be affected by numerical issues, and so a more robust
cost function is preferred, i.e.,

JTDmedian
= median
j∈outputs

JRMS(j)



= median
j∈outputs

√√√√ 1

N

N∑
i=1

(zj(ti)− yj(ti))2.

where the median operator is involved. In case of s-
ingle output the two indexes JTDmax and JTDmedian

coincide.
As for the frequency-domain, the cost function [1]

JFD =
20

nω

nω∑
i=1

Wγ(ωi)

[(∣∣∣T̂ (ωi)∣∣∣− |T (ωi)|)2
+

π

180

(
∠T̂ (ωi)− ∠T (ωi)

)2]
is used, where T̂ (ωi) is the frequency response of
the estimated model, T (ωi) is the frequency response
computed from the flight data, n is the number of fre-
quencies ωi selected in the bandwidth of interest, and
Wγ(ωi) is a weighting function defined as

Wγ(ω) =
(
1.58

(
1− e−γ

2
xy(ω)

))2
where γxy(ω) is the coherence function.

As already seen above for the time-domain root
mean square fit error JRMS , JFD is adapted for the
multi-output case taking the maximum, as follows

JFDmax
= max
i∈inputs∧j∈outputs

JFD(j, i).

It provides a useful overall measure of frequency-
domain accuracy of the model. A more robust cost
function can be considered also in the frequency-
domain, i.e.,

JFDmedian
= median
i∈inputs∧j∈outputs

JFD(j, i).

Since the frequency-domain matching of the direct
axis responses is the most valuable, the last two met-
rics are computed for the subset of all direct-axis (DA)
responses, i.e., q/δlon, p/δlat, r/δped, Ny/δped, and
Nz/δcol, and all the other responses, i.e., cross-axis
(CA) responses. The six metrics are usually different
so the best compromise between them is searched.

3.4 Time-domain validation

The validation step provides the final check of the
performance of the identified model, in the time-
domain; indeed it is necessary to assess the capa-
bility of the identified models to describe data which
have not been used neither for parameter estimation
nor for cross-validation.

4. FLIGHT DATA RESULTS

In this section some results of the flight identifica-
tion campaign for a light utility helicopter are present-
ed, with specific reference to some flight test results in

terms of time-domain validation and Bode diagrams.
More precisely, five speeds at the same flight condi-
tion (same weight, centre of gravity, and altitude) have
been taken into account. As modern control theory al-
lows to include in control law analysis and design the
cross-axis effects if a MIMO model is provided, MI-
MO models have been identified considering as mea-
sured outputs the body angular rates, i.e., p, q, r and
the linear accelerations Nx, Ny, and Nz, and the pilot
inputs (δlon, δlat, δcol, and δped).

4.1 Flight manoeuvre guidelines and constraints

In model identification experiments, the information
content about the system under test is provided by the
amplitude and phase relationships between the mea-
sured control inputs and outputs. The test input is one
of the major factors that influence the identified model
parameters accuracies. According to [1], it should at
least meet the following requirements:

• FCS off, since it tends to suppress the excitation
signal and to correlate the input channels;

• all helicopter modes within the frequency range
of interest must be properly excited;

• flight test duration must be long enough to pro-
vide sufficient low frequency information;

• aircraft response should stay within small pertur-
bations limits from trim so that linearity assump-
tions are met;

• minor additional pilot inputs are allowed, e.g., for
maintaining the aircraft close to the trim condi-
tion.

Furthermore, usually the pilot maneuvers provide
better signal-to-noise ratio since he/she is able to
adapt the input magnitude according to the flight con-
dition in every moment, the opposite of a predefined
input signal. The magnitude of the input must be in
the range of 2 ÷ 10% of control inputs. The resulting
aircraft response should be around the trim of

• ±3÷ 10% deg, attitude;

• ±3÷ 10% deg/s, angular rates;

• ±5÷ 10% knots, air speed;

• ±3÷ 10% deg, sideslip angle.

In order to improve the frequency response com-
putation, the input commands should start and end in
trim condition.

Similar requirements and constraints apply for
3211s and doublets, though the excitation bandwidth
of the signal is strictly tied to the time duration of each
step [2].



4.2 Time-domain comparison

The doublets are simple, fast, and cost effective
maneuvers, and also they excite helicopter dynam-
ics on all axes, even if not with the accuracy of 3211s
and sweeps. For these reasons more than one repeti-
tion is usually asked to the pilot and those not used in
the cross-validation step can be used in the validation
step, as in the present case.

In Figure 2 a train of doublets is shown. The pilot
is always in control of all axes to meet the constraints
around trim discussed in the previous section.

Figure 3 shows the capability of the identified model
to predict the helicopter response. Note that even if
the model fails to match completely the amplitude of
some of the peaks in the response of the rates, the
overall dynamics is fully captured. Indeed looking at
the simulation of the acceleration components, they
appear to replicate the visible trend of the measured
ones.

4.3 Frequency-domain comparison

The accuracy of the identified model can be verified
in the frequency-domain by comparing its frequency
response function to the non-parametric estimate ob-
tained using CIFER. As is well known the reliability of
frequency response estimates is well quantified by the
coherence function. In this study the coherence func-
tion plot is always omitted; the frequency respons-
es are shown in the figures for all frequency points
with coherence greater than 0.4. Information about
the coherence is included by colouring samples of the
on-parametric frequency response estimate as linear
functions of the coherence, i.e., black circles indicate
coherence equal to 1, while light grey circle indicates
coherence close to 0.4, as shown in 4.

The results are depicted in Figures 5-21. As can be
seen from the figures, direct axis responses are well
captured in the bandwidth of interest, but also sever-
al cross-axis responses are close to the flight data.
Moreover the identified model is able to capture the
natural frequency and the damping ratio of the dutch-
roll mode even if the quality of the frequency response
tends do decrease as shown in Figure 13.

4.4 Analysis of flight mechanics modes

Finally, in this section the variation of the flight me-
chanics modes, e.g., dutch-roll and short period, as
a function of the airspeed is shown. The considered
speeds are such that Vi > Vi−1, with i = 2, 3, 4, 5. As
shown in Figure 22 the damping of the dutch-roll mod-
e tends to decrease for increasing airspeed, whilst the
short-period mode shifts from an almost stable posi-
tion to a slightly unstable one.

5. CONCLUDING REMARKS

A systematic approach to the identification of
black-box models for rotorcraft dynamics combin-
ing time-domain and frequency-domain data using a
continuous-time subspace identification algorithm has
been described. With respect to existing methods,
the proposed one does not include any iterative pro-
cedure, so that no initial guesses for the dynamic-
s are needed, and can cope with data generated in
closed-loop without introducing any bias. Experimen-
tal results obtained in the identification campaign for
a light utility helicopter have been used to illustrate
the time-domain and frequency-domain performance
of the proposed method.
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Figure 2: Validation data: doublet input signals applied on the control channels.
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Figure 3: Validation data: responses of p, q, r, Nx, Ny, and Nz (measured: dashed line; simulated: solid line).



Figure 4: Legend of coherence function colormap.
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Figure 5: Bode plot of Nx/δlon.
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Figure 6: Bode plot of Ny/δlon.
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Figure 7: Bode plot of Nz/δlon.

M
ag

ni
tu

de
P

ha
se

Frequency 

 

Identified Model
FRF

Figure 8: Bode plot of p/δlon.
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Figure 9: Bode plot of q/δlon.
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Figure 10: Bode plot of r/δlon.
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Figure 11: Bode plot of Ny/δlat.
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Figure 12: Bode plot of Nz/δlat.
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Figure 13: Bode plot of p/δlat.
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Figure 14: Bode plot of q/δlat.
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Figure 15: Bode plot of r/δlat.
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Figure 16: Bode plot of Nz/δcol.
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Figure 17: Bode plot of q/δcol.
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Figure 18: Bode plot of Ny/δped.
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Figure 19: Bode plot of p/δped.
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Figure 20: Bode plot of q/δped.
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Figure 21: Bode plot of r/δped.
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Figure 22: Eigenvalues of the flight mechanics modes for
increasing speed.
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