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i\llSTRACT 

The ONERA Semi -Emp i rica I Mode I for the 2-D Dynamic Sta I I of /\ i rfo i I,, 
pr.•sen·l·edat the 6th European Rotorcraft and Powered- I i ft A i rcra f I Forum has be. '' 
app I i ed to the case of a he I i copter rotor system in forward f I i gh I . 

The paper describes both aspects of stabi I ity and periodic r<·sponse 

. Form of the Floquet modes-subharmonic asci I lation and almos!- periodic 
\)SCi II at ion, 

Evolution of these modes as functions of the rotor advanc8 ratio, 
. Periodic response and aerodynamic force and moment, 
. Comparison w i'th a Quasi -Steady aeroe I ast i c ca I cuI at ion sho•.-li ng thu d f u· t•, 

oi unsteady phenomena. 

INTRODUCTION 

The methods emp I oyed at ON ERA for the ana I ys is of the rotary wing aen)P I"'"
ticity are drawn from the linear principles involving, for the aerodynamic fi~l-1, 

the 3-D acceleration potential I ifting surface theory (1 .21, and for the- strllclll
ra I dynamics, the moda I_ repn:~sentat ion of part i a I modes characterising st.::par·a h--1 1,' 

the helicopter blade and fuselage (3). 

At high flight speeds of the rotorcraft, aimed by the hel icopier indusi·ry, Ill·· 
I i near ana I ys is ceases to be va I 1 d. S i nee as a consequence ot high speeds, -r hL--: 
rotor retreating blade can penetrate locally in the regions of dynamic stdll, 
<·1hi lethe rotor advancing blade tip is submitted to unsteady transonic shocl· '"'"v·· 
effects. Such aerodynamic non-linearities can only be treated, on theorPtical 
grounds, by the general equations of fluid mechanics. 

For engineering purpose, ONERA, in collaboration with the SNIAS and lh1e r:l·'l, 
have recently made considerable effort in establishing a semi-empirical 2-D dyn~
mic stal I model (4.5) in order to represent the dyna~ic stal I characteristics ot 
an airfoi I section. This paper describes the 1st attempt in the application ot 
the cited model to the case of a helicopter blade in forward flight. 

Though reI at i ve I y simple compared with the rea I camp I ex phenomenon of r o h_;r 
blade dynamic stall, the unsteady time derivatives of torcP anci rnornen~ involvvcl 
in the model introduce in the blade dynamic equations additiondl aerodynQm\c 
degrees of freedom (what is termed as "hidden'1 D.O.F. in mechanical vibr..-Jtiow,). 



The presence of these aerodynamic D.O.F. originates, fro~ the necessity to_s~mu
i.Jte, by the mode I, the time hi story effects of the f I u 1 d f I ow. These add It 10na I 
aerodynamic D.O.F., added to the structural D .. O.F., lead to the final form of 
th8 aeroelastic equations of the form of a large set of I inearized differential 
equations ~;ith periodic coefficients. 

The difficulty of a large system of equations is avoided in this first ap
plication by considering a simplified rotor system where there is no gyroscopic 
coupling bet~;een blades and the rotor hub. The single blade analysis is further 
simplified by assuming the blade to be rigid in both flap and lead lag, but is 
only torsionally elastic. The structural variables are then the rigid blade 
flapping angle and the torsion mode generalized coordinates. It is believed that 
this simp I ified scheme for the rotor system is sufficient to describe phenomena 
such as stall flutter and subharmonic asci II at ion as recorded by l1el icopier 
f I i ght tests. 

This paper presents both aspects of stability and periodic response : 

Form of the Floquet modes -subharmonic and almost periodic asci I lations, 

Evolution of these modes as a function of the rotor advance ratio, 

Comparison with quasi-steady aeroelastic calculations showing the effects 
of unsteady phenomena. 

1. Kinematics of a blade element 

The Kinematics of a blade element wi I I be described by the superposition of 
mouvements composed of the advancing flight velocity v~ of the helicopter, the 
angular velocity of rotation fl. of the rotor, the rotation of the angle !3 of the 
rigid blade flapping motion, the rotation of the angle e of the blade's collec
tive e cyclic pitches, and the elastic deflection of the blade sections in 
torsional deformation 0. 

LetS (i j k) be an orthonormal base (fig. 1). The or1g1n of S, coincident 
with the centre of the rotor hub, advances at the uniform flight velocity v"' 
while the vector of rotation Jl lies constantly alonq the k axis, inclining at a 
rotor shaft ti It angle (90~11 ) with V.,.., • With respect to a fixed reference syste:o 

(

- ~s;H!l ) 
v~ =S o 

\/..,., UJ" 
k 

Flight speed Voo 

v 

.;.o-2. 

Fig. 1 Rotor system in forward 
f I ight 



The follm.,ing orthogonal transformations of bases wi II be carried out in 
order to express conveniently the blade element coordinates. 

s
1 

(i 1hk1 ) is obtained by rotating S through a finite angle cY'UJ- TV2 
auout k. 

s~ ( izhkz) is obtained first by" rotating sl through an anglej3(t) about i j' 
then by cisplacing its origin through a distance Yo along j 1 . 

53 (i3hl,3) is obtained first by rotating 52 through a finite angle o( (t) 
about j 2 , then by displacing its origin through a distance Yp along j 2 • 

S I' Sz, SJ are related, for a II vectors, by the ortilogona I rotation rnatr·i-
ces 

SJ = Szk3 ; Sz = s 1 kz ; s 1 = Sl< I 

with 

) (i 5~M{) ( s·,/, .p c ().!, i/1 0 0 0 ) ( COJ()( 0 

k] = -Cc~ '(1 > i••tJ.' 6 kz = Cc.J~ - s·; .. A k ... = 0 1 
0 0 1 ;. ~" ft C""->/1 ·' -Si ~~~:>( 0 c., JOt I 

From figure 2, one identifies that "f= /lf: ( .12... =constant) and 
(J(~)(=O(l); 1st order small quantity) are_respectively the blade's azimuthal 
posi·rion and flapping angle. o( = a (t) + /) (y) + 0 (y, t) is the local instan
taneous angle (composed of the cyclic g... collective pitches e (t), blade twist 

i) (y), and torsional deflection¢ (y, t) (=0(1)) between the tangent to a 
blade section and the rotor tip-path plane Ci2j2l. 

k,~Q 

~ 
tlftJ+v(yJ 

i, 
Yo 

Fig. 2 Simp I ified he I icopter rotor system 

The local bases S3 are everywhere coincident with the local blade section 
tangents. In admitting that the blade torsional deflection induces no variation 
in length to its longitudinal neutral fibre, the position vector of a blade ele
ment is expressed by its local cartesian coordinates : 

Referring to the fixed coordinate systemS 
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The ve I oc i ty is then obtai ned by differentiation. Expressing in the rotating 
reference system s1, the velocity V of a blade element is then : 

with r = y + y p 

1.1 -Model representation 

The blade's elastic torsional deformation wi I I be expressed by a modal su· 
perposition. Let 0. (y) be the spatial function defining the torsional deflection 
mode shapes of the 1blade cantilevered on a non-rotating fixed hub, and si (t) 
the generalized coordinates. 0 is then written as 

.... -
¢ (y, t) =Z.0. (y) si (t) = 0 s 

i. I 

With 0 the\ine-vector of elements 0., and s the column vector of elements 
s .. One wi II designate henceforth (f as 1the diagonal generalized rigidity matrix, 
of e I ements ( .. = w. 2 n. . ; where h . . are the d i agona I e I ements of the genera I i-

I I I ~""'-1 I ........ I I 
zed mass matrl x !4. : l'l 

2 
"' . • x· cp. if>. d~n--
/~, - ' ' 

and w. the corresponding torsional modal circular frequency. 
I 

2. Equations of motion 

Let q (t) the column, of dimension n = m + 1~ of the generalized coordinates 

q=<fS,s) 
The Lagrange equations written in terms of the coordinates q are given by 

where C, U and Dare respectively the ~inetic energy, potential energy and the 
dissipation function of the system integrated over alI the blade elements : 

0: J:}} VVdm I 

..t6-4 



and Q represents the co I umn of the genera I i zed aerodynamic forces of unsteady 
I itt and pitching moment. 

It is assumed tllat the dissirution ar1s1ng from the structural da111ping wi II 
be neg! igible compared with tr· I originated from the aerodynamic forces. The 
dissipation function D >~iII li~<orefore not be taken into account. 

Application of the Lagrange equations, retaining only terms of the 1st order 
leads to the follmling system of Znd order differential equation 

.. • 
HU.J 'I+ B r-o 9 + /((-tJ9 = 

M 

8 ~ zfl. 

2 

K ~ fl. 

-JJ IX CDS!) ~d?IV 

< 2. I l 

_ jj r X cos (j cid141-
<z.:n 

2.4) 

( 2. 5) 

One notes that the M, 8, K are periodic matrices having the same periodic i
ty as the input cyclic pitch. Though they conserve the usual forms of a gyrosco
pic system 

t~ ~ M, and V q ~ 0 , QMQ > 0 
8 ~ =B and Q8Q ~ O,or purely imaginary number 
K ~ K, the classical stabi I ity criteria cannot be applied to the homogeneous 
systems (2.1 ), since these matrices are not constant in time. 

All the present stage, it seems that the periodic coefficients appea1·ing in 
M, 8, K may not be eliminated, neither by a type of multi-bladed coordinate 
transformation, nor by refereing the position variables with respect to a par
ticular reference frame. In any case, it appears that there is no need to try to 
eliminate these coefficients, since, as wi I I be shown later the unsteady 
aerodynamic forces wi I I themselves introduce extra variable coefficients. 
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Q - I ( C'N kl + c M f ) d J 
blade 

where 

1 z (rcas (}(t)) 
-pcV(rt_) ' 2 / (J 

1 22 (o ) tf = 2 fc V(r,t) (t/>{Y) w-
with 2. v .:: 

2 z 

( 12( 1Jc,+r) + 'loo>l-., 11 Sid") + { VqqCMit fJ)) 

5. Non- I inear unsteady aerodynamics 

( 7. I ) 

( 7. 2) 

The non- I inear unsteady aerodynamics presently adopted is based on the 
"Semi-Empirical Model For The Dynamic Stall Of Airfoi Is In View Of The Appl ica
tion To The Calculation Of Responses of A He I icopter Blade In Forward Flight'', 
ref. (5), developed recently by ONERA. The model concerns an airfoil sectioc 
executing forced ascii lation in pitch in 2-D flow. Physical considerations and 
arguments based on experimental observations both on the time history effect 
of the flow and on the evolution of the responses in the frequency domain, led 
to the establishing of functional relationships relating The input variables 
(incidence, angular pitch rate, mach number, and their time derivatives) and 
the output variables (Overal I lift and pitching moment coefficients and their 
time derivatives). These functional relationships are in the form of two dif
ferential equations of the 3rd order with variable coefficients. The coefficients 
of the equations are then determined, for a given airfoi I, by identification 
of the test results of the 2-D airfoil in static and in smal I amp I itude harmonic 
asci I lation or random vibration configurations. The model has been applied to 
cases of large amplitude asci I lations in pitch of the same airfoi I and comparisons 
of the predicted I ifts and moments with those of the experimental results were 
satisfactory. 

Application of the model to the case of a helicopter blade in forward 
I I i ght presents some d iff i cuI ties 

-The variable coefficients of the model's equations depend on the local 
Mach number, and on the local aerodynamic incidence of the airfoi I section ; the 
latter being partly unknown a priori. 

-The unsteady Mach number effect arising from the resolved in-plane component 
of the he I i copter forward f I i ght ve I oc i ty. 

-Combined motions of blade flap, cyclic pitch and blade torsional elastic 
deformation. 

One wi I 1 assume the hypothesis of the quantitative equivalence between the 
unsteady aerodynamic characteristics resulting from the blade's vertical heaving 
and pitching motions. In fact, the experimental results of reference (7) indicated 
clearly the validity of this hypothesis in the helicopter operating range of fre
quencies and amplitudes. The effects of these two types of motion wi I I therefore 
be superimposed, as has been done in deriving the 2-D aerodynamic incidence (3qn. 
6). 

One wi I I further assume that the variation of the blade local Mach number 
may be regarded as quasi-steady, since this variation is essentially due to the 
in-plane 1 per rev. resolved component of the flight velocity, and thus is of low 
frequency. However, in this first application, one wi I I, for simplification, 
regard the Mach number as constant (M = 0.3) . 

.• a-~ 



~~.1 \ .. ·rn:;rdl ized uerodyndrnic.. for·ces 

/b in ·t-he c...Ja.::.sicd! .!-!l strip theory, i1" is admitted lhljt t-he rotor ,JVf\.<Jy

ri>Jnlic tlu\rt field may be consider~_:;d dS h'lo-dirnensional for d!l local blade 
·~<-~c I i un=.. 

ll:l 1 -_, ~unsider, li_Jtnu·. _1 and 5, dfl elementary blade st~clion of lengil1 dj 
iuLI ined .__1! _<1!1 an~11~. Dt' ~·1i J·h n~spec1 t-o the i 2 axis. The amu.Jynamic fort.r--
p~:·r unit ldi,Jih of h.J!h lift I, and pi-tching moment ~Jl (respet·Jiv~ly of cot~f-

ficierli:, r (.lfHI CM}' ,1ct- ul I he bldde 1s fore-quarter chord !::>t}t I ion (x = 0). 11~~ 
pes it i ve ct

1
i
1
r v• I ions u f thest: tur ces are taken convent i ona I I y .J·, indicated i 11 

fig. ~. Let P- P (q,t) the position vector of this fore-quarter· chord poinl, 
0((1 J t11e rotation vector of the blade section, and n = n (q, t I the uni1 1co1.11' 

normal to the blade section. 1--, M, and their respective coefti! .. i8nts CN dr!d 1 ... M 
are classically related by 

1 2 2. • F : :zP v ~c c:v,.. ; M = ~.Pvc eM J3 
vthert-' (; j,., '1-ht: chur·d, P the fluid density dnd V (t) is t-he iri•.I<Jitl·ancou•-, I(Hcll 

.'-IJ V<oluci l·y at point f-', I imi tc>d tu the order 0. 

Now 

and 

nF 

. v 
'/ 

V .. cosA+v 

The vi rtua I work 0 W is then expressed by 

btu = j ( SPF + SotM) cJy 
blade 

&Pn = S'tj ~It + 
- otj 

So( = ( 69 oC>( + 

sv" [.f. 
oC>( f-1:) ~· 
a-c 3 

Fig. 3 2-0 oirfoi I ~ectiol' 

aerodynamic inci
dence i 

- of/ 
where 'l/,i_ =VIC.is the local normal velocity to the blade section at· P. It has 
been found that n does not depend on q. 

The generalized aerodynamic force Q of equation <2.1) is then 

Q :: i j fV
2
c ( ~~ncN r c ~9 c~-~) dy 

2.2 2-D aerodynamic incidence 

The 2-D aerodynamic incidence can be defined by considering the various I u-
cal 2-D velocities in planes containing the airfoil sections. 

-'+6-b 



In forward ·'I ight, the total flux penetrating th,, rotor disk consists of 
firstly, the no--mal component of the flight velocity V00 Cosl) of the 
he I icopter and secondly, of the inflow flux, of induced velocity J.l wl·,ich, by 
virtue of the momentum theory, m<1 i nta ins the equ i I i br i um of the rotor I i ft and 
weight. The expression for ll pr8sently adopted is given by reference (6) : 

lJ ( :1
0

t-r, tf) = Jl0 (I r Yor.tr tan~ cosy; ) 
Nhere V0 is the mean induced velocity, given as a function of the rotor mean 
I i ft F 

0 

and X 
2rrV..,f e 

is th~ s~ew wake angle defined as tan- 1( ) . 

~~":'~~!::-~ In specifying a blade pitch input, and in adopting such an inflow model 
imp I ies a priori a trim condition for the rotor blades. The pitch input may be 
opacified for instance by a flight test, and the trim condition must be checked 
a posteriori when alI calculations are done. 

The inflow of induced velocity )l wi II be described in the base S 
added to expression (J), leads to the fore quarter chord point velocity 
blade tip-path plane, base S2 : 

v 

fhe unit vector normal to a blade section is given by 

( 
s;,'"' 'Ill ) 

n ~ 52 0 

Cul1){ 

and hence the blade section normal velocity : 

sin II sin\{/ 

• 
+cos 1>1 (fvoc. sin A cos'f + r(3 + ~ COS;\ + l-J ) 

This 1 

V in the 

( 4) 

The 2-D local aerodynamic incidence i is defined by the angle between the 
2-D local blade section velocity (equation 4, neglecting the radial flow veloLi lyl, 
and the tangent to the blade section (fig. 3). We have: 

Vta- ~- IV lin! sinJ. 

In comparing with (5), one obtains for i 

with V.., C.oJ/1-+}.) + r§ ·+ (5 Voo f,',. II Cosf' ) 

..r2(Yo+r")+ V""~·,',..i\S,~<f' 

(I, I 

From (3) and (5), the column of the generalized aerodynamic forces io exprro,.
sed by : 

·16-t 



The model's equations are given in reference (4,5) the normal I itt coef
ficient eN, and the pitching moment coefficient eM, are each expressed by th6 
sum of two functions : 

These functions are governed by the following differential equations 

.. . 
CNz + BN CNz + KNC-;. =- KN ( t,CNo +eN J/JCNo) 

CNI + AM CH1 = ~"" ( Ci.t02 + /.111 :;._) r 6M di f )M« 
.... .. dt 

CM2 ..,. BM Cm + K,.,(,.,2 = -kM ( tJ.CMo +eM d J(.f.t·) 
dt 

The symbol (') designates differentiation with respect to the physical 
timet, i is the 2-D local aerodynamic incidence defined by (6) 

With, respectively 

I itt and moment delay parameters 

I cj • 5 ) 

\ ~; . 5 ) 

18.6) 

AN(i)' ~M(i) 

CNoa U.) > CMop_ ( i. ) I itt and moment I inear static curves, extended up tu the 
incidence i in consideration 

tjrN r <J, t.iaM(i.; 
c{N(i)' c{M Ci.) 

tJ (No ( l) r /J. CMo (i) 

complex poles of the 2nd order systems 

reduced damping coefficients associated with the complex 
poles 

functions represent, tor an incidence i, respectively the 
difference between the linear static curve and the true s1ali 
curve of I itt and moment. 

t~e remaining coefficients represent, in a smal I amp I itude 
"' .v B sinusoidal motion, respectively : 

JJNe, ,4M () slopes of the imaginary part of the I itt and moment at high trc,
quency, JN f) , ,fM li asymptotes of the rea I part of I i ft and moment, eN' eM para
meters determining the phase shifts of the excitations, and o< (t) represents t11e 
angular coordinate (geometric pitch) of the airfoi I section with respect to the 
blade tip-path plane. 

Remark eNI and eNZ' (respecitvely eMI and eM2 1 may be eliminated by combining 

equations 8.1, 8.3 and 8.4, (respectively 8.2, 8.5 and 8,6). This procedure wi II 

result in a single 3rd order equation for eN, (respectively eMI. 

Equations (8) are non- I inear with respect to the incidence i, which is a 
function of the generalized coordinate q. 

From (6), 

with '; = tan- 1 <X
0

+X
1
) 

where )( - Voo C.CJ t1 + v 
0 

- .12( 'fc ·~ r) 4 Voo filiAl (','I( 'f 
The deve I opment of l about )(

0 
I eads 

= 0(0), 

to : 
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,._, 
=o<+E. ( 9. I ) 

where ;;( ( r, -1::.): e(t) + v (If)- to_;_' (X orr; t J) 0 (Q) (9.2) 

f • 
E(q,r,-1:.) = cp(r,t)-

2 
X1(r,f:,(1,(JJ 

.f+'Xo(r,-1;) 
and 0 ( 1 ) ( 9. 3) 

~ 

The system· (8) may, at any instant, be linearized about the variable a< (r,tl 
the known part of the aerodynamic incidence, However, the I inearisation scheme 
is valid only if the I inearisation distances € (q,r,tJ remain small at all time, 
which is generally not the case for the retreating blade's inboard sections. 
Nevertheless, the problem may be solved iteratively as to I lows : 
From ( 9.1 ) , one writes : 

. "' 
,<, =(o<+!:JE)+(E-/:J.E) ( 1 OJ 

"./ 

The system (8) wi II now be I inearized about ( o< +AE.'J, 
where LIE. take on the values of E. resulting from previous successive calcu
lations. 

Remark : Computational experience indicates that except for high advance rat1os 
where-dynamic stal I is predominant, the rigid blade flapping motion j5 io rela
tively insensitive to unsteady effects. Thus the iteration can be initiated by a 
non-time consuming quasi-steady calculation. From (9,3) and (10), it is seen 
the linearisation distances : 

( E - ,M. ) "-' ( cp - cp
615

) << 1 

where q)Q~ is the torsional deflection derived from a quasi-steady calculation. 

Since the difference between two torsional deflections (resulting from 2 Sllccessi
ve calculations) is usually smal I, the solutions converge, again, except for 
high advance ratios, in one single iteration. 

!'-' 
The system (8) I i nearized about ( o( ti.lEJ leads to : 

eN! .fAN eN, ~ fNI i" RN,q -r SN1; + TN1 ii 
c~2.. + BN c~.! + KN CN2 ~ .fN2 + RN2 9 + SN2"-+ r:v2lj 

• , • \ I I > 

c"', + Af.-1 c/11, = ff\{ 1 + f?M1 q + $11 1q -r TH1l/ 
~.. ... . .. . 

CMz. + /31'1 cl'l2 + kM Cm = {Mz. + f/t1t2 IJ + S1112 q +- Tttt2 If 
where the forcing terms .PNI and P!V2. are given by : 

-P }~ , T' • ~ C ) •. 
fN/ r, t) ~ AN \ (Nc£ + .JN e - ~0R. ~£' + ~N (:) 

( 
oe • 

ftJ'2Crt-t) =- KN tJ('No- JfC,.,o (eN C:. +4 E)) 

And similarly for fMJ and IMz by writing the subscript M in place of N. 

The aerodynamic rigidity, damping and inertial terms are given by 

~t6-12 



sN 1<r,tJ ~(-';;Nt_ Voo.l;A~Cc>'P-S'"ri-AN {Jo~NoPrz, (~t"Jl"'+b"')~) 

TNI(r,tJ =(-[)Nrl ,/JN~) 

ell ,• v oLl(t;,( 7 .; 1 • ,,, ;;,J" J1) 1/ .JLJC'No;;..) 
RN2(r,t) = <>O.s 11//tiltJ oe '2: Cos r +eNd Cos r -JU:N" th r '-(IN 6G., 

4)) 

subscript M in place of N. 

4. Final form of the dynamic eguations 

Consider the equations of motion (2) and (7). The blade spanwis~ integra
tion of the generalized forces is performed by the Graussian numerical integra-
tion, and the system (2) reads : K 

M(t>fi+ sw9-dC(-t)'J = p-o + l;, H/~,) (cNir;",tJ~c~,.,tJI- c~~~,,t>lr~~di) 
where 1J.p, is the reduced abscissa of the kth spanwise integratio11 
point and Hk is the corresponding weighting function. 

The I i ft coefficient CNII? = CNfk-+ Ctv2ft_ , and the moment coe rt i c i ent 
CMk = c~11i.+Ct .. !J.f..' at each integration point k, are given by the set of 

equations (II). . . 

Let X be the state vector, of elements (j, 9/A"' and the set of aerodyna
mic coefficients defined on K total integration points: 

X : ( q' q/n*, ' .... '' CNI4: • CN2t, , {:N2k,/11.",. CMJk ' CM2~, c; .. nt.frf . ..... ) 
~ (121 

kth integration point 

"* J2 being a normalisation angular frequency which is a priori arbitrary. 

The dimension of X being L 2n + 6K. 

The global system is brought then to a set of L differential equations of 
the 1st order : .1H,(t_) 'f B (t) = GC 1:) 
with - -

G =- (o, f/R", · · · · · ·y {n~~" o, 5i1z.P./n..'~, !"',,.. o, ~~d./a.~···· .. ) 
~ kth integration point-<---~ 

The global system of dynamic equations is moreover expressed in a more 
classical form : 

• 
X-+A(tJX: FC-1:) ( 13) 

with A (tl = M- 18, square matrix of the Lth order, perdiodic in time t of period 
L> ~ zr.;ffl. And F (t) a column vector periodic with the periodicity as A. 
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. fl*l 

Kill* B . H.tn*. w. - H.tn•. w. · Hk/!l'. <It - Hki .n•. cl\ 

I' 1-
• RN1k . n·sN1k ANk 

- n· 

. RN2k/ !l* -SN2k KNk/!l' BNk 
> - RM1k - n•sM1k AMk 

kth 

- n· 

- RM2ktn• -SM2k KMktn• BMk 

I' 
v 
kth 

I 

M ,, 
· fl*T N1k I 

,~ 

I 

·TN2k I 

- r!*TM1k I > kth 

I 

·TM2k I 

' I 
v 
kth 



1\emark : In most aeroe last i c problems, the aerodynamic torces are G i rr1er given 
G~-i~~ classical L-0 quasi-steady strip theory, or in the I inear casd, by 
rhe Duhamel's superposition integrals of the 1\lissner's and the Wagn<01 1s functions 
\reference dl, the aerodynamic forces can be written explicitly in bot11 cases. 
rr,., aeroe I ast i c coup I i ng therefore introduces no extra aerodynamic degrees of 
t r""'dom ([1,0, F. l. 

In the present r.oporl however, the aerodynamic model being in the; form ot 
dift<Orential eq0atio11S with coefficients dependent on the local 2-U incidence, 
no procedure apparently can be applied to eliminate these extra ll.O.F. Ti>e situa

Tion is seemingly similar to that in mechanical vibrations whera the ~tru_tu-
res possess hidden u.u.F. Elimination of these hidden D.O.f., it possiule, io 
usu<'llly achieved by carrying the structural variables to their "augmented s·ra"le", 
i.e. by augmenting the order of the governing differential equations. 

'), kesolution 

'o. I otabi I i ty and r loguet modes 

The stabi I ity of the homogeneous set of equations (13) is studied by the 
Floquet's theory, of which a brief review is given here in in order to define 
more precisely the form of the Floquet modes. 

Gonsider the homogeneous set (13) 

• 
X-tAC+JX-o 

Let!.. (t) be the non singular matrix, called "the transition mdtrix 11 , 
formed by L independent so I uti ons of ( 14) : (X 1 00 00, XL). !. verifies : 

• z+ACt)lc.o 
A <tl being periodic of period (':; , it can be shown that 

lCttZ.):: !CfJ c 
where c is non singular, and is defined by 

C = "'"~ ( Bl) 
and hence 

11z; log ( z-'(oJ ZUi l) a 

\I 'i I 

( I :; ) 

( I b l 

The system (14) is reducible in the sense of Liapunov, as, by introdu
cing the periodic matrix L, of period~ 

L(tl = l(i) exp (-Sf) 

The transformation 

applies to (14) leads to the system of equations with constant coefficients 

• Y-BY=o 
withB=-L-1 (L+All 
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Assuming the general case where B is semi-simple, let)\ and U be 
respectively the diagonal matrix of eigen-values and the matrix of eigen-vectors 
of B : 

In comparing with (16), ona identifies that /1. = exp <A6.) and U are 
respectively ihe diagonal matrix oi eigen-values and the matrix of eigen-vectors 
of ( ~-'(o) Z(& l ). 

The ei~en-values Aj of the matrix B, which are cal led the characteristic 
exponents of the periodic m~trix A (t), are given by : 

DIJ = ~Oj) = 1/u 199 j11d·/ t20.l > 

V!d. = 9CAj!= l!Z.(Bii~hr) <20.2> 

with ej :: Jiln-1 ( 9(;1JJ ) (20,3) 

"i[())) 
The stabi I ity criteria of the system (19); and hence of the original 

system 114), is defined by 

tr(o;) ~ () or I !lj I H 
From (16J, (17) and (18), the set of l transient solutions of the system 

( 14 J can be w r i rte n as : X c-f:) ~ i. ( f ) l- I (D) X ( 0 J 
-I -I 

:. L ( t) u R X f ( Af> u J! ( 0 J X ( 0 ) 

By adopting the initial values Z (o) U for X (o),one obtains : 

Thus the jrh oolution 

X (f.- l :. :zc t; u 
= L(t> U eKp (Afl 

~· (tJ = l(tJ UJ kt 

( 21. I J 

( 21 . 2) 
::; L( t) (J· e. d 

The Xj are called the Floquet modes of the ~riodic system (14), reference (9). 
These being so-called since substitution of (21.1) in the system (14) results 
in the classical eigen-value problem of expression \19). _, 

The matrix ( ~ (OJ l,(&)) being real, its eigen-values are then real 
or complex conjugated pairs. Referring to expressions 1201, complex conjugated 
pairs of eigen-values A give rise also to complex conjugated pairs of A and U 
of the matrix B, and these can be combined to form a real Floquet mode : 

~· (t) : l. ( t ). ( Uj .,. lJ.l) i c.H 
= l_ e_0tl L ( t J If(( Uq" e_ d J 

!} ~s tor real ~igen-values ~I, t~o cases are to be considered 
- (J( ( !lA) > 0 , 8Ct1J)=O; and hente fQ1 = 0, .VS' ~ ± ~ JL . The Xj 

remains real, as it sh~uld be, by combingtion of th4 two conjugated solutions 

( 21 • ) ) 

~·(fJ: 2l(tJ~· .. 
O(•f: {) (~n..f 

:.2 e d LU:J~·Iff.. (e. ) 
- fX(t1J)<O I J(!lj):D; eJ·::: f. 71' and 14;:: ± ~(11'2P.z) are 
solutions, and these can als8 be combined to form a real Floquet mode 

(21 . 4) 

equally 
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lo'(f:l=~l.(tJUj ·~1. 
q O(J·t-L K(' { IU+2fz)) = <- e etJU· e. 

J 
I~ I . >I 

tj~~~!:!::: It is noted tr1at th.c ir,determination of tu; due to the addiTive factor 
ZkTT 120,2) has no consequence on the definition of the Floquet modes ; thesce 
being defined implicitly by the first terms of expressions 121.3, 21.4, 21.5). 

In constant coefficient differential equations, the modes are characte
rised by eigen-solutions of the form 

with Uj constant eigen-vectors. The undamped modal wave forms are thus constC>r;l, 
or sinusoidal functions of time. The undamped Floquet modal wave forms, however, 
exhibit various time-varying features depending on the eigen-values~ , or A 

- f((~j)>O, J (~j) 
J r rom IL I . 4 ) 

= 0 ; 

lhe undamped wave forms 
to the rotor rotational 

are periodic functions of time, of frequency f2 
circular frequency 12 

-~CAJJ< o , JOJ; = o 
From 121 • 5), 

fha undamped wave forms are periodic functions of time, 
to half of the rotor rotational circular frequency .fZ 
indetermination of the additive factor 2kJT 

of frequency J2~2 
, irrespective ot 

There are thus 11 subharmonic osci I lations of frequency JL./z. 
- ~J· purely imaginary pairs ; 

. 12 

equal 

equd! 
rhe 

From (20.2), Lor);; f 4 (I+ 4k). The undamped wave forms again 
exhibit "subharmonic osci liations" of frequency12/4 equal to a quarter of the mlor 
rotational circular frequency .Q , irrespective of the indetermination of ]·he; 
additive factor 2k" 

-General case of ~J·complex conjugated pairs 

From 121.3), the undamped wave forms are given by the sums of a number 
(finite or infinite) of terms of periodic functions resembling those of Fourier 
Series. However, the frequencies of these periodic functions are not rational 
ratios, and hence their periodicities have no largest common integral factor. 
The sums of such periodic functions are therefore not periodic. The undamped 
Floquet modal wave forms are then ever-changing in time, with no repetitive 
patterns. 

X (0) 

Hence 

There are thus "almost periodic osci I lations". 

Last I y, as for the transient effect, it is 
L (0) U ; and X (n') L (0) U exp ( n&i,by 

~J h2. 
XJ(11Z.J:: XJ(oJe = 

seen from 121. I) that 
the periodicity of L . 

Thus each jth Floquet mode changes by a factor ~j from period to period. 
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5.2 Evolutions of the modal characteristics as function of advanc" ratio 

r.~ Classically, evolutions of the modal characteristics, fr~quencies 
Wi, and damping o(A' as a function of the advance ratio jL, are traced· by 

obse~ving their continuities for successive smal I increments of ;U , In the 
present problem, the large number of degrees of freedom, originatir~ essentially 
from the application of the ONERA 2-0 Dynamic Stal I Modal, renders 1he tracking by 
this means particularly difficult. 

However, precise definition of these evolutions is essential ; firstly 
to define the stabi I ity envelope, and secondly to determine the additi·1e factor 
2klf in tN;' (20.2), thus allowing to express the Floquet modes in more convenient 
analytical forms. It is proposed here to outline a method to trac.e more efficient!, 
the evo I uti ons of these mod a I characteristics. The method is based orr .. ons i dera
tion of continuities of the eigen-vectors, for successive small increments of /A-· 

Consider the set of I i near I y independent eigen-vectors Uj-', correspond i nu 
to the e i gen-va I ues )./ of the matrix B, for a given advance ratio/-" • 

Define the space metric K such that : 

+ 
<U~-1'!)> = U;_KUJ = 6iJ 

where the symbols (•) and bjd· denote respectively the complex conjugate transpose 
and the Kronecker delta. 

1 We have : ( + ) -
U+KU=l ,andK= UU 

K is hermitan, positive definite, and the set of vectors U. is K-orthogonal. 
j 

For sma II increment /Jf-l- of the advance ratio, let V ;=ll 1• ;111 1 be the 

new set of linearly independent eigen-vectors of the matrix B •<l.B. We can, in 
principle, make each vector V; of the new set to correspond to a single vector· 
Uj of the original set. That is : 

V,: f\.J ui , t>f-t/P- << 

and <Vi , Uj > = 1, o/< ..... o 

except for an arbitrary normalisation factor. It is noted that generally I j, 
due to the arbitrary classification of eigen-vectors. 

By extension of the geometrical concept of the angle between two real 
vectors, the "complex angle" o<,·; , formed by two complex vectors Vi and UJ 
is defined by : u < ,1 

CoJ((X'.·): vi .. Uj > 
'J < v. II.· >vz<'u· U· >~ cz3) 

.<,< d'j 
with I cos ( rJ.) ,/ ) I $ 1, by the Cauchy-Schwartz i nequa I i ty. The comp I ex number 
cos(c(i.IJ thuS' I ies within the unit circle, and all arbitrary normalisation 
factor# alter only its phase. 

Equation (22) expresses the "parallel ism" of two vectors, and equation 
(23) its degree of parallel ism. 

Continuous evolutions of the eigen-vectors, for smal I increments~~ , 
can then be determined by measuring the angles formed by each vector Vi of the 
new set and alI the vectors Uj of the original set. The criteria of two vectors 
that are most K-paral lei, and hence continuously evolved, is given by the 

M~)\ I cos (o< iJ' ) I 
.{ J 
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The situation may be readily illustrated, by analogy, by considering a 
5-D Euclidean space. 

5.5 forced response and periodic solutions 

Consider the non-homogeneous system ( 13), of which the formal solutior• 
is expressed by (reference 10) : 

. rr: , 
X ( f J = l Ct ! X ( 0 J + J 

0 
!. ( t J l ( (J') F( u-) ol u- , 24 \ 

With no loss of generality, l(o) =I has been imposed. 

It is assumed that the homogeneous system (14) is stable, i.e.(;R(AJ>:>O 
~ 1, and it is proposed to determine the periodic solution of pe~iod or J /1 j I 

c (,bf ( 13). 

By imposing the periodicity condition : X ( (:; ) = X (Q), one obtains 

X(o) -l(&lX(o) + 12;l.(Z.)iCu)f{o-)du-
To obtain all periodic solutions of (13), one must solve, for X (Q), 

'"' ,,,, •• ' )(( o 1 , ( I -l( 4 ,) 1 ~ (4 Ji'ccr-J f(crV cr- ( .~: s ) 

Provided that the system (14) has no periodic solution of period C, more 
precise I y, provided that none of the e I gen-va I ues /.. i of the matrix B is zero, 
nor of the form t i2kTi/Z. , equation (25) defines uniquely the initial condi-
tions X (Q), The periodic solution of the system (13) are then obtained by 
substitution of (25) in (24), 

Remark : The transition matrix Z (t) is regular at alI time, since det (Z (t)) 
ex:p-r-Jot: tr(ll(rn)o/()), and trA being finite. However, this matrix is often 

i I l~conditionned at low frequency J2 and hence at large t up to the period Z 
In tact, Z (t) decays rapidly due to the large aerodynamic pitching moment dis
sipation. This i I !-condition leads to numerical inaccuracies in the inversion of 
Z (t), as is required in integrals such as (24), 

Computational experience showed that Z (t) is best computed by subdi
viding t into elementary intervals 

And write 

(2o) 

by the multiplicative rule of the transition matrix; 

with 

, 

The convergence and the truncation error of the approximation (26) had 
been studied by (reference 11), and the efficiency of this approximation as 
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compared to a 4th order Runge-Kutta integration technique had also been shown by 
(reference 12). 

The matrix exp (Ck) can be calculated directly from its defini lion 

= 1<1 
exp <Ckl = 2: Ck 

M.= a 1)41. I 
This be.ing so, the inversion of the matrix Z (t) in integrals such as 

(24) may now be avoided, since the expression 

is now 

-I 
l(-tJ l (u) , with 

n. th;. 

t .: 3: MA 9 lY ~ ~ 1.1 ~ f 

-I 
Z (t) Z (C1) = exp <Cnl exp (Cn-1) ..... exp CC1) I, I exp (-C1) .... exp (-Lm_ 1) 
exp (-Cml = exp <Cnl ,,,,, exp <Cm•1) 
by commutativity of the matrices two by two, 

b. Numerical results 

The single blade analysis described in the previous sections has oe~n 
app I i ed to the case of a he I i copter rotor in hover ;14 = 0, and in forward f I i ghts, 
up to f" = 0,35. 

The rotor weight, geometry, velocities and control pitch inputs, and 
the blade's characteristics, correspond to the flight cases of a research helicopter 
of the SNIAS. The blade has been assumed to be rigid in both flap and lead-lag, 
but torsionally elastic, and is hinged to the rotor hub with a certain offo~t. 
The torsional deformation is based on the modal superposition of one single tor
sional mode of modal frequency 183 rd/S. The column vector q (section 2) is thus 
of dimension 2, of elements j3(i) the blade flap angle, and s (t) the torsional 
generalised coordinate. 

The blade spanwise integration of the generalized aerodynamic forces 
has been performed with 5 Gaussian integration points, The dimension of the 
state vector X is thus 2 x 2 + 6 x 5. This then leads to a system of 34 non
homogeneous differential equations with periodic coefficients (equ. 13l. 

AI I calculations are initiated by a non time-consuming Q-S calculation tor 
which the incidence is defined by (9.1), The Q-S equations are I inearized about 
the known partS{ , which wi I I be termed as the linearized incidence. The 
resulting incidence ;{.j-E. is then employed to I inearize equations (8) as indi
cated in section (3). 

6.1 Floguet modes 

Figures (4) and (5) show the evolutions of the eigen-values A=()(+ iW'" 
(equ. 20) of the blade flapping mode and the blade torsional mode, as a function 
of the rotor forward flight speed. 

Starting with the hover case, where the governing equations (14) are of 
constant coefficients. The eigen-values are defined with no ambiguity. The rotor 
constant rotational circular frequencyi2 being 39.5 rd/s, it is seen that the 
flapping mode frequency ~is dropped to 36 rd/s (instead of greater than J2 in 
vacuum), due to the aerodynamic damping and rigidity effects. The torsional mode 
frequency exhibits the same tendency. 
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a(rd/s) ~ (rd/s) 

Fig. 4 Frequency and damping of 
blade flapping mode as a 
flight speed 

the 
fn of 

-20 20 

o·--100- 200 260 Km/h 

Fig. 5 Frequency and damping of the 
blade torsional mode as a 
tn of flight speed. 

a(rd/s) ~(rd/s) 

-37 182 

-27 177 

0 

(}J=0,35) 
100 ----200 ---25iiK"m/n 

As~ increases, the eigen-values are traced by continuities of their cor
responding eigen-vectors, by the method indicated in section (5.21. Some difficul
ties may be encountered in the tracking process in regions of frequency crossings, 
but these can r.eadi ly be solved. The additive factors 2kiT in the definition ot (A) 
are then determined by continuities of the eigen-values. 

One particular aspect is shown in the evolution of the torsional mode. The 
eigen-values~ of the torsional mode, starting as a complex-conjugated pair, 
split up into two negative unequal roots, as from 200 km/h. These give rise to 
two eigen-solutions (equ. 21.5) of the same circular frequency W= (IJ-+4a), 
but of different damping coefficients 0(. The situation is analogous 2to that 
of constant coefficient differential equations when one pair of the conjugated 
eigen-values becomes real, except that in the latter case, the frequency is 
locked at the value zero over a certain interval of the parameter~, whereas in 
the present Floquet modes, the frequency is locket at values that are ojd multi
ples of£!:. , thus subharmonic oscillation of frequency!!: . In both cases, there 

2 z 
might be risk of instabi I ity, since the splitting of the eigen-values could 
eventually leads to positive damping coefficient. 

Figures (6) and (7) show the undamped Floquet modal wave forms (equ. 21) 
as a function of time, from t = 0 up tot= 3Z:. corresponding to a flight speed 
of 240 km/h (;u= 0.32). It is noted that the transition matrix needs be calcu
lated only from t= 0 up to the period z:;. The evolution in time of the Floquet 

modes at t >"<::> can be obtained simply by use of equ. 15. 

Figure 6 corresponds to one of the eigen~values of the torsional mode, and 
figure (7) that of the flapping mode. The flapping motion (3 , and the torsional 
generalized coordinates, together with the aerodynamic degrees of freedom 
W. 0. F. l, eN = eN 1 + eN2 (norma I I i f t coeff i c i ent l, and eM = eM 1 + eMz (pitch i ng 
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Y MIN=O, 173£-01 
Y MAX=01 173£ -01 

CN(2} 

YMIN =0.1.15£-00 
YMAX=0.419£-00 

CN(5) 

Y MIN=0.931£-00 
Y MAX=0.941£-00 

3T vv 

s 

Y MIN =0,153£-00 
Y MAX=0,155£-00 

CM(2) 

vv 

Y MIN=0.807E-01 
Y MAX=O.B07£-01 

CM(5) 

Y MIN=0.402£-0I 
Y MAX=0.402£ -01 

Fig, 6 Undamped Floquet modal wave forms for the blade torsional mode. 
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Y MIN=0.471E-01 
Y MAX=0.527E -01 

CN(2) 

Y MIN=O.J93£-00 
Y MAX=O. 347£-00 

CN(S) 

Y MIN=0.395E-00 
Y MAX=0.461E-OO 

s 

Y MIN=0.322E -01 
Y MAX=0.31JE-01 

CM(2) 

Y M!N=0.117 E -01 
Y MAX=0.958E-02 

CM(S) 

Y MIN=0.210E-01 
Y MAX=0.168E -01 

Fig. 7 Undamped Floquet modal wave forms for the blade flapping 
mode 
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moment coefficient) at two spanwise blade sections : ( ~0 +r l/R = 0.41 and 0.96 
corresponding to the Gaussian integration points (2) and (5), are i I lustrated in 
both figures. As is mentioned, the torsional mode at this flight speed displays 
the character of subharmonic osci I lations of frequencyil /2. It can be seen from 
fig. (6), that all variables i lluc',ated are periodic functions of period equal to 
2 C , twice the rotor rotation ,,er i od. It can a I so be remarked that a I I the 
wave forms have predominant 9J2/2 frequency content, this being the frequency 

US of the torsi ona I mode. ,\s for the b I a de f I app i ng mode, whose frequency w 
and J2 not being a ratio, it is seen from fig. (7) that all variables display 
almost periodic osci I lation, with no definite repetitive pattern. In both cases, 
it is observed that there is non neg I igible participation of the aerodynamic 
D.O.F., due to strong aeroelastic couplings. As a matter of fact, at the flight 
speed considered, some of the aerodynamic mode frequencies are in close viscinity 
of those of the structural modes. 

6.2 Periodic responses 

The periodic responses of the system (13) have also been computed at the 
same tl ight speed of 240 Km/h. 

Fig. (8,1) through fig. (8.8) show the evolutions of the periodic responses 
of J5, 4 , and for the two previous blade spanwise sections (2) and (5), the 
aerodynamic incidence i, the aerodynamic normal I itt force F, and the aerodyna
mic pitching moment M, for both the quasi-steady <Q-Sl and the unsteady calcula
tions. 

Referring first to figs. (8.3) and (8.4) for incidences i, the broken I ines 
represent the I inearized incidences about which the Q-S equations are I inearized. 
The incidences resulting from the Q-S calculation are represented by the dotted 
I ines, about which the unsteady equations (8 ) are then linearized. The solid 
I ines represent the incidences issued from the unsteady calculation. It is seen 
that for both blade sections, the differences between the o-s and the unsteady 
incidences are everywhere·smal I, thus the unsteady calculation is regarded to 
have converged in one single iteration. The same remark may be applied to the 
Q-S calculation. This then allows to compare the two calculations, and hence to 
iII ustrate the unsteady effects. 

In comparing the t I app i ng responses f3 resu It i ng from the two ca I cuI at ions 
(fig. 8.1), it is observed that the o-s response has the usual high 1st harmo
nic content, whereas the unsteady response gives more important 2nd harmonic 
content, thougb they both have approximately the same coning angle. This can be 
attributed to the tact that in the o~s theory, the blade flap forcing terms 

~ 
0.13 radian /~- .... , 

' ' ' ' ' ' I ' 
I ' 

I \ 
I ' 

' ' ' ' 
I ' 

I ' ' ' ' ' 

~ 0,(}6L__ ____________ _.. 

0 360. 

Fig. 8.1 
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: Blade flapping periodic res
unsteady calculation 
quasi-unsteady calcula
tion 
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r' 
' ' ' ' \ : \ 

' ' ' ' ' ' ' l ' \ /~\ I ,j 
I I \ : 

\ / \ I 
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Fig. (8,3) 
0 

Fig. (8,4) 

16 i(5) 
0 

12 i(2) 

r 

I ' 

I 
I 

"' "' 0 0 
0 

-2 360 

-4 

Fig.(8.3)-Fig. (8.8) :Blade incidence i, normal lift force F, and pitching mo-
ment M periodic response: Unsteady calculationj----Quasi-steady calcula-
tion;---- linearized incidence 
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consist mainly of the eye! ic pitch excitation (equ. 2.5l, and of the static I itt 
function. In observing that at this flight speed where stal I is not yet predomi
nant, the static I itt is mostly I inear and hence the forcing function is mainly 
of the 1st harmonic. The higher harmonic contents in the unsteady calculation 
are consequence of stronger unsteady aeroelastic coup I ings. In both cases, the 
magnitudes of·the blade flap harmonics are seemingly smal I, this being due to 
the input of the rotor shaft ti It angle of 5,5°, 

As for the·torsional responses ?.1, fig. (8.2) ; it is known that the 
airtoi I section static pitching moment curve presents abrupt break long before 
the static I itt stal I, the Q-S torsional moment forcing function is thus of high 
harmonics. Furthermore, there being no aerodynamic pitching moment damping in 
the Q-S calculation, the Q-S torsional response is then of the same nature as 
the forcing function. 

The unsteady torsional response, however, is seen to be greatly filtered, 
The ti ltering could be the result of the high aerodynamic pitching moment 
damping and the effect of time delay. 

Fig. (8.5) through fig. (8.8) present the comparisons of the normal I itt 
forces F and the pitching moments M between the Q-S and the unsteady calculations. 
It is observed that the I itt forces are quite insensitive to unsteady effects, 
while for approximately similar incidence evolutions, the difference between the 
two pitching moments are much more significant. 

CONCLUSION 

A single blade analysis for a helicopter rotor in hover and in forward flight 
has been developed, in which the unsteady aerodynamics was described by the 
ONERA 2-D dynamic stall model.' It is considered that though the rotor mechanical 
system is greatly simp! ified, the present analysis is sufficient for the study 
of phenomena such as the stal I flutter and subharmonic osci I lation encountered by 
helicopters at high flight speeds, 

As a consequence of the particularity of the aerodynamic model, the pro
blem involves, apart from structural variables, additional aerodynamic degrees 
of freedom. The formulation leads to a set of I inearized differential equations 
with periodic coefficients. 

The stab! I ity of the aeroelastic system has been studies by the Floquet 
theory. It has been shown that subharmonic osci I tation and almost periodic 
oscillation of the Floquet modes can read! ly occur. While it is generally admit
ted that responses of the form of subharmonic osci I lation are due to non-! ineari
ties in the governing equations, the present study shows that this feature can 
also be attributed to the properties of the I !.near periodic differential equa
tions, where the situation may be close to that of instabi I ity. 

Comparisons of the periodic responses for both the quasi-steady and the 
unsteady calculations have also been shown. It is observed that while the blade 
normal I itt force distribution is quite insensitive to unsteady effects, the 
blade aerodynamic pitching moment and the torsional response are subjected to 
more influence of the unsteady aerodynamic pitching moment damping and time delay 
effects. 

The introduction of the blade flap and lead~iag elastic deformations 
should present no difficulty in principle by a modal superposition of the blade's 
normal riiodeS.The eftea:f-of-theT-~G. offset with respect to the pitch or tor
sional axis can also be incorporated with no greater inconvenience. It remains 
to take into account by the aerodynamic model the large variation of the blade 
Mach number to include the compressibi I ity effect. These wi 11 be attemped in 
future works. 
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