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ABSTRACT

The ONERA Semi-Empirical Model for the 2-D Dynamic Stall of Airfoil.
prusentedat the 6th European Rotorcraft and Powered-1ift Aircrafl Forum has beon
applied to the case of a helicopter rotor system in forward flight.

The paper describes both aspects of stability and periodic response

Form of the Floquet modes-subharmenic oscillation and ailmest periodic
osciliation,
Evolution of these modes as functions of the rotor advance ratio,
. Pericdic response and aerodynamic force and moment,
Comparison with & Quasi-~Steady aercelastic calculation showing the of fur T
ol unsteady phenomena.

INTRODUCT ION

The methods employed at ONERA for the analysis of the rotary wing aervelas-
ticity are drawn from The lirear principles involving, for The aerodynamic fiel:d,
the 3-D acceleration potential lifting surface theory (1.2}, and for the sfructu-
ral dynamics, the modal representation of partial modes characterising separately
the helicopter blade and fuselage (3).

AT high fiight speeds of the rotorcratt, aimed by the helicopter industry, 1he
linear apalysis ceases to be valid. Since as a consequence of high speeds, The
rotor retfreating blade can penetrate locally in The regions of dynemic staif,
while the rotor advancing blade Tip is submitted to unsteady transonic shock wawv.
effects. Such aerodynamic non-linearities can only be freated, on theoretical
grounds, by the general equations of {luid mechanics,

For engineering purpose, ONERA, in collaboration with the SNIAS and the CLAL,
have recently made considerable effort in establishing a semi-empirical Z-D dyna-
mic stall modetl {4.5%) in order fo represent the dynamic stall characteristics ot
an airfoil section. This paper describes the 1st attempt in the application of
the cited model to the case of a helicopter blade in forward fiight.

Though relatively simple compared with the real complex phenomenon of rotor
blade dynamic stall, the unsteady Time derivatives of force and moment involved
in the model intreduce in the blade dynamic equations additional aerodynamic
degrees of freedom (what is fermed as "hidden" D.0.F, in mechanical vibration:,).



The presence of these aerodynamic D.O.F. originafes, from the necessity to simu~
late, by the model, the Time hisfory effects of the fluid flow. These additional
aerodynamic D.0.F., added to the structural D.O.F., lead to the final form of

+he aeroelastic equations of the form of a large set of linearized differential

equations with periodic coefficients.

The difficulfy of a large system of equations 1s avoided in this first ap-
plication by considering a simplitied rofor system where There is no gyroscopic
coupling between blades and the rotor hub. The single blade analysis is further
simplified by assuming the blade o be rigid in hoth flap and lead lag, but is
only Torsicnally elastic. The structural variables are then The rigid blade
flapping angte and the torsion mode generalized coordinates. It is believed that
this simplified scheme for the rotor system is safficient to describe phenomena
such as stall fluftter and subharmonic oscillation as recorded by helicopler
flight tests.

This paper presents both aspects of stability and periodic response :

Form of the Floquet modes -subharmonic and almost periodic oscillaticns,
Evolution of these modes as a functicn of the rotor advance ratio,
. Comparison with guasi-steady aeroelastic calculations showing the effects
of unsteady phenomena.

1. Kinematics of a blade element

The kinematics of a blade element will he described by The superpasition of
mouvements composed of the advancing flight velocity Vi of the helicopter, the
angular velocity of rotation {2 of the rotor, the rotation of the angle & of the
rigid blade flapping motion, the rotetion of the angle @ of the blade's collec-
tive & cyclic pitches, and the elastic deflection of the blade sections in
torsional deformation @.

Let S (I j k) be an orthonormal base (fig. 1}. The origin of 5, coincident
with the cenfre of the rotor hub, advances at the unitorm flight velocity W,
while the vector of rotation f& ties constantly along the k axis, inclining at a
rotor shaft tilt angle (3CTA )} with Vea . With respect to a fixed reference systen :

-%mj?r:ﬂ
V. =S %,
W CoA

Fig. 1 : Rotor system in forward
flight




The following orthogonal transformations of bases will be carried out in
order To express conveniently the blade element coordinates.

Sllﬂ (i1j1k;) is obtained by rotating S through a finite angle (V) - e
about K.

S, (igjoky) is obtained first by rotating $; through an angleS(t+) about i,
then by displacing its origin through a distance yp along j|.

S3 (i3izhz) is obtained first by rotating S, through a finite angle & (1)
about j,, then by displacing its origin through a distance Yp along jo.

S1, S, S3 are related, for all vectors, by the orthogonal rotation matri-

cas
Sy = Spky ; Sp = Sikp 5 S, = SK;
with ‘ ‘ . :
S CeSY o 4 0 O%g cosx O J-W)
ky = | =Cos ¥ Sinp 6 ko = 0 Coiff =S ky=f ¢ 1 O
o o 0 sinp caafl -Siay O Lo/
From figure 2, one identifies that 'MV: 2t ( 2. = constant) and

ﬁg(%)(=0(l) ; 1st order small quantity) are_respectively the blade's azimuthal
position and flapping angle. & = @ (t) + » (y) + @ {y, t) is the local instan-
taneous angle {(composed of the cyclic & coliective pitches & (1), biade twist

D (y}, and torsional deflection qb(y, 1) (=G(1}) between the tangent to a
blade section and the rotor tip-path plane (isjo!}.

g{t)+vV(y)

Fig. 2 : Simpiified helicopter rotor system

The local bases S3 are everywhere coincident with the local blade section
tangents. In admitting that the blade torsional deflection induces no variation
in tength fo its longitudinal neutral fibre, the position vector of a blade &le-
ment is expressed by its iocal cartesian coordinates '

5]

Referring to the fixed coordinate system $
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The veloci+y is then obTained by differentiation. Expressing in the rotating
reference system S, the velocity V of a blade element is then :

) [~ VoaSing [—-fz(ru- +4 )~ XK'W(—’Z-"M/HWW 2
V:P:,S:Kf 0 +S ZXCOJM(J +Sm/€(e+¢)) ﬁ(“s'hﬁ XSmNCoJﬁ)J(l)

Voo Co3 A xcmuc&%(9+¢)+§(raﬁﬂ+xanyim )

with r =y + yp

1.1 - Model represeniation

The blade's elastic torsional deformation wil! be expressed by a modal su
perposition., Let #. (y) be the spatial function defining the torsicnal deflection
mode shapes of The'blade cantifevered on a non-rotating fixed hub, and s; (%)
the generalized coordinates. @ is Then written as :

é(y, =QZ\®i (y) s; (1) =@ s
- £
With @ Theline-vector of etements @., and s the column vector of elements

5.. One will desrgnaTe henceforth & as !The diagonal generalized rigidity matrix,
o% elements & W, /Z] 3 where;ﬁii are the diagonal elements of the generali-

i o [t

zed mass matrix’ /tg
and W the corresponding torsional modal circular frequency.

2. Equations of motion

let g (T} the column, of dimension n = m + 1, of the generalized coordinates

q = ¢ B,

The Lagrange equations written in terms of the coordinates q are given by :

_d..é_a..u_{)é-ﬁ.w_i-_f}_:?_:Q
dt g 0q 09 04

where & , U and D are respectively the kinetic energy, potential energy and ‘the
dissipation function of the system integrated over all the blade elements

-1 |Vvdm , u-1dxd
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and @ represents the column of the generalized aerodynamic forces of unsteady
lift and pitching moment.

I't is assumed that the dissipation arising from the structurail damping will

be negligible compared with thnl originated from the aerodynamic forces. The
dissipation function D will lterefore not be taken into account.

Applicatien of the Lagrange equations, retaining only terms of The st orde:
leads to the following system of 2nd order differential equation

M(f)§+8(f)é+k(t)9=f(‘fua(t,q,éyé) 2.1)

- //(rixzsina)dm _.f./rXCoJégdm,
-j/rxcaf9¢dm A

_f/x_g',‘“ eédm.

//Xs'r“'\26¢df4’f/

2 /](rir_yo-xfc;h?é)dm —f/( rty yxcos@ &dm/
_j/(r+yo)xc:ue¢dm, b’[xzz+//x2cOJza¢§dw

| /fx (é‘rco\séf-f.’i)('é,fr‘kle +a2(r+yo)s.‘n e)a’m
= [ x*( & +0’sin0 ces8) Plin

One notes that the M, B, K are periodic matrices having The same periodici-
ty as the input cyclic pitch. Though they conserve the usual forms of a gyrosco-
pic system :

M=M, and ¥q #0, OMO>O

B = =B and Q8Q = O,or purely imaginary number

K = K, the classical stability criteria cannot be applied to the homogeneous
systems (2.1), since these matrices are not constant in Time.

All the present stage, it seems that the periodic coefficients appearing in
M, B, K may not be eliminated, nelther by a type of multi-bladed coordinate
transformation, nor by refereing the position variables with respect to a par-
ticular reference frame. In any case, it appears tThat there is no need to try fo
eliminate these coefficients, since, as will be shown later the unsteady
aerodynamic forces will Themselves introduce extra variable coefficients.
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Q :/(CNW+CM§)dj (7.0

blade
where
1 2 réod &(¢) { 272
- L. = sPcV(rt)
W - 7 Fevine) ’ é 2F ¢(9) (7.2)
with

2 2 z
V = (ﬂ(%+r‘)+l{h§‘;'ﬂf1$‘m\{/) +(VmC°M 1)

3, Non-llinear unsteady agrodynamics

The non-linear unsteady aerodynamics presently adopted is based on the
"Semi~Empirical Model For The Dynamic Stall Of Airfoiis In View Of The Applica-
tion To The Calculation Of Responses of A Helicopter Blade In Forward Flight",
ref. (5), developed recently by ONERA. The mode! concerns an airfoitl section
executing forced oscillation in pifch in 2Z=0 flow, Physical ceonsiderations and
arguments based on experimental observations both on the time history effect
of the flow and on the evolution of the responses in the frequency domain, led
to the establishing of functicna! relationships relating The input variables
(incidence, angular pifch rate, mach number, and ftheir time derivatives) and
the output variables (Overall [ift and pitching moment coefficients and their
tTime derivatives). These functicnal relationships are in the form of two dif-
ferential equations of the 3rd corder with variable coefficients. The coefficients
of the equations are then determined, for a given airfoil, by identification
of the fest results of the 2-D airfeil in static and in small amplitude harmonic
osciltation or random vibration configurations. The model!l has been applied to
cases of large amplifude oscillations in pitch of the same airfoil and comparisons
of the predicted |ifts and moments with those of the experimental results were
satisfactory.

Application of the model to the case of a helicopter blade in forward
flight presents some difficulties

- The variablie coefficients of the model's equations depend on the local
Mach number, and on the local aerodynamic incidence of the airfoil secticon ; the
latter being partly unknown a priori.

- The unsteady Mach number effect arising from the resclved in-plane component
of the helicopter forward flight velocity,

-~ Combined motions of blade flap, cyclic pifch and biade torsicnal elastic
defcrmation,

One wili assume the hypothesis of tThe quantitative equivalence between the
unsteady aerodynamic characteristics resulting from the blade's verticai heaving
and pifching motions, In fact, the experimental resuits of reference (7) indicated
clearly the validity of this hypothesis in the helicopter operating range of fre-
quencies and amplitudes, The effects of these twe types of motion will therefore
be superimposed, as has been done in deriving the 2-D aerodynamic incidence (zgn.
6).

One will further assume that the variation of the blade local Mach number
may be regarded as quasi-steady, since this variaticn is essentially due fo the
in-plane 1 per rev. resolved cocmponent of the flight velocity, and thus is of low
frequency. However, in this first application, one will, for simplification,
regard the Mach number as constant (M = 0,3).
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Yol teeneral ized aerodynamic forces

Aw it the classical -0 sirip theory, it is admitted that the rotor gweroidy-
aoamic flow field may be considered as two-dimensional for all local blade

seciiuns.,

[ol's consider, ligue. 2 and 3, an elementary blade seclion of lengih dy
inclined al an angle oo wilh respect fo the i, axis. The aerudynamic foroe.
per anit lenglh of Lbolh Tift t, and pitching moment M (respeclively of coef-
ficients 07, and (), act al 1he blade's fore-quarter chord sedclion (x = 0). I

positive dire tions wf These torces are taken conventionally - indicated in
fig. 5. Let P = P {q,t) the position vector of this fore-quarier chord point,

of{1) the rotation vector of the blade section, and n = n (q, ) fhe unit veulo
normal to the blade section, ¥, M, and their respective coefficients Cy and vy

are classically related by
_'1 2 . f 2 2 *
F:5PviceGom s M:S5PpVcCuds
where 0 is the chord, P orthe fluid density and V (t) is The in.lantansous local
A=y velocity at point P, limited to The order 0O,

nF
Vo . ‘
; / rf+P Ve sinAcosy
< Al Y A Figs 3 ¢ 2-D sirfoil section
J} X = COSA+Y aerodynamic inci-
){ 0 dence i
ol L e

Qly,+r)+VasinAsing

The virtual work &) is then expressed by

Sw = /(JPF + SotM)dy

Iade

o SPn = Sq Vo SUnSt -
5§=(59§+-§%H)23

where TZL 2‘/}‘15 The local normal veJociTy to the blade section at 2. It has
been found that n does not depend on q.

The generalized aerodynamic force Q of equa+ion (2.1} is then

1 2.7 dUn ,
Q:z/FVC(Té—CN'* anM) Y (4)

2.2 2-D aerodynamic incidence

The 2-D aerodynamic incidence can be defined by considering the various lu-
cal 2-D velocities in planes containing the airfoil sections,
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In forward “fight, the total flux penefrating the rotor disk censists of
firstly, the normal component of the fiight velocity V., CosA of the
helicopfer and secondly, of the inflow flux, of induced velocity ¥ which, by
virtue of the momentum theory, maintains the equilibrium of the rotor 1ift and
weight. The expression for i presently adopted is given by reference (6)

))(yo"f"f‘r”) z Vo(/f'"g‘%:{anf cosy )

where Y, i3 the mean induced velocity, given as a function of the rotor mean
tift F_ '
° F.
o
Yoz ————+
2T Vo £ R .
-1 merl\ﬂ.
and X is The shew wake angle defined as ftan™!( —
)
Remark In specifying a blade pitch input, and in adopting such an inflow model

specified for instance by a flight test, and the trim condition must be checked
a posteriori when all calculations are done.

The inflow of induced velocity VW will be described in The base S5 This,
added to expression (1), leads to the fore quarter chord point velocity V in the

blade tip-path plane, base S5,

=Y +r) =V, SIS n Y

Vv =8, — Vo SinAcesY s+ A MoCosh+rv) |70 (2 (41
ﬁvm.fmﬂcahb +rf + pscost+y
lhe unit vector normal to a blade section is given by
S-:‘HV
n = 82 0
Cosi
and hence the blade section normal velocity :
QE=Vn=—sngLQ(%+r)+Vm, sinA  siny ()
.
+ cos & (‘@V% sinf cos\P +f';3 + \éo cospA +U)
The Z2-0 local aerodynamic incidence i is defined by the angle beftween the

2-D local blade section velocity (equation 4, neglecting the radial flow velocity),
and the tangent to the blade section (fig. 3). We have :

i;fb = - IV l|n| sin

In comparing with (5), one obtains for i

P . . (e
with ? . an‘? mecdﬂ-fu+rf@ ‘+ﬂVo°fn‘nAC-OJy/ )
"y (yo‘{'f') -+ VM ,‘-’:'HA Sim \,V

From (3) and {5}, the column of the generalized aerodynamic forces is expret-
sad by :
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The model's equations are given in reference (4,5) the normal |ift coef-
ficient Cy, and the pitching moment coefficient Cy, are each expressed by ths

sum of two functions :

CN = CN] + CNZ M

These functions are governaed by the following differential equations :

C.Nf'f‘AN CNJ':/‘N(CNOE-f/JNO?)J—{N-E{—i— "'/dN‘;; e, 3)
Cz + B, Cos # K Gz = = Ko (ACnp + ey S:4 o ) )
CM! + Am Cm 2 Am (Cigp+ Aux) + S d‘ 4 Au .5
Cm-z + By sz+ Ky(mz = -Ku (AC’Mo-feMj‘é ACMa) (8.6)
The symbol (") designates differentiation with respect to the physical
time T, i is the 2-D local aerodynamic incidence defined by (&)
And By = 2 &y iy ) Byt 20K ¥

K

1]

NG E ey ) Ky xR o)

With, respectively :

AN(L‘) s AM (Z) lift and moment delay parameters
Crpp (€3 5 Cpgpp( ) 11fT and moment Iinear static curves, extended up fu fhe
of 4 incidence i In consideration

-"-LJ tr;v({), ijd’M({) complex poles of the 2nd order systems
s ( £ . reduced damping coefficients asscciated with The compiex
w(t), Xp (L) holes
Llf’ (¢ l functions represent, for an incidence i, respectively fthe
Vo )r A(}wo( ) ditference between the linear static curve and the true =tati
curve of |if+ and moment,

the remaining coefficients represent, in a small amplitude
g sinusoidal motion, respectively :

o nS
AN,G , Am 8 slopes of the imaginary part of the lift and moment at high fre-
quency, &y & Sm § asymptotes of the real part of 1ift and moment, e, ey para-
meters deTerm|n1ng the phase shifts of the excitations, and exX (1) represents the
angular coordinate {(geometric pitch) of the airfoil section with respect to fhe

blade Tip-path plane.
Remark CN] and CNZ’ (respecitvely Cy; and CMZ) may be eliminated Ly combining

aquations 8.1, 8.3 and 8.4, (respectively 8.2, 8.5 and 8.6). This procedure will
result in a single 3rd order equation for CN’ (respectively CM).

Equations (8) are non-linear with respect to the incidence i, which is a
function of the generalized coordinate qg.

From (6), i = oY~ ?

z
=
=
Y
1]

tan™l (X,+x) .
Voo Cos A + v = 0(0), X, = rB+BVoSinAcesY =0 (1)

TR(Y, br) 4 Vo Sina SSu Y T Y b )+ Vo Sin ASTH Y
The development of f about )(o leads Fo :
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; =4;(J+e (9. 1)
o - -1 \
where o((r,{):(—)(tﬂu(y)-fcuz (Xo(‘r,é))

f -
d €(q,rt):= ré) - ——— X, (r,t, 8 B)
°" 9 i {4 Xal(rt) ! fo

0 (0) (9.2)

|

0 ) (9.3)

Favd
The system (8) may, at any instant, be !inearized about the variable X {r, 1)
the known part of fThe aerodynamic incidence. However, the linearisation scheme
is valid only if the linearisation distances € (q,tf) remain small at all time,
which is generally not the case for the retreating blade's inboard sectiocns,
Nevertheless, the problem may be solved iferatively as follows :
From (9.1), one writes :

L (x+8EY+(E-~AE) (10)

-t
The system (8) will now be linearized about (X +AE€),
where A€ take on the values of € resulting from previous successiva calcu-
lations.

Remark : Computational experience indicates that except for high advance ratios

where dynamic stel! is predominant, the rigid blade fiapping motion /3 is rela-
tively insensitive Yo unsteady effects. Thus the iteration can be initiated by a
non=-time consuming quasi-steady calculation. From (9.3) and (10), it is seen

the |inearisation distances :

(€-2€) >~ (Pp-Po) « 1

where qhgs is the torsional deflection derived from a quasi-steady calculation.

Since the difference between two torsional deflections (resuiting from 2 successi-
ve calculations) is usually small, the solutions converge, again, sxcept for
high advance ratios, in one single iteration,

~
The system {(8) linearized about (o +A€) leads Yo :

C“fo + ANCNI po fN, 'f"RN;q + qu. +1:V1?
Cus + By Cva + KnCuiz = .}ONz + RN29~+ vazé -+ qu
. v (1

C;’:” + A i ‘fM-f’LRWq * Smé t Try 9
C}qz t BMCMg ¥ Kt Crz = sz_ -!-Rﬂ,gq + Squ + T q

where the forcing terms N1 and{ﬁwz are given by : B
‘f,\/aj(rf{) :AN(C;VQZ +/<’N6 - 'ab—ec‘woi Aé)-/‘/éfv@
L2 (r €)= ﬁk,\,(,aqa_a%g@o(e,v&’-we))

And similarly for fmy and fy, by writing the subscript M in piace of N .

The aerodynamic rigidity, damping and inertial terms are given by .

Ryp(rst) -»(l{\o&‘n/](QSNZS}‘M\V—({NZ'+AN %iw(’ﬁ)cd)ﬂ)’ A %ﬂ&)




Syp rs ™) '=(—XN£" Voo St Cos P = &y ré—AN D—aC—GNi’Pr.Z 5 (ANA\, +&u)<§}

Ty Grn =(‘(S_N rz AN; )
Ry (1) (v Sk MG‘ ‘(2 Cos W +eszcosy/ ~ne ESimY) - Ky MC""@)

8yt (KN a;g"’”(eNZV CosY 4 bz de,rz), - Ky ey bﬂCuc ¢ )

Tyz (r, 1) -( Ky Co c)aﬂédvc FZ,0)

wnere 7 = (0 (Yiry+ Uo SinASinw) /v°
Rup e SM]' Tm1s Ruzs SM2 and TM2 can similarly be obtained by writing the

subscript M in place of N,

4, Final form of the dynamic equations

Consider the equations of motion (Z) and (7). The biade spanwise infegra-
tion of the generalized forces is performed by the Graussian numerical integra-
tion, and the system {Z) reads :

M(f)q1¢3mq+x(f)q-f(-é)+z H(Vg, ( (’7‘6&)%(?[&;&)#C/;fé’?;,i)é(%:f})

where g is The reduced abscissa of the kTP spanwise integration
point and Hk is the corresponding weighting function.

The I1ift coeftficient C)v@ Clvrg?+ Cﬁugﬁ , and the momenT coetticient
Cug = CJWq&-rCngﬁ at each integration point k, are given by fhe set of
equaT:ons (1)

Let X be the state vector, of elements q g Q/ﬂ*and The set of aerodyna-
mic coefficients defined on K total integration points ;

- 2 .
z (q, Q/ﬂ*) Yttty CN;Q ¥ szﬂ v C,vzk/flg,v Cm& 3 CM;;_& 4 C}wfe/ﬁ_y- >
t12)
Kth intfegration point
_(Z*being a normalisation angular frequency which is a priori arbitrary.
The dimension of X being L = 2n + 6K,

The global system is brought then to a set of L differential equations of

the 1st order : M(f) .,LB(-{) :G({‘)

with -~ -
- (07 f/()_*?" frhr s {mﬁa; O, nzl&/ﬂt gm,k s O, fm_é/()_*; e
N kTh integration point ~———

The global system of dynamic equations is moreover expressed in a more

classical form :
X '+A('UX-“- F({) ‘ (13)

with A (T) = lB, square matrix of the Lth crder, perdiodic in fime T of period
o< Zfi/fl And F (1) a column vector pericdic with the periodicify as A.
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liemark @ In most aeroelastic problems, the aerodynamic forces are eirher given

5y the classical Z-D quasi-steady strip theocry, or in the linear case, by

the Duhamel's superpositicn infegrals of the Kissner's and the Wagner's functions
(reference 3), the aerodynamic forces can be wriften expiicitiy in boih cases,

The aeroelastic coupling therefore intreduces ne extra aerodynamic degrees of

treadom (0.OWF.).

In the present report however, the aerodynamic model being in the form of
gitterantial equations with coefficients dependent on the local 2-U irncidence,
o procedure apparenily can be applied to eiiminate these extra D.0.F. The situa-
Tion is seemingly similar to that In mechanical vibrations whers the stru.tu-
r<s possess hidden U.U.F. Elimination of these hidden D0.0.f., if possible, is
usual iy achieved by carrying the structural variables fo their "augmented state",
i.e. by augmenting the order of the governing differential equations,

5. kesciution

5.1 Stabiiity and Floquet modes

The stability of the homogeneous set of equations (13} is studied by fhe
Ficquet's theory, of which a brief review is given here in in order to define
more precisely the form of the FLoquet modes,

Lonsider the homogeneous set (13)

X'fA(’(')x:O SEN

Let £ (1) be the non singular matrix, called "the fransition matrix",
formed by L independent solutions of (14) : (Xq..... X ). £ verifies

Z+AC)Z =0

A (t) being periodic of period & , it can be shown that

2(t+d)-2(+)C (1%5)

where U is non singutar, and is defined by

C - cxp(aa)
8= 1zl 2 (0)2(2))

The system (14} is reducible in the sense of Liapunov, as, by introdu-
cing Tthe periodic mairix L, of pericd &

L&) - 2(4) exp (-8Bt ) (1)

and hence (16)

The transformation

X(¢): L) Y({') (1d)

applies to (14) leads o The system of equations with constant coefficients :
3
Y-BY -0 (19)

with 8 =-L~1 (L + AL
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Assuming the general case where 8 is semi-simple, let A and U be
respectiveiy the diagonal matrix of eigen-values and the matrix of eigen-vectors

of B -
B = upU'
In comparing with (16}, ore identifies that A = exp (A&) and U are
respectively ihe diagonal matrix oi eigen-values and the mairix of eigen-vectors

of (@) 2(a)

The eigen-values A' of the maftrix B, which are called the characteristic
exponents of the periodic matrix A (), are given by

™, = PB(A - 1/& Iogl/\ | (20.1)
: /M’\J)- 1/3(96;&3%11) (20.2)

with Qd‘ mn‘i(g (20.3)
(’\ )

The stability crlferla of the system {19);, and hence of the original
system (14}, is defined by :

Rapso o 1Al

From (16), {17) and (18), the set of L transient solutions of the system

{14) can be written as : x({_) z({_)z"(o) X(OJ
-1 !
LU =xp (AOU 2 (03X (0)

By adopting the initial vaiues Z (0) U for X (o),one obtains :
X€):- 26U (21.1)
—_— LU exp(AE)
Thus The j solution x ({_) z( U
L(:jU Ajé (21.2)

The X; are called the Floquet modes of the riodic system (14}, reference (9},
These being so-called since substitution of (21,1} in the system {14) results
in the classical eigen~value problem of expression (19),

~1
The matrix ¢ Z (0) Z(&)) being real, its eigen-values are Then real
or complex conjugated pairs. Referring to expressions (20), complex conjugated
pairs of eigen-values A give rise also fo complex conjugated pairs of A and U
of the matrix B, and these can be combined to form a real Floquet mode :

)(J(f):z(f)(UﬂU ) 9 (21.3)
zeafm:) (g )
@2 As for real elgen values J Two cases are To be considered :
—_ e

>0; g) 0; and hen L:J';i-ﬁ_n_ . The XJ'
remains real, as it shéuld be, by combin Taon of Thé two conjugated solutions :

)(J'(f) 22(%)UJ-
LU (e
__..@(AJ')<0, 2(/1()');0; 5/ ::‘u , and éJd'- n‘((-f2gz) are equally

sclutions, and these can alsd be combined To form a real Floquet mode :

R

[}

[¥)

14

11}

1N

[} ]

149,1‘ (21.4)
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Jg(u: 220U,
- ge%‘f[-(é)%_gg<e ) (21w

Remark : |t is noted that the indefermination of A due To The additive factws

kT (20.2) has no consequence on the definition of the Floquet modes ; these
being defined implicitiy by the first terms of expressions (21.3, 21.4, 21.,5),

¢ “}?(H?ﬁ)

in constant coefficient differential equations, the mocdes are characte-
rised by eigen-scluticons of the form :

§(t) o , NS
XJ‘(H: QJ K(({/e / )

with t&j constant eigen=-vectors., The undamped modal wave forms are thus constanl:
or sinusoidal functions of Time. The undamped Floquet modal wave forms, however,
exhibit various time-varying features depending on the eigen-values A , or A :

-53?(/1/‘»0,9(/1;) -0,

From (z1.4}
ihe undampad wave forms are pericdic functions of time, of frequency 1 equal
to the rotor rotational circular frequency 2 .

_56(4])< 0 » 9(4}) = 0

From {21.5},
The undamped wave forms are periodic functions of time, of frequency 12/%. edila |l
tc half of the rotor rotational circular frequency (2 , irrespective ot rhe

indetermination of The additive factor Zkir
There are thus "subharmonic oscillations of frequencyl?/%.
- AJ purely imaginary pairs ;

From (20,2), (& = # Z L . The undamped wave forms again
exhibit "subharmonic osciliations" of frequency{2/4 equal to a quarter of the rotor
rotaticnal circular frequency (2 , irrespective of the indetermination of fhe
additive factor 2kw .

- General case of /U'complex conjugated pairs ;

From (21.3), the undamped wave forms are given by the sums of a number
(finite or infinite) of terms of periodic functions resembling those of Fourier
Series. However, the frequencies of these periodic funciions are not raticnal
ratios, and hence their periodicities have no largest common integral factor.
The sums of such periodic functions are therefore not periodic. The undamped
Floquet modal wave forms are then ever-changing in time, with no repetitive
patierns.

There are thus "almost periodic osciliations".

Lastiy, as for the transient effect, it is seen from (21.1) that
X (0 =L OYU ; and X (ng) = L () U exp { ng),by the periodicity of L .

4'11& h
Hence : \ . J . v .
XJ(M&)sz(c)e : X(/(c)Ad

Thus each jTh Floquet mode changes by a factor Aj from period to period.



5.2 Evolutions of the modal characteristics as function of advance ratio

Classical ly, evolutions of the modal characteristics, freguencies
th', anc damping o¢; as a function of the advance ratio , are traced by
obse¢ving their contindities for successive smali incremenis of /a. . Lo the
present probiem, the large number of degrees of freedom, originating essentially
frem the application of the ONERA 2-D Dynamic Stall Modal, renders ihe fracking by
this means particularly difficult,

However, precise definifion of thase evolutions is essential ; firstly
to define the stability envelope, and secondly to determine the additive factor
2k in &) (20.2), thus allowing to express the Floguet modes in more convenient
analyticalfforms. |t is proposed here to outline a methed to trace more efficient!.
the evolutions of these modal characteristics. The method is based on .considera-
tion of continuities of the eigen-veciors, for successive small increments of /ah

Consider the set of l|ineariy independent eigen-vectors (4f3 corresponding
to The eigen-values A of the matrix B, for a given advance raTioJ/Lb .

/

Define The space metric K such that :

<U, U > = U KUY = 5

where the symboils (+} and 5}' denote respectively the ceomplex conjugate transpose
and the Kronecker delta, d

) -1
te have U+KU:I ,andK=(UU+)

K is hermitan, positive definite, and the set of vectors UJ is k-orthogonal.

For smali increment A%AL of the advance ratio, let Vi=U;+All; be the

new set of linearly independent eigen-vectors of the matrix B +4 B, We can, in
principie, make each vector V; of the new set 1o correspond to a singlie vector
Uj of the original set. That is :

v& ‘\’(ﬂf 3 'A/t‘/CLL <«<
and < Vc' ; UJ‘ > = 0, 4/.(-»0 ; (22

except for an arbitrary normalisation factor., |t is noted that generaily i # j,
due fo the arbitrary classification of eigen-vectors.

By extension of the geometrical concept of the angle between two real
vectors, the "complex angle" o, ; , formed by two complex vectors V; and Uj
is defined by /

CJJ(O{;‘): <Ver Uj>

73N / (23)
I <V, V> <Y, U~
with | cos(\¥j ) I < 1, by the Cauchy=-Schwartz inequality. The complex number
cos(o(i‘) thug lies within the unit circle, and all arbitrary normal isation
factord alter only its phase,

Equation (22) expresses the "parallelism" of two vectors, and equation
(25) its degree of parallelism,

Continucus evolutions of the eigen-vectors, for small increments & .
can then be determined by measuring the angles formed by each vector V; of the
new set and ali the vectors U; of The original set. The criteria of two vectors
that are most K-parallel, and hence continucusiy evolved, is given by the

M ty .
{a:; | COS(NJJ ) |
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The situation may be readily illustrated, by analogy, by considering a
3-0 Euclidean space.

5.5 Forced response and periedic soluticns

Consider the non-homogeneous system (13}, of which the formai solution
is expressed by (referepce 10)

: -
X(t)-2O)X(0)+ | )Z (o) F(6) do (241
4]

With no loss of generality, Zi(o_) = | has been imposed.
IT is assumed that the homogeneous system (14) is stable, i.e.d%?]')‘SO
orl Ay l < 1, and it is proposed to defermine the pericdic solution of period
Z i (13,

By imposing the periodicity condition : X ( & ) = X (0), one obtains

X(0) = 2(2) X(s) +f2‘z(a)z"(o—) Flo) do-

To cbtfain all periodic sclutions of (13), one must solve, for X (0},
the system : ; ]

x(o) = (I-2(2)) | 2(2)Z (v) F(o)do

Provided that fthe system (14} has no periodic solution of period &, more
precisely, provided that none of the elgen-values A, of the matrix 8 is zZero,
nor of the form #+ {2k7i/& » equation (25) defines uniquely the inifial condi-
Tions X (0). The periodic solution of the system (13) are then obtained by
substitution of (25) in (24),

Remark : The transition matrix £ (1) is regular at all time, since det (Z (f)} =

exp (~J: f,-(ﬂ((,-)) AG ), and trA being finite. However, this matrix is often

ill=conditionned at low frequency {1 and hence at large T up fo the period &
[n fact, Z {t) decays rapidly due to the large aerodynamic pifching moment dis-
sipation, This ill-condifion leads to numerical inaccuracies in the inversion of
Z (1), as is required in integrals such as (24),

Computational experience showed that Z (t) is best computed by subdi-
viding T into elementary intervals :

T=d, > Thoi> civenn Ty > %5 =0
And write
Z (1) = exp (Cn) exp (Cqoqde.... exp (C1) I, (26)
by the multiplicative rule of fhe fransition matrix ;
C, - - o~ N AL (fa«tf&u) at, . )

The convergence and the truncation error of the approximation (26) had
been studied by (reference 11), and the efficiency of this approximation as
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compared to a 4Th order Runge-Kutta integration technique had also been shown by
(reference 12).

The matrix exp (Cy} can be calculated directly from its definition :

o e
exp (Ck) =Z: Ck,

MZ0 g
This being sc, the inversion of the matrix Z (1) in integrals such as
(24) may now be avoided, since the expression

-/ s M
2(¢)2 () , with t:%. Aty , 07« %At& s M Ehe
is now :
-1
Z (1Y Z (@) = exp (Cu) exp (Choq) vuvey exp (C)) 1ul exp (=Cy) .., exp (= o)
exp (=Cp) = exp (Cy) «uevs @xp (Cyyt)

by commutativity of the matrices two by iwo,

6. Numerical results

The single blade analysis described in the previous seciions has been
applied fo the case of a helicopfer rofor in hover k= 0, and in forward flights,
up TO/U= 0.35.

The rotor weight, geometry, velocities and conirol pitch inputs, and
the blade's characteristics, correspond to the flight cases of a research helicopter
of the SNIAS. The blade has been assumed fo be rigid in both flap and lead-lag,
put Yorsionally elastic, and is hinged to the roter hub with a certain offset.
The torsional deformation is based on the modal superposition of one single tor-
sional mode of modal frequency 183 rd/s. The column vector ¢ (section 2) is thus
of dimension 2, of elemenfs/g({) the blade flap angle, and s (f) the torsional
generalised coordinate.

The blade spanwise integration of the generalized aerodynamic forces
has been performed with 5 Gaussian integration poinis. The dimension of the
state vector X is thus 2 x 2 + 6 x 5. This then leads to a system of 34 non-
homogeneous differential equaticns with periodic coefficients (equ. 137,

All calculations are initiated by a non YTime-consuming Q-5 calculation for
which the incidence is defined by (%9.1)., The §~S equations are |inearized about
the known part & , which will be fermed as the linearized Incidence. The
resulting incidence p¢ +€ is then employed to |inearize equations (8) as indi-
cated in section (3},

6.1 Floguet modes

Figures (4) and (5) show the evolutions of the eigen-values A = X+ it
(equ. 20) of the blade flapping mode and the blade torsional mode, as a function
of the rotor forward f!ight speed.

Starting with the hover case, where the governing equations (14) are of
constant coefficients. The eigen-values are defined with no ambiguity. The rotor
constant rotational circular frequency L1 being 39.5 rd/s, it is seen that the
flapping mode frequency &is dropped to 36 rd/s {(instead of greater than f2 in
vacuum), due To the aercdynamic damping and rigidity effects. The torsional mode
frequency exhibits the same fendency.
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Fig. 4 : Frequency and damping of tThe

blade flapping mode as a f, of
flight speed
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Fig. 5 : Frequency and damping of the
blade torsional mode as a
f, of flight speed.

L (44=0.35)
o

100 200 260 Kmy/h

As ﬂl increases, The eigen-values are traced by continuities of their cor-
responding eigen-vectors, by the method indicated in section (5.2). Some difficul-
Ties may be encountered in the fracking process in regions of frequency crossings,
out these can readily be sclved. The additive factars Zk® in the definition of W
are then determined by continuities of the eigen-values.

One particular aspect is shown in the evolution of the torsional mode. The
eigen-values /| of the Torsicnal mode, starting as a complex-conjugated pair,
split up into two negative unequal roots, as from 200 km/h, These give rise to
two eigen-solufions (equ. 21.3) of fthe same circular frequency = (8u+412),
but of different damping coefficients of . The situation is analogous™fo that
of constant coefficient differential equations when one pair of the conjugated
eigen-values becomes real, except that in the latter case, The frequency is
focked at the value zero over a certain interval of the parameter AL , whereas in
the present Floquet modes, the frequency is locket at values that are odd multi-
ples of é% » thus subharmonic oscillation of frequency.z . In both cases, There

might be risk of instabiiify, since the splitting of The eigen-values could
evenfually ieads fo positive damping coefficient.

Figures (6) and (7) show the undamped Floguet modal wave forms (equ, 21}
8s a function of time, from + = O up fo T = 3Z corresponding to a flight speed
of 240 km/h (At = 0.32). |1 is noted that the transition matrix needs be calcu-
lated only from t= O up to the period & . The evolution in Time of the Floquet
modes at Tt >& can be obtained simply by use of equ. 15, :

Figure & corresponds to one of the eigen=values of the forsional mode, and
figure (7) that of the flapping mode. The flapping motion ﬂg , and the torsional
generalized coordinate s, fogether with the aerodynamic degrees of freedom
(0.0.F.), Cy = Cyy * Cyp (normal |ift coefficient), and Cy = Cy; + Cuz (pitching
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moment coefficient) at two spanwise blade sections : (Yo+r )/R = 0.41 and 0.96
corresponding to the Gaussian integration points (2) and (5}, are iliustrated in
both figures. As is mentionad, the forsional mode at this flight speed displays
the character of subharmonic oscillations of frequencyJ2 /2. I+ can be seen from
fig., (6), that all variables illu~!iated are periocdic functicns of period equal fo
284 , twice the rotor rotation . .eriod. |f can also be remarked that all the
wave forms have predominant E)J%/z frequency content, this being The frequency
{y of the torsional mode. As for the blade flapping mode, whose freguency 4
and 2 not being a ratio, it is seen from fig. (7) That all variables dispiay
almost periodic oscillation, with no definite repetitive pattern. In both cases,
it is observed-that there is non negligible participation of the asrcdynamic
0.0.F., due To strong aerocelastic couplings. As a matter of fact, at the flight
speed considered, some of the aerodynamic mode frequencies are in close viscinity
of those of the structural modes.

6.2 Pericdic responses

The periodic responses of the system (13) have also been computed at the
same flight speed of 240 Km/h.

Fig. (8.1) through fig. (8.8) show the evelutions of the periodic responses
of/g , 4 , and for the two previous blade spanwise sectians (2) and (5), the
aerodynamic incidence i, the aerodynamic normal |ift force F, and The aercdyna-
mic pitching moment M, for both the quasi-steady (Q-S) and the unsieady caicula-
tions.

Referring first fo figs. (8.3) and {(8.4) for incidences i1, the broken lines
represent ithe linearized incidences about which the Q-5 equaticons are |inearized.
The incidences resulting from the Q-8 calculaticn are represented by the dotted
iines, about which the unsteady equations (8 ) are then linearized. The solid
{ines represent the incidences issued from the unsteady calcuiation. i+ is seen
that for both blade sections, the differences between the =S and the unsteady
incidences are everywhere-small, thus the unsteady caleculation is regarded to
have converged in one single iteration, The same remark may be applied to the
@-S calculation. This then allcws to compare the two calculations, and hance to
illustrate the unsteady effects,

in comparing the flapping responses ﬁgresulfing from the two calculations
(fig. 8.1}, it is observed that the Q-5 respconse has the usual high 1st harmo-
nic content, whereas the unsteady response gives more imporfant Znd harmonic
content, though They both have approximately the same coning angle. This can be
attributed to the fact that in the Q+S theory, the blade flap forcing terms

2
0.13% radian AN

0.020

o 60 -0035

Fig. 8.1 : Blade flapping periodic res-  fig, 8.2 : Blade torsional periodic

ponse: __ unsteady calcuiation response : unsteady calculation
““““ quasi-unsteady calfcula- ~—Z-Quasi-unsteady calcula-
fion tion
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consist mainly of the cyclic pifch excitation {equ. 2.5), end of fthe static lift
function. In observing that at this flighT speed where stall is not yet predomi-
nant, the static 1ift is mostly linear and hence The forcing function is mainly
of the Ist harmonic. The higher harmonic contents in The unsteady calculation
are consequence of stronger unsteady aercelastic coupiings. In both cases, The
magnitudes of the blade flap harmonics are seemingly small, This being due to
the input of the rotor shaft tilt angle of 5.5°,

As for the-torsional responses 4 , fig. (8.2) ; it is known that the
airfoii section static pitching moment curve presents abrupt break tong before
the static lift stalt, the Q-$ torsional moment forcing function is thus of high
harmonics. Furthermeore, there beipg no aercdynamic pitchlng moment damping in
the Q=S calculation, the Q-5 forsional response is then of the same nature as
the forcing function.

The unsteady torsional response, however, is seen to be greatly filtered.
The filtering could be the resuit of the high aerodynamic pifching moment
damping and the effect of Time delay.

Fig. (8.3) Through fig. {8.8) present The comparisons of the normal |ift
forces F and the pifching moments M befween the Q-S and the unsteady calculations.
IT is observed that the |ift forces are quife insensitive to unsteady effects,
while for approximately similar incidence eveluticns, the difference between the
two pitching moments are much more significant,

CONCLUS 1 ON

A single blade analysis for a helicopter rotor in hover and in forward flight
has been developed, in which the unsteady aerodynamics was described by the
ONERA 2-D dynamic stali modef.:|t is considered that thowgh the rotor mechanical
system s greatly simplified, the present analysis is sufficient for the study
of phenomena such as the stali fiutter and subharmonic oscillation encountered by

helicopters at high flight speeds.

As a consequence of the particularity of The aerodynamic modet, the pro-
btem invoives, apart from structural variables, additional aerodynamic degrees
of freedom. The formuiation leads to a set of linearized differenfial equations
with periodic coefficients,

The stability of the aeroslastic system has been studies by the Floguet
theory., |t has been shown that subharmenic osciliaticen and almost periedic
osciilation of the Floquet modes can readily occur. While it is generally admit-
ted that responses of the form of subharmonic oscillation are due to non-lineari-
Ties in The governing equations, the present study shows that fThis feature can
also be attributed fo the properties of the linear periodic differential equa-
tions, where the situation may be close to that of instability.

Comparisons of the pericdic¢ responses for boTh the quasi-sieady and the
unsteady calculations have also been shown. |f is observed that while the blade
normal |ift force distribution is quite insensitive fo unsteady effects, the
blade aerodynamic pitching moment and the forsicnal response are subjected 1o
more influence of the unsteady aercdynamic pitching moment damping and time delay
effects.

The infroduction of the blade fiap and lead=lag elasTic deformations
should present no difficuity in principle by a modal superposition of the blade's
normal modes. The effeet of the C.5. offset with respect to the pitch or for-
sional axis can also pe incorporated with no greater inconvenience. i1 remains
to take into account by the aercodynamic mcdel the large variatiaon of The biade
Mach number to include the compressibility affect. These will bhe attemped in
future works,
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