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1. INTRODUCTION 

This work deals with recent developments of a boundary element methodology for the unified 
analysis of aerodynamics and aeroacoustics of potential, transonic flows. This technique is adopted 
because, with respect to CFD approaches, it allows an easier and more computationally efficient 
analysis of flows around complex configurations like, such as a free-wake analysisi of a helicopter 
rotor in presence of the fuselage. 

Boundary integral equations have been the first successfull approach for the analysis of tran­
sonic aerodynamics. In fact, the pioneering works of Oswatitsch it] and Spreiter and Alskne i2], 
for steady, two-dimensional, transonic flows, precede the finite-difference work of Murman and Cole 
i3], which is considered a milestone in the development of numerical techniques for the solution of 
transonic flows. 

Further boundary integral equation approaches are investigated by Nixon i4, 5] who presents a 
small perturbation scheme for the solution of unsteady two-dimensional and steady three-dimensional 
flows, and Piers and Sloof i6J, who apply a shock capturing integral formulation to the TSP model. 
Tseng and Morino i7J present the first transonic results based on the formulation of Morino i8J. A 
different formulation for the full-potential equation has been presented by Sinclair i9, 10] and applied 
to two-dimensional and three-dimensional configurations, respectively. In contrast to Tseng and 
Morino i7J, where the field sources are due to nonlinear terms, in Sinclair i9, 10] the field sources 
include all the compressibility terms (linear and nonlinear). This implies that the differential operator 
for the boundary integral formulation of Tseng and Morino i7J is that of the wave equation, whereas 
for Sinclair i9, 10] is the Laplacian. 

Applying a TSP formulation similar to that used by Tseng and Morino i7J, lemma, Mastroddi, 
Morino, and Pecora ill], present the first validation for three-dimensional unsteady flows, whereas 
in Morino and lemma it2] the extension to the ·full-potential analysis is considered for fixed wings. 
Preliminary results for the simulation of transonic flows around helicopter rotors in hover are presented 
in Morino, Gennaretti, lemma, and Mastroddi i13], who include a derivation of the TSP model for 
rotors in hover. 

Here, we derive a potential integral representation where the linear contributions are expressed 
by body and wake surface integrals, whereas a field term takes into account the non linear effects. 
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In particular, we investigate two different ways of treating the non linear term in the full-potential 
formulation, for application both in the aerodynamic and aeroacoustic analyses. 

2. FULL-POTENTIAL TRANSONIC FLOWS 

The governing equations for compressible, irrotational, isentropic flows of ideal gases are the 
expression for the velocity v = V' </>, the continuity equation, 

Bernoulli's theorem, 

ap - + V' · (pv) = 0 at 

a4> + !v2 + h = h at 2 oo 

(1) 

(2) 

(where his the hentalpy), and the isentropic law for ideal gases PIP'= constant. Combining the 
above equations, considering that h ="!PI (1- 1) p, and moving all the nonlinear terms to the right 
hand side of the equation, we obtain the following form for the nonlinear equation of the velocity 
potential (in air frame of reference) 

(3) 

where a~ ="!Pool p00 is the speed of sound in the undisturbed flow, and a denotes all the nonlinear 
terms. 

The full-potential form for a is (see [14]): 

a= V' · [(1- _!_) V't/>] + ~ (1- _!_- + a<P) = V'. i) + af, 
Poo at Poo aoo at at {4) 

where PI Poo = [1- (¢ + v2 l2)lhooJllb-t). 
In order to complete the above differential formulation one needs boundary conditions. The 

surface of the body SB is assumed to be impermeable, i.e., n · (v - v B) = 0, where v B is the velocity 
of the point on the surface of the body S8 ; at infinity the condition is v = 0 (in the air frame of 
reference). In terms of the velocity potential, these boundary conditions are 

where x =VB· n, and 

at/> 
- =X an 

</> = 0 

forxon SB (5) 

at infinity (6) 

The boundary conditions on the wake state the absence of penetration (v·n = vw ·n) and of pressure 
discontinuity (~p = 0). These, in terms of the velocity potential, yield (see, e.g., [14]) 

~ (~!) = 0 (7) 
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and 

Dw (C.¢) == 
0 

Dt 
(8) 

where Dw/Dt == ajat + vw · \7, with vw being the velocity of a point of the wake xw (i.e., the 
average of the velocity on the two sides of the wake). Equation 8 states that 2:.¢ is constant in time 
following a wake point and equal to the value it had when xw left the trailing edge. This value is 
obtained for C.¢ on the body also at the trailing edge (trailing edge condition). 

3. INTEGRAL FORMULATION FOR RIGID BODIES IN ARBITRARY MOTION 

In this section we present a boundary integral formulation for isolated rigid bodies in arbitrary 
motion introduced by Gennaretti [15] and further developed in [16], in which the wake surface is 
assumed to be fixed with respect to the body. In order to accomplish this it is convenient to consider 
two different spaces: the air space (i.e., the space rigidly connected with the undisturbed air) and 
the body space (i.e., the space rigidly connected with the body). Let the transformation relating e 
to x be given by 1 

e == e(x,t) == eo(t) + R(t)x (9) 

where R(t) is rigid-body rotation tensor relating the two spaces, whereas eo is the image of the point 
x == 0. Note that Eq. 9 implies, for any I== l[e(x,t),t], 

al all +vx·V'I (10) 
at at {=const. 

where \7 I denotes the gradient of I in the body space, whereas Vx denotes the body-space vector of 
the velocity of a body-space point x relative to the air space; Vx is related to Vx (air-space vector of 
the velocity of x relative to the air space) by 

where 

a 
Vx ==at e(x,t) == Rvx (11) 

The equation for the velocity potential in the body space is given by 

\724>- _1_ d14> == q 
a2 dt2 

00 

xEV (12) 

(13) 

denotes the body-space time derivative following a fixed point of the air space, whereas V denotes the 
volume where the flow is potential (i.e., the whole space minus the solid volume and an infinitesimal 
volume that includes the wake surface). 2 

1In this section, the vectors in the body space are denoted with Latin boldface letters, whereas those in the air space 
are denoted with Greek boldface letters. In particular, (denotes the position vector in the air space, whereas x denotes 
the position vector in the body space. 

2In the following, V is assumed time independent in the body space; this implies that the formulation is applicable 
only to bodies without wake {non-lifting bodies) or the flows with a wake that does not move with respect to the 
body frame (e.g., helicopter rotors in hover and propellers in axial flows). A genera.! formulation ha.s been presented by 
Gennaretti [17[. 
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The fundamental solution of the operator on the left side of Eq. 12 satisfies the equation 

2 1 d~G 
V' G- --- = 8(x- x ) 8(t- t ) 

a~ dt2 * * 
xE'V (14) 

with boundary condition G(oo,t) = 0 and initial conditions G(x,oo) = G(x,oo) = 0. For the cases 
of subsonic and transonic flows considered here, G has the expression 

-1 
G(x,x,,t,t,) = -.8(t- t, +8) (15) 

41rl1 

where 0 (the time required for a signal to propagate from x to x,) satisfies the equation a 00 0 = 
lle(x,t,- 0)- e(x,,t,)[[. In addition, e = [e [1 + e· Vx/aooel] 0

, where e = e(x,t)- e(x,,t,) and 
e =II ell, whereas [ ... ]0 denotes evaluation at timet= t, -B. 

Multiplying Eqs. 12 and 14 by G and 4> respectively, subtracting, using Eq. 13, integrating 
with respect to time, and taking into account the initial conditions on 4> and G, one obtains 

t/>(x,,t,) =- fo"" Jffv V' · (GV't/>- tf>V'G)d'V dt 

-a~ f" Jffv Vx • V' ( Gd:tt/> - t/> d:tG) dV dt + fo"" Jffv G a dV dt (16) 

Next, note that for any I and w, V' · (fw) =IV'· w + V' I· w, and that V' · Vx = 0 (since the body 
space moves in rigid-body motion). Then, applying Gauss' theorem, Eq. 16 as well as the conditions 
at infinity for 4> and G, yields 

tf>(x,, t,) = fo"" 1fs ( G :~ - 4> ~~) dS dt 

+a~ fo"" 1£ ( cd:t- 4> d:1°) v" · n dS dt + f" jjfv G a dV dt (17) 

where S is the boundary of '\! and n is its outwardly directed unit normal. 
Next, using Eq. 15, integrating with respect to time, and setting G = -1/4,-§_, one finally 

obtains the following boundary integral representation, in the body frame of reference, for the velocity 
potential t/>, for a body in arbitrary rigid motion: 

. aq, ac aq, . ae 2 

[ 

• ] B 

tf>(x,, t.) = 1fs G an - an 4> +ate (an +a~ Vx. n) dS 

-a~ 1£ [a t/>:t (vx ·n Vx · V'O -Vx ·n)r dS + Jffv [car dV (18) 

where 

a a 1 
- = - - -v · n v · V' a• a 2 X X n n a.00 

(19) 

If x, is in V, Eq. 18 is an integral representation for t/>(x,, t,) in terms oft/>, aq,jan and aq,jat 
on S. On the other hand, if x, is on S, Eq. 18 represents a compatibility condition between t/>, 
aq,jan, and aq,jat for any function 4> satisfying Eq. 12. 
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In the case of non-lifting bodies, we identify S with the surface of the body, S8 . Then, 8¢/8n 
is known from the boundary condition, and the compatibility condition yields an integral-differential­
delay equation which may be used to obtain the values of¢ on S from those of 8¢/Bn. For the case 
of lifting bodies, an explicit treatment of the wake is required. Consider an isolated rotor in hover or 
an isolated propeller in axial flow and identify S in Eq. 18 with a surface SBw surrounding body and 
wake. Letting the portion of SBw that surrounds the wake approach Sw we obtain a contribution 
on the wake surface that is related only to t:J.¢ (as t:J.(8¢/8n) = 0 on Sw, see Eq. 7); t:J.¢ is obtained 
from Eq. 8. 

It should be emphasized that, once the potential is known on S, Eq. 18 with x, in the field 
yields the value of¢ anywhere in the field. Therefore, we evaluate the aeroacoustic field, i.e., the 
pressure in the field around the body, by using the potential solution in the Bernoulli theorem. 

4. FIELD TERM CONTRIBUTION 

In this section we present two different approaches for the evaluation of the non linear field 
term which is present in Eq. 18. 

Noting that the term u in the volume integral may be written in the form u = Y' · b + 8bj8t 
where b = b - bvx and the time derivative is calculated in the body space, in order to avoid the 
calculation of the divergence, the formulation introduced in [7] consists of an integration by parts 
that yields 

jjfv [u]
0 

GdV = -1( [n · b] 0 
GdS + Jjfv [ ~; + ~~ · Y'B] 

0 

GdV - Jjfv [b] 0 
· Y'GdV (20) 

having considered that 

o B [8bl 0 

Y' · [b] = [Y' · b] - 8t · Y'B (21) 

Then, dividing the surface of the body into M surface elements Sm, the fluid volume into Q volume 
elements Vq and applying a zeroth-order discretization, the discretized version of the non linear term 
is given by 

M Q 
"" L Bkm [Xm] 0

>m + ,LHkq · [bq] 0
•• 

m q 

Q Q . 
+ _L:Hkq. [bq]o•, + L Hkq[bq]o•, (22) 

q q 

where Xm = -n(xm) · b(xm), [ ... ]0>m denotes evaluation at the retarded time t - Bkm, and the 
coefficients are defined in the following way 

where 6k = c! . 
x.=xk 
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In the alternative approach, the field term is discretized in its original form. Therefore, follow­
ing the discretization criteria described above, and remembering the expression of the space coefficients 
yield 

(24) 

where (IV· b] 0•) denotes the mean value inside the volume element 'Vq of the term [Y' · b] 0
, with 

the delay IJ evaluited with respect to the point x, = Xk· Next, in order to avoid the evaluation of the 
divergence operator, we consider Eq. 21 and perform the following convenient transformation 

(25) 

where n is the outwardly directed unit normal to the surface 8'Vq, whereas ( [i>] 0' • V'IJk) q denotes 

the mean value inside the volume element 'Vq of the term [bt · V'O, with the delay 0 evaluated with 
respect to the point x, = Xk.· 

The first approach represents the extension to the full-potential description of the formulation 
already used in [7], [11], [12] and [13] under the assumption of the TSP approximation. The second 
one, to the authors knowledge, is here adopted for the first time. The comparison between the space 
coefficients used in Eq. 22 and those used in Eq. 24 evidences that, at least from the computational 
point of view, the approach hen. introduced appears to be more convenient to apply, since does not 
involve vectorial coefficients. Therefore, it is particularly suitable for the analysis of three-dimensonal 
flows around wings and rotors. 

5. NUMERICAL RESULTS 

First, we consider the subsonic propeller aeroacoustic problem examined experimentally by 
Magliozzi [18] and computationally by Farassat and Succi [19). This case consists of a three-bladed 
propeller, having radius R = 1.295m, average chord c = .1538m, and non-linear twist varying from 
50° at the root to 23° at the tip (and by us approximated with a linear twist varying from 50° at the 
root to 18° at the tip). The tip Mach number is MTIP = .71, corresponding to a rotational speed of 
1, 760rpm. Figure 1 presents the aeroacoustic pressure in the plane of the rotor, at 7 .28m from the axis 
of the rotor, as a function of time: the curve identified as "Method 1" is obtained with the approach 
discussed at the end of Section 3 (i.e., by evaluating <P in the field using the integral representation, 
Eq. 18, and then applying Bernoulli's theorem). The curve identified as "Method 2" was obtained 
using the integral representation of Morino and Gennaretti [20] (very similar to that of Section 3) of 
the differential equations of Ffowcs-Williams and Hawkings [21]. The pressure is determined by the 
present methodology neglecting the contribution of the non linear terms. Both results are compared 
to the experimental data of Magliozzi [18) and the numerical results of Farassat and Succi [19), 
(who use a very simple theory for the aerodynamic calculations and the integral representation of 
Ffowcs-Williams and Hawkings [21)). This result shows the capability of the aeroacoustic analysis 
here discussed to capture the acoustic signal generated by a propeller, with an accuracy comparable 
with that of the methodologies commonly used. 
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In the following we shall consider transonic results, where the contribution of the nonlinearities 
has to be included. The above formulation, valid for three-dimensional unsteady flows, has been 
applied to the analysis of rotary wings, under the assumption of transonic small perturbation (TSP), 
and to the analysis of two-dimensional steady flows in the full potential form. Figure 2 deals with 
a very preliminar result for the analysis of a steady flow around a non-lifting rotor (collective pitch 
0 = 0), under the assumption of transonic small perturbation (TSP). The tip Mach number is Mtip = 
0.83. The pressure distribution at the tip section is compared with results obtained by FDM [22]. 

The steady state is reached by marching in time, and the two-dimensional flow is approximated 
with a three-dimensional one with very high aspect ratio. The numerical applications presented here 
deal with supercritical flows around a NACA 0012 airfoil with zero angle of attack. Figures 3 and 4 
show the solution obtained for a free stream mach number Moo = 0.8. The formulation for the non 
linear terms is that of eq. 20. The pressure distribution is compared with the results of Ref.[9]. The 
mesh used for the result presented is n. = 40, n, = 10, where n. and nu represent the number of 
elements in the x and z directions, respectively. The pressure distribution appears to be in excellent 
agreement with the reference solution. The shock predicted by the present formulation (dotted line) 
is correctly located and present an slightly higher intensity. Note that the pressure discontinuity is 
confined within only one element. This is accomplished by an accurate evaluation of the velocity in 
the vicinity of the shock; in fact, the chord wise distribution of the velocity potential (Fig. 3) presents 
an actual discontinuity of its slope, smoothed-out only by the discretization. 

Figures 5 and 6 present the solution obtained for the same test case, using the formulation of 
Eq. 24. The reference solution for the pressure distribution is the same of Fig. 4. The dimensions of 
the grid for the BIE solution are n. = 36, n, = 9. The comparison reveals an anomalous behaviour 
of the solution near the discontinuity, whereas in the remaining portion of the domain the solution 
appears to be correctly predicted. This effect is currently under investigation. 

6. CONCLUDING REMARKS 

A boundary element method for the unified aerodynamic and aeroacoustic analysis of rotors 
has been presented. The formulation is valid for isolated rigid bodies in arbitrary motion in transonic, 
potential flows. 

In particular, the full-potential conservative form of the non-linear field term has been studied. 
Its contribution has been developed following two different formulations: the first one stems from an 
integration by parts and is the extension to the full-potential case of the formulation introduced in [7] 
for the TSP analysis, whereas the second one has been introduced here and is particularly suitable 
for the analysis of three-dimensional flows. 

The numerical results presented indicate that the new formulation for the evaluation of the 
field term needs to be improved. In particular, the behaviour of the solution in the shock region 
is not in good agreement with the one obtained by the formulation using integration by parts, and 
investigation upon shock jump conditions is necessary. 

Finally, it has also been demonstrated the capability of the formulation presented to predict 
with a good accuracy the acoustic signal genarated by a rotor. 
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