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Abstract

Modern comprehensive finite element-based tools for the aeromechanic analysis of rotorcraft
require the ability of accurately computing the model trim settings. Proportional control laws
(auto-pilots) have often been used in many practical instances, because this technique is not
directly related to the complexity of the system. On the other hand, classical auto-pilots must be
carefully tuned for every desired flight condition. This work focuses on improving the auto-pilot
technique by means of non-linear model-predictive control. A reference model of the system
augmented with an adaptive neural element is used to predict the system response and solve
an optimal control problem, which in turn produces the control strategy that is used for regulating
the system. The adaptive element allows for the identification and correction of the mismatch
between reduced model and controlled system, thereby improving the predictive capabilities of
the controller. Tests on the wind-tunnel trim of a rotor multibody model and comparisons with
an existing implementation of a classical auto-pilot are discussed.

List of Symbols

(̃•) system (comprehensive model)
quantity

(•)reg model predictive regulation
problem quantity

(•)steer steering problem quantity

(•)adapt model adaption problem quantity

(•)∗ given or desired value

x̃ system states

λ̃ system Lagrange multipliers

ũ system controls

ỹ system outputs

y reduced model states

u reduced model controls

p reduced model parameters
˙(•) derivative with respect to time

t time

Ti initial time

Tf final time

J cost function

T rotor revolution period

µ rotor advance ratio
(far field velocity / rotor tip velocity)

Introduction

The word “trim” is part of the large vocabulary
shared by the naval and aeronautical commu-
nities, and indicates the control settings, atti-
tude and cargo disposition required to obtain
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a desired steady condition for a sailing or fly-
ing vehicle. In most cases, as for fixed wing
aircrafts, boats or even cars and motorcycles,
steady condition simply means that control in-
puts are held fixed and the components of the
vehicle linear and angular velocities are con-
stant in a body attached frame. A rotorcraft,
however, flies by means of rotating aerody-
namic surfaces, so it is always excited by har-
monic loads. Therefore, the vehicle can be
controlled so as to follow a particular periodic
orbit, with constant controls and harmonic sys-
tem response. This trimmed flight condition
is characterized by having constant values of
the average over a rotor revolution of the body
components of the linear and angular veloc-
ities. Computing such a flight condition is a
much more difficult task than in the case of a
fixed wing aircraft.

As for any other vehicle, the determination of
the trim settings plays a central role in the anal-
ysis of the dynamic characteristics and sta-
bility of a rotorcraft. In fact, to analyze the
aeroelastic stability, handling qualities and vi-
bratory levels, the system is commonly per-
turbed about the periodic orbit corresponding
to the trim condition. The resulting set of per-
turbation equations strongly depends upon the
reference solution about which the perturba-
tion takes place. Hence, the trim solution has
to be computed with sufficient accuracy. Un-
fortunately, for numerical models the trim set-
tings can not be estimated using experimen-
tal data, because of the unavoidable approx-
imations that are introduced every time a vir-
tual prototype of the real system is created.
For example, measured controls obtained by
flight test data cannot trim a numerical rotor-
craft model, which would simply drift away from
the desired periodic solution, or even diverge
in free-flight cases.

Nowadays, comprehensive finite element-
based analysis tools [2, 14] are used to model
rotary wing vehicles with a high level of de-
tail. Such tools implement mathematical mod-
els of the elastic blades, control linkages, drive
train, fuselage, actuators, hydraulic systems,
engines, sensors, etc. Rotorcraft codes can
be coupled with different time-accurate aero-

dynamic models, like dynamic inflow [13], free-
wake models [4], but also computational fluid
dynamics modules to account for several com-
plex features of the flow. Hence, modern ro-
torcraft aeroelastic analyses require the ability
to solve multi-field, highly non-linear problems,
characterized by a large number of degrees
of freedom. This research focuses on the ef-
ficient trim of such models.

The specialized literature reports a few strate-
gies for the trim of rotorcraft models, which
have been developed and applied over the last
thirty years. These strategies include the har-
monic balance, periodic shooting, finite ele-
ments in time, quasi-Newton and the auto-pilot
methods. Some of these methods require the
solution of the complete set of trim equations
for the system, so the resulting computational
effort is proportional to the complexity of the
model. In the auto-pilot approach, the system
is augmented with a control law that steers the
system towards the desired trim condition, re-
gardless of the number of degrees of freedom
of the rotorcraft numerical model. On the other
hand, controls are in this case promoted to
time-varying quantities with their own dynamic
behavior, so limit cycles can often affect the so-
lution and the desired steady-state condition is
not reached. Moreover, feedback is generally
provided through the use of appropriate gains
on the error on the trim constraints, i.e. on the
desired values of average states and/or loads.
Therefore, it is often difficult to tune the val-
ues of the gains in order to achieve both stabil-
ity and a satisfactory performance of the con-
troller. Reference [12] analyzes the rotorcraft
trim problem in detail and provides an ample
bibliography on this topic.

In this research, a new auto-pilot based on
a neural-adaptive non-linear model-predictive
(NMP) control is introduced. We believe that
this approach has the potential for sharing all
of the positive features of a classical auto-pilot,
while avoiding its drawbacks. In particular,
some classical results on the theory of NMP
control and neural networks can be used to in-
fer the stability of the controller in a non-linear
setting (a topic that is not addressed in this pa-
per for space limitations) and the avoidance of
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limit cycle oscillations in the solution. More-
over, the use of a non-linear reduced model
to predict the system behavior translates into
superior performance of the new approach,
which preserves at the same time affordable
computational costs and the applicability to
comprehensive models of arbitrary complexity.

Rotorcraft Trim Formulation

The governing equations for a virtual prototype
M̃ of a rotorcraft can be written in a “multibody
fashion” as

f̃( ˙̃x, x̃, λ̃, ũ) = 0, (1a)

c̃( ˙̃x, x̃) = 0. (1b)

The first set of equations, (1a), represents
the equations of dynamic equilibrium and the
kinematic equations, and the second set,
(1b), represents possible holonomic and non-
holonomic constraint conditions. The vector x̃

denotes the system states, λ̃ are the Lagrange
multipliers which enforce the constraints (1b),
and ũ are the controls.
The states x̃ may include displacements, rota-
tions, linear and angular velocities, and possi-
ble internal states describing the dynamics of
mechanical components such as engines, ac-
tuators and sensors. When flexible structural
elements are present in the model, the states
will also include degrees of freedom associ-
ated with the spatial discretization or modal
amplitudes. Furthermore, the aerodynamic
module can be provided by coupling with ex-
ternal codes or by a suitable set of equations
and associated aerodynamic states. The con-
trols ũ may represent actuator inputs, applied
forces, throttle position, and relative displace-
ments and rotations of joints.
The requirements for trim can be expressed as
follows.
The trim conditions are written as

˙̃u = 0, ∀ t, (2)

and they state that in trim the controls ũ must
be constant. The trim constraints,

ỹ = y∗, ∀ t, (3)

specify the desired values y∗ of the average of
some given functions ỹ of states and controls,
here generically called outputs. These outputs
are defined as follows:

ỹ =
1
T

∫ t

t−T
g̃(x̃, ũ)dt, (4)

where T is the rotor period.
The particular vehicle prototype and trim

problem under study determine the exact
physical meaning of the variables ỹ. For free-
flight applications, for instance, the outputs can
represent the average of global vehicle states
which describe its gross motion. In particular,
a vehicle-embedded frame can be considered
and its linear and angular velocities and ori-
entation parameters with respect to an inertial
frame of reference can be taken as outputs. In
the simpler case of a rotor connected to the
ground (wind tunnel trim), the outputs ỹ are
typically some components of the hub loads
expressed in the inertial frame.
Finally, the periodicity of the solution is ex-
pressed by the periodicity conditions

x̃(t +T ) = x̃(t)+ z̃, ∀ t, (5)

where z̃ accounts for possible quasi-periodic
states [12].

Model Predictive Auto-pilot

Figure 5 illustrates the non-linear model-
predictive auto-pilot proposed in this work. A
non-linear reduced model M of the vehicle is
used to predict the (future) response of the
plant M̃ , i.e. the rotorcraft comprehensive
model, under the action of the control inputs
ũ. Using a reduced model, an optimal control
problem is solved on a finite horizon (the pre-
diction window). The cost function is chosen to
be equal to the norm of the violation of the trim
constraints (3), and the optimizer is able to ac-
count for possible input and output constraints
that may need to be satisfied. In particular,
in the present formulation the control actions
can vary in time only within the control win-
dow, while they become constant-in-time from
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the end of the control window to the end of the
prediction window.
Using the controls computed by the optimizer,
the plant is now steered on a short time hori-
zon, the steering window, which is here cho-
sen to be equal to the control horizon, although
this is not strictly necessary. Once the plant
has reached the end of the steering window
under the action of the computed control in-
puts, the optimization problem is solved again,
looking ahead in the future over the predic-
tion window shifted forward in time, using a so
called receding horizon approach. In fact, due
to the inevitable mismatch between reduced
model and plant, the actual outputs will drift
away from the predicted ones, so that optimal
control inputs have to be recomputed again.
The reduced model M is governed by the
following system of ordinary differential equa-
tions

f(ẏ,y,u,p∗) = 0. (6)

The parameters p∗ are assumed to be the re-
sult of an adaptation process, which will be dis-
cussed later on.
Let t = T reg

i = T steer
i be the current time, which is

also the beginning of the prediction and steer-
ing windows, while T reg

f = T reg
i + ∆T reg is the

end of the prediction window of size ∆T reg.
Given initial conditions on the plant states
x̃(T reg

i ) = x̃i, which induce the output initial
conditions ỹi = h̃(x̃)|t=T reg

i
, the control actions

to be applied to the system are computed by
solving the following model-predictive regula-
tion problem:

min
y,u

Jreg, (7a)

s.t.:f(ẏ,y,u,p∗) = 0, (7b)

y(T reg
i ) = ỹi, (7c)

greg(y,u) ∈ [g
reg
min,g

reg
max]. (7d)

The regulation cost, Jreg, is computed as

Jreg =
∫ T reg

f

T reg
i

M(y,y∗,u)dt, (8)

where M(y,y∗,u) = (y − y∗)T S
reg
y (y − y∗) +

uT S
reg
u u + u̇T S

reg
u̇ u̇, and S

reg
y , S

reg
u and S

reg
u̇

are suitable scaling matrices. The first term
in the integral accounts for the regulation error,
while the second and third terms are quadratic
terms in the control actions and control rates,
respectively. The last two terms are typi-
cally used for ensuring smooth control policies,
through appropriate choices of the weighting
matrices.
The solution of the optimization problem sat-
isfies the reduced model governing equa-
tions (6) and initial conditions, by means of the
constraints (7b) and (7c), and additional pos-
sible input and output constraints (7d). In this
work, the trim conditions expressed by equa-
tion (2) are satisfied in an approximate way by
enforcing zero control velocities on the time in-
terval (T reg

c ,T reg
f ), i.e.

u̇(t) = 0, T reg
i < T reg

c ≤ t ≤ T reg
f . (9)

Given the periodic nature of the solution of the
trim problem, we must have T reg

f −T reg
c > T , i.e.

the constant-in-time condition for the controls
must be enforced over a time interval larger
than one rotor period. The use of an adaptive
element in the reduced model, as described
below, allows for the model outputs to match
the plant ones with an appropriately small er-
ror, and, consequently, for the enforcement of
the trim conditions not only at the level of the
reduced model but also for the plant, thereby
alleviating the appearance of limit cycles in the
solution.
The prediction phase is followed by the plant
steering phase. Consider the known con-
trols u∗(t) as obtained by solving problem (7)
above, with t ∈ Ωsteer = (T steer

i ,T steer
f ), where

T steer
f = T steer

i + ∆T steer is the end of the steer-
ing window of size ∆T steer. Under the action of
the controls u∗, the plant M̃ is advanced for-
ward in time starting from the current state x̃i.
This steering phase amounts to the solution of
the following initial value problem:

f̃( ˙̃x, x̃, λ̃,u∗) = 0, (10a)

c̃( ˙̃x, x̃) = 0, (10b)

x̃(T steer
i ) = x̃i, (10c)
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which yields a solution in terms of x̃(t) and
λ̃(t) for t ∈ Ωsteer. The solution at the end of the
steering window, x̃(T steer

f ), provides the initial
condition for the next regulation and steering
phases.
The numerical solution of the model predictive
regulation problem (7) can be obtained very ef-
ficiently by the direct transcription method [3,
5]. The governing equations of the reduced
model are discretized on a computational grid
of the regulation window using a numerical
scheme, which in this work is the implicit mid-
point rule. The discretization defines a set of
discrete unknown state and control parame-
ters on the computational grid. Next, the op-
timization cost function and the constraint con-
ditions are expressed in terms of these dis-
crete parameters. Through this process, the
original optimal control problem is transformed
into a non-linear programming problem (NLP).
The problem is recast in terms of scaled vari-
ables, since the numerical solution of optimiza-
tion problems can be highly sensitive to badly
scaled unknowns and constraints.
In this work, the plant steering phase is per-
formed by numerically integrating the multi-
body dynamics equations using the non-
linearly unconditionally stable energy decay-
ing scheme described in [1] and references
therein. Note that the typical time step size
for the plant steering is much smaller than the
typical time step size of the model prediction,
reflecting the finer solution scales that need
to be resolved at the level of the aeroelastic
model. Therefore, the controls obtained from
the numerical solution of problem (7) have to
be properly mapped onto the steering grid, in
the present case through a simple interpola-
tion scheme.
The proposed model predictive control ap-
proach implies three kind of approximations,
related to the mismatch between reduced
model and plant, the dimension of the predic-
tion window and the update frequency of the
control action.
First, the reduced model is typically able to
only approximate the plant dynamics, so the
predicted outputs will not be able to exactly
render the actual ones. Nevertheless, the

choice of a reasonable reduced model and the
adaptation of its parameters allow to control
this modeling error.
Second, while in theory large prediction win-
dows (possibly up to T∞) determine improved
stability and a higher performance of the
closed-loop system, in practice short horizons
are chosen to make the computational cost
of the model predictive regulation problem ac-
ceptable. In this work a simple finite prediction
window is considered. The specialized litera-
ture reports several efforts for reducing the ef-
fects of this truncation of the prediction horizon
(cfr. for example some of the references of [7]
and [9]).
Finally, the control actions are updated only af-
ter a finite time interval ∆T steer. Since predicted
and plant models are different, the outputs of
system M̃ will drift away from the predicted
ones under the action of the controls. Clearly,
the larger the steering window, the larger this
drift will be. On the other hand, short steering
windows imply a more frequent solution of the
regulation problem. Hence, here again there is
a trade-off between these contrasting require-
ments. In practise, we were always able to
determine acceptable activation frequencies of
the controller without particular difficulties.

Adaptive Reduced Model

In this work, the reduced model accuracy re-
quired to trim a rotorcraft prototype is obtained
by recalling well-known system identification
techniques. The reduce model M is parame-
terized in terms of a discrete number of quan-
tities, indicated by the vector p, and adapted to
represent the system behavior as accurately
as possible. In other words, the goal of the
identification process is to find the set of pa-
rameters p∗, and the corresponding reduced
model, that produce the best (in some norm)
approximation of the plant M̃ [11]. In par-
ticular, M is here obtained as a reference
model augmented by an adaptive neural ele-
ment, whose role is to approximate the defi-
ciencies of the reference model.
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A reference model is a specific mathematical
model based on insight on the nature of the
system (1). This model can be formally ex-
pressed as follows:

fref(ẏ,y,u) = 0, (11)

where y are in this case the states of the ref-
erence model subjected to the control inputs
u. The effect of level of detail of the reference
model is twofold. On the one hand, it strongly
impacts the cost of the numerical solution of
the optimal control problem (7), while on the
other hand, a more refined reference model is
“closer” to the rotorcraft system, in the sense
previously discussed.

We note here that the plant controls ũ and
the reduced model controls u might represent
different physical quantities. In fact the two
models describe the system at two different
levels of detail, though it is reasonable to as-
sume that it will always be possible to map one
set of controls into the other, and viceversa. In
the following, without lack of generality, we will
assume that the two sets coincide, i.e. ũ = u.
The reference model (11) is augmented as fol-
lows. Let us define the (unknown) function d

as the defect of equations (11) when u = ũ and
y = ỹ, i.e.

d(ỹ(n), . . . , ỹ, ũ) = fref( ˙̃y, ỹ, ũ), (12)

where ỹ(n) indicates the derivative of order n
of the outputs with respect to time. If we
could correct the reference model by means
of d, the resulting reduced model would en-
sure the matching of reduced model states
and full model outputs (y = ỹ) when reduced
and full models are subjected to the same in-
puts. However, since this defect function is un-
known, we can only identify an approximating
operator dp belonging to a finite-dimensional
class parameterized in p, so that d = dp + ε,
where ε represents the approximation error.
Therefore, the resulting reduced model is

fref(ẏp,yp,u)−dp(y
(n)
p , . . . ,yp,u,p∗) = 0, (13)

with yp being the desired approximation of ỹ.
The operator dp of equation (13) represents a
static non-linear map, so in this work a static

neural network is used for the approximation:

dp(ẏ,y,u,p) = W T σ(V T x+a)+b, (14)

where x = (y(n)T
,yT ,uT )T are the network in-

puts, σ a vector of sigmoid activation func-
tions, and p = (. . . ,Wi j, . . . ,Vi j, . . . ,ai, . . . ,bi, . . .)

T

the reduced model parameters, i.e. the synap-
tic weights and biases of the network. A single-
hidden-layer feedforward network structure is
adopted, where the hidden layer is charac-
terized by Nh neurons connected to the net-
work inputs and outputs by the interconnection
weights V and W , respectively.
Some aspects are particularly critical for the
accuracy of this approximation strategy. First,
the network inputs must include as many
derivatives of y as it is necessary to guaran-
tee a sufficiently small error. On the other
hand, the universal approximation property of
feedforward neural networks [8] ensures that
the approximation error can be made arbitrar-
ily small, i.e. it can be bounded as ||ε||2≤Cε for
any Cε > 0, for some appropriately large num-
ber of hidden neurons Nh. However, this result
only guarantees the existence of an optimal set
of parameters p. Several methods are avail-
able to tune the reduced model and minimize
the approximation error [6]. In this research,
the parameters p are held equal to p(T steer

i )
during the steering phase. Then, the local
information provided by the plant response is
used to adapt the network and correct the pa-
rameters. In particular, if ỹ∗

f = ỹ∗(T steer
f ) and

u∗
f = u∗(T steer

f ) are respectively the plant out-
puts and given control inputs at the end of the
steering window, we measure the mismatch

E =
∥∥∥fref( ˙̃y∗

f , ỹ
∗
f ,u

∗
f )−dp(ỹ

∗(n)

f , ỹ∗
f ,u

∗
f ,p)

∥∥∥
2
,

(15)
which is a function of the parameters p. The
updated value of the parameters, p(T steer

f ), is
obtained by using the steepest-descent search
direction as

p(T steer
f ) = p(T steer

i )− η
∂E
∂p

∣∣∣∣
p(T steer

i )

, (16)

where η is the so called “learning rate”. The
updated parameters can then be used for the
next prediction and steering phases.
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Numerical Results

In this section, a multibody model of the ro-
tor of the UH-60 helicopter is used to compare
the behavior of the proposed NMP auto-pilot
and an available implementation of the classi-
cal auto-pilot approach. This four-bladed artic-
ulated rotor model is characterized by the typi-
cal flap-lag-pitch configuration (from the hub to
the blade), with three coincident hinges which
are offset from the rotor shaft axis. The blades
are modeled as geometrically exact beams,
and are meshed using 6 cubic finite elements
along the span. In the rotor model, the rotation
of the pitch hinge θi of the ith blade is driven
according to the following expression: θi(ψ) =
θ0 + θ1s sin(ψ − iπ/2) + θ1c cos(ψ − iπ/2), i =
1,2,3,4, where ψ is the azimuthal angle of the
rotor, θ0 is the rotor collective, θ1s is the longi-
tudinal cyclic and θ1c the lateral one.
The aerodynamic characteristics of the rotor
are modeled through the use of lifting lines
based on sectional aerodynamic coefficients,
stored in look up tables, and using 30 airsta-
tions on each blade. Higher accuracy of the
model could be achieved by using proper aero-
dynamic modules to render the rotor wake ef-
fect. However, here we will simply use strip
theory to represent the rotor aerodynamics.
Despite this lack of accuracy, we can consider
this multibody model a good test-bed for the
proposed auto-pilot, because of the presence
of flexible elements with complex geometric,
inertial and aerodynamic properties.
We consider the wind-tunnel trim of the rotor
for different values of the advance ratio µ . At
first, estimates are obtained for the target hub
forces required to trim the helicopter at each
value of µ . The estimated target loads are
computed by using simple power balance rela-
tions and basic information on the vehicle, like
take-off weight, distance between main and tail
rotor, solidity of the main rotor, etc. [10]. Then,
for each given value of the advance ratio, the
multibody model is steered to the correspond-
ing target values. Seven simulations are per-
formed for each controller, between µ = 0 and
0.35. At the beginning of each simulation, the
collective, longitudinal and lateral cyclics are

set to 4, 0 and 0 deg, respectively, and the ro-
tor response follows the periodic orbit obtained
in correspondence to these values of the con-
trol settings, by simulating the system forward
in time until all transients decay. Then, the cho-
sen controller is activated.
According to [12], a possible discrete-time pro-
portional auto-pilot control law is

ũ f = ũi +∆t S−1G(y∗− ỹ) , (17)

where ũi and ũ f are respectively the controls
at the beginning and at the end of a time
step, and y∗ − ỹ is the error on the trim con-
straints (3). The matrix G, in general taken
as G = diag(g0), represents a set of gains,
which must be properly tuned in order to ob-
tain a stable solution and an acceptable per-
formance. Finally, S indicates the sensitivity
matrix of the outputs with respect to the inputs,
namely S = ∂ ỹ/∂u. Preliminary tests allowed
to tune the classical auto-pilot gains g0. In the
following, we will refer to two different situa-
tions: classical auto-pilot A, tuned by trimming
the rotor with maximum performance (shortest
time) at µ ≈ 0.2, and classical auto-pilot B, op-
timized for µ ≈ 0.25.
The NMP auto-pilot has an activation fre-
quency equal to 4/rev, a prediction horizon of
3 revolutions and control rates limited to 10
deg/sec. The neural network has 20 neurons
in its hidden layer, and was adaptively trained
starting from small random values through-
out each maneuver with a learning rate set
to 0.3. Clearly, even faster convergence to
the solution with respect to what shown below
could have been obtained by using as start-
ing guesses for the network parameters those
computed at the previous value of the advance
ratio. This further exploitation of the adaptive
nature of the controller was however avoided
here to give a more conservative estimate of
its performance.
In order to quantify the ability of the auto-pilots
to trim the system, a criterion is required to in-
dicate when the trim solution is achieved within
a desired tolerance. To this purpose, we define
the time to trim as

Ttrim : εcon(t) ≤ εmax
con ,∀t ≥ Ttrim, (18)
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where εcon(t) = ‖ỹs(t)−y∗
s ‖2 is the norm of the

error on the trim constraints (3) at each instant
of time. The quantity εmax

con is the user-specified
maximum allowed error on the trim constraints,
a parameter that strongly affects the value of
the time to trim.

Table 1: Revolutions needed to trim the ro-
tor model according to definition (18) for differ-
ent advance ratios µ and auto-pilots, and with
εmax

con = 0.05 (top) and εmax
con = 0.01 (bottom). ×:

convergence not achieved.

µ Classical Classical NMP
auto-pilot A auto-pilot B auto-pilot

0.00 11.6 38.5 1.8
0.05 9.2 32.3 2.9
0.10 6.2 22.1 4.4
0.15 5.4 13.4 5.2
0.20 5.5 9.9 5.8
0.25 14.6 11.8 6.6
0.30 × × 9.0
0.35 × × 11.6

µ Classical Classical NMP
auto-pilot A auto-pilot B auto-pilot

0.00 18.1 60.4 4.6
0.05 15.7 52.3 6.5
0.10 11.6 38.4 6.5
0.15 8.2 26.0 8.1
0.20 8.2 17.4 8.7
0.25 28.1 18.2 9.6
0.30 × × 14.4
0.35 × × 19.6

In Table 1 we report the time to trim for varying
µ . The upper table summarizes the results for
εmax

con = 0.05, while the lower one for εmax
con = 0.01.

The results show that the classical auto-pilots
perform nicely when they are operating close
to the values of µ for which they were cali-
brated, and their trim time is of the same order
of magnitude as the NMP auto-pilot. However,
for µ > 0.25 both controllers A and B failed
to find a trimmed solution, either because the
feedback control system went unstable or be-
cause the solution resulted in a limit cycle;
hence, the cross symbols in the table indicate
values of the advance ratio that are outside
of the operational limits of the classical auto-

pilots. Not only the classical approach is not
always able to trim the system, but sometimes
it does so only at unacceptable trim times.
More reasonable trim times at low advance ra-
tios can be obtained by optimizing (increasing)
the gains in the neighborhood of those values.
This however can shrink even more the auto-
pilot operational region. Therefore, a suitable
gain scheduling strategy is needed to guaran-
tee stability and reasonable performance on a
wide range of flight conditions.
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Figure 1: Control time history for the classical
auto-pilot A (top), and the NMP auto-pilot (bot-
tom), µ = 0.25.

Table 1 reports also a completely different be-
havior of the predictive auto-pilot: the time to
trim slightly increases with the advance ratio,
evidence that the procedure is robust with re-
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spect to the flight condition. Furthermore, the
controller was able to successfully reach the
desired trim condition up the highest value of
µ .
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Figure 2: Control time history for the classical
auto-pilot A (top), and the NMP auto-pilot (bot-
tom), µ = 0.297.

Figures 1-4 give a even clearer idea of the sit-
uation: for µ = 0.25 (Figures 1) the classical
and predictive controllers show a very simi-
lar behavior, and they converge quickly to the
trimmed solution.
The increase of µ up to the value 0.297 (Fig-
ures 2) seems not to influence the NMP auto-
pilot. On the contrary, the proportional con-
troller finds a solution characterized by oscil-
lating control time histories. This result seems
coherent with the absence of direct knowledge
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Figure 3: Output time history for the classical
auto-pilot A (top), and the NMP auto-pilot (bot-
tom), µ = 0.297. Solid lines: target values.

of the trim conditions (2) in the classical auto-
pilot approach. Figure 3 shows the time his-
tories of the corresponding rotor loads, where
the horizontal solid lines now indicate the de-
sired target values. For this figure, the plot
range is such that the third component of the
rotor force is left out of the plot; this shows
more clearly the behavior of the two smaller
components. The NMP controller achieves
constant-in-time values of the control inputs
and of the average-over-the-period rotor loads,
as required by a trimmed condition.
Finally, Figure 4 shows, for µ = 0.3, the predic-
tive controller converging to the trim solution,
similarly to the previous tests, and the unsta-

30.9



0 1 2 3 4 5 6 7 8

−3

−2

−1

0

1

2

x 10
4

Rotor Revolutions

F
o

rc
es

 [
lb

]

0 5 10 15 20 25
−2.5

−2

−1.5

−1

−0.5

0

x 10
4

Rotor Revolutions

A
ve

ra
g

e 
F

o
rc

es
 [

lb
]

Figure 4: Hub load time history for the classical
auto-pilot A (top), and output (i.e. hub load av-
erage over the rotor period) time history for the
NMP auto-pilot (bottom), µ = 0.3. Solid lines:
target values.

ble response of the hub loads for the classical
auto-pilot, which is not able to trim the rotor at
this speed.

Conclusions

A new auto-pilot technique to trim virtual mod-
els of rotorcraft has been proposed, with the
aim of removing some of the deficiencies of
current auto-pilots, while still maintaining their
basic positive feature, i.e. the applicability to
arbitrarily complex virtual models of the vehi-

cle. The methodology is based on a neural-
adaptive non-linear model predictive controller,
and it was tested and compared with a classi-
cal auto-pilot formulation based on a suitable
set of gains. In the reported numerical ex-
periments, the non-linear reduced model used
to predict the system response seems to im-
ply superior performance of the controller with
respect to conventional approaches, similarly
to other examples in the literature for difficult,
highly non-linear control problems. Moreover,
the proposed auto-pilot specifically accounts
for the presence of the constant-in-time con-
straints on the control actions in the predic-
tion problem. The effect of constraints is dif-
ficult to incorporate in other control strategies,
which often show limit-cycle oscillations of the
inputs. Theoretical arguments ensure the ab-
sence of such limit cycles for the presented
predictive approach provided that the reduced
model perfectly matches the plant and for an
infinite prediction window. Although these con-
ditions are not satisfied in practice, no limit cy-
cles were observed using the described imple-
mentation.
Another characterizing feature of the proposed
auto-pilot is its adaptive nature. Adaptivity al-
lows for the reduced model to learn the be-
havior of the plant and guarantees the con-
vergence of the aeroelastic system to the de-
sired trim solution. This control strategy should
be easily extendable to virtually any rotorcraft
mathematical model, possibly including com-
plex aerodynamic effects, without ad hoc mod-
ifications or tuning.
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