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ABSTRACT

Numerical simulations of aircraft flight dynamics are
performed in order to investigate the dynamic characteristics of fixed
and rotary wing aircraft penetrating a pair of trailing vortices of a
preceding large airplane such as jumbo jeit airplane. The aerodynamic
forces acting on main wing or rotary wing, which are fully coupled
with the body motion of the aircraft in six-degrees of freedom are
calculated by wusing the Local Circulation Method (LCM) [11 for the
fixed wing and the Local Momentum Theory (LMT) [21 for the rotary
wing.

Time histories of the dynamic behavior of two airplanes and a
helicopter are presented for various parameters such as separation
distance between the preceding airplane and the penetrating aircraft,
mass and span or rotor radius of aircraft, and flight path angle with
respect to the tip vortices of the preceding airplane.

The dynamic response of airplane is much severer than that of
helicopter. Specifically, the rolling response of the penetrating
airplane flying along the voriex core with negative path angle v |is
disturbed by the induced velocity generated by the vortex core with
the maximum value of 110 degrees when it just hits a margin of the
core. However, in the case of positive ¥, for example 7 = 2
degrees, the peneirating airplane is disturbed before it approaches to
the wvortex core and kicked out by the induced velocity around the
core, and thus the response is more mild than that of the helicopter
in the equivalent flight condition in which the helicopter penetrates
the core itself.
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1. INTROBUCTION

In airport environments, an aircraft has some high possibility
to penetrate a trail of tip vortices of large jel airplane just after

the taking-off or landing. Severe wake vortices generated by the
large airplane can induce a sudden roll excursion or roll upset of the
‘aircraft and often be cause of structural damage, To avoid these

hazardous wakKe vortices, the Federal Aviation Administration (FAA)
requires 11 km (6 naut. mi.) spacing for a small business jet under
5.7 ton (12,500 1b) behind a large wide-body jet, 9 km (& naut. mi.}
for a larger transport under 136 ton (300,000 lb) and 7.4 km (4 naut.
mi.) for a wide-body transport behind another same category [3]. Even
at the high altitude, an airplane has sometimes hazardous experience
due to large vortices generated in a special atomospheric condition
like a tornado [4].

Many research works about the tip vortices of airplane were
reported and many theoretical models of the vortices including the
effects of viscosity were presented, for example in
references [517[7]. A lots of flight tests were conducted to measure
the wvelocity field of the wake vortices in flight and the dynamic
behavior of airplane penetrating the wake vortices [8]17[16]. Studies
0f the dynamic response of helicopter penetrating the tip vortices, on
the other hand, wvere reported only a few papers [17]17[22]. Flight
test data for the helicopter were also limited. Parameters which may
give some influence on the dynamic behavior of the aircraft are air
density, p, mass ratio, m/mA. span or rotor radius ratio, b/bA or
R/b

speed ratio, U/U nondimensional separation distance, x/bA.

A’ A’
y/bA, z/bA, flight path angles 7, and flight course angle ‘Pw.

The purpose of this paper is to analyze the dynamic responses
of two airplanes and a helicopter in siXx-degrees of freedom, which
penetrate a pair of trailing vortices generated by a large preceding
airplane, and to compare the results between the airplane and the
helicopter. Time histories of the dynamic response such as vertical
acceleration, angles and angular rates of attitude, load factor and so
on, are presented. The dynamic behaviors of the penetrating airplane
and helicopter are depicted graphically to understand their phenomena.

2. GEOMETRY OF A TRAILING VORTEX

A sheet of trailing vortices wake system generated by a
conventional 1lifting wing of moderale sweep and aspect ratio is
unstable and tends to roil-up to a pair of oppositely rotating
trailing vortices, as shown in Figure 1. In this section, the
mathematical model of the pair of trailing vortices is described.
Under assumptions that the flow is steady, axisymmetiric, laminar and
incompressible, and the HReynolds number of the main flow, UAx/ v,

where x is the axial distance, is large, the axial velocity qx, radial



velocity qr. rotational velocity qt? can be given by solving the

Navier-Stokes' equations as follows [37,[2117[23]:
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and where D, and v _ are the profile drag and the “"effective ecddy

viscosity'" rather than the kinematic viscosity respectively [13}. The
value of ]/e is given by

Ve © v +aF0 4

where "a" is an empirical constant, whose precise value is very

difficult to define but is in the range 10_3 to 10_4 such as a =
0.0002 [10] ~ 0.002 [19]. In this analysis, the trailing vortices are

assumed to be frozen.



In order to check the validity of the iheoretical model! of the
trailing vortex wake system, comparisons 0f the calculated results
with flight test measuremenls are made as shown in Figure 2. In this
figure, three velocily componenis of the tip vortices are shown at ilwo
different separation distances from a large airplane (in this case,
Boeing 747)(81]. At dislance of x=10,5006 m, the correlatlion between
three velocity components and flight test measurements are very good,
even though the penetrating airplane was influenced by the tip
vortices itself. On the other hand, at distance of x%=24,000 m, data
of velocity compenents given by flight test show quite different
features compared with calculated results,. In the theoretical
calculation, instability of the vortex core or atomospheric conditions
were not taken into account. Therefore features of the velocity
components at any separation distance remain same. From this
comparison it must be considered that over the range of 20,000 m
theoretical results do not simulate the actual flow field of the tip
vortices. In this study, range of the separation distance were
limited till 20,000 m.

3. MODEL AIRPLANES AND A HELICOPTER AND THEIR FLIGHT CONDITIONS

Two types of fixed-wing aircraft (airplanes of model A and
madel B) and one type of hingeless-rotor helicopter are chosen to
investigate the dynamic responses when penetrating a pair of tip
vortices generated by a large preceding airplane. The dimensions of
the preceding airplane and the penetrating aircraft are listed in
Table 1 and Table 2 respectively. Every flight are directed to hit
the center of one of vortex core at any given initial conditions as
shown in Figure 1. Since both the preceding airplane and the
penetrating aircraft are moving forward with their own flight
velacities, UA and UP (UH for a rotary wing aircraft) respectively,
the distance of the penetrating aircraft behind the preceding airplane
is more than XO vhen the center of gravity of the latter aircraft just

hits the vortex core center.

The spatial CG position of the penetrating aircraft with
respect to the preceding airplane frame (X,Y,Z) is given by

eq Xe6,0 | Upt UXB
b
$Yeo b = 4ot *1 O T T, | UYB b dt (5)
0
Zeg \ch.ol \ 0 UzB |

where Tl and T2 are transformation matrices from the body {rame
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X .YB.ZB) of the penetralting aircraft to the initial body frame

B

(X which is the body frame at time t = 0, and from the

B,0' /8,0 %B,0’

initial body frame to the generating aircraft frame (X,Y,Z),
respectively.

T1
cosOcosV¥ sindsinOcosW-cosdsin¥ cosdsinCcosW+sindsin¥
c0e@sin¥Y sindsinOsinW+cosPcos¥ cosdsin@sinW-sindcos¥](6)

-5in@® sin®cos® cos bcos©

T2 =
<ms®0W0 ms@OWO —mn@o
Mn¢OMn@Omebﬂms¢oﬂnWO sm¢OMnGOMnWOﬂms¢&msW0 mmOOMn¢0 (7

cos@osin@OCOSQ%fsin@OsinWO cos¢Osin905inW0—sin¢0c054Q) cos¢0cos®0

and where (¢n),@0,‘PO) are the initial setting angles of the body
frame with respect to the (X,Y,Z) frame.
Then the relative position of the CG of the aircraft or the

rotor hub with respect to the vortex core frame (x,y,z), the origin is
fixed to the respect wing tip, is given as follows:

X XCG ]R 0

dy b o= Yoot * TyTs0 0 p - {tb, & (8)
z ZCG hR 0

where (1,,0,h )T is the hub position with respect to the body f{rame

R’ R
and + gives the left and right trailing vortices respectively.

Various flight conditions of the preceding airplane and the
penetrating aircraft are given in Table 3.
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4. EQUATIONS OF MOTION OF THE FIXED AND ROTARY WING AIRCRAFT

By referring to Figure 3, equations of motion of the
peneirating aircraft in six-degrees of freedom can be given by

m{g+qw-rv) = F
: X
B
m(v+ru-pw) = Fy (9)
B
m{w+pv~-qu) = Fz
B
plx +(rp-<i).lx y —(f+pq)JZ X +(r2—q2).lY 7 +qr(iZ —IY ) = Mx
B BB BB BB B B B
. 2 2
ql, +(pq-1)J -{p+qrid +(p"-r")1] +rp(l, -1, ) =M (10
Yg YpZg Xg¥p Zp¥p Xp Z Yg I
. 2 2
rl., +(qr-p)J -{q+rp)J +{g"-p )] +pg(l, -1, } =M
ZB ZBXB YBZB XBYB YB XB ZB J

where the mass (m), the moments of inertia (I, ,I, ,I, ) and the
XB YB ZB

product of inertia (J } are those related to the penetrating

Xply
aircraft body. In equations (9) and (16), the body of aircraft is
assumed to have a symmetric configuration. Therefore the products of
inertia  about XB—YB axis and YB—XB axis become zero (JXBYB:JYBZB =0).

The external forces (F, ,F, ,F., ) and moments (M . M o M } are
Xg' Yp' Zp Xg " Yp T Zp

given from fixed wing or rotary wing, horizontal and vertical wings,

and fuselage. The aercdynamic forces and moments acting on either the

main wing or rotary wving are calculated by the LCM or the LMT in which

the spanwise steps is performed by Ax = ?]/bA or r/R = 1/20.

In the LCM and LMT, the induced velocity generated by the fixed
or rotary wing at any spanwise position is determined by using the
quasi-lifting surface theory [11 and lifting line theory [2]
respectively, and three dimensional gust velocities which are spread
spatially are easily introduced in these methods as same as
references [21]17{231. For fuselage, tail rotor, vertical and
horizontal wing of the aircraft, the aerodynamic properties are
calculated for simplicity by using the experimental data without the
usage of these methods.

The body motion, in the six-degrees of freedom, of the
penetrating aircraft is calculated by the Runge-Kutta method. The
timewise increment of the computation is 1/100 second for the airplane
and 21 /360Q second for the helicopter.



5. NUMERICAL SIMULATIONS

In this section, results of the dynami¢c response o¢f a
penetrating aircraft are presented and discussed. After getting a
trimmed condition for a given flight path angle 7, the penetrating
aircraft starts +to fly to be directed to the center of vortex core
from a specified initial position.

Figures 4 (a) and (b) schematically show typical examples of
fiight trajectories of the airplane and hilicopter in side view, top
view and back view respectively.

Figure 5 shows & comparison between a calculaled resull based
on the present method and a flight test of an airplane. In this case,
the preceding airplane was the Convair 990 and the penetrating
aircraft was the Cessna 210 (13]. The penetrating aircraft was
controlled in order to hit the vortex core at separation distance
Xx=5,180 m. The calculated results with respect to the longitudinal
motion are in good correlation with the experimental data. However,
in the lateral motion, the calculated results do not agree with the
experimental data. This discrepancy might be resulted from some
differences in the control inputs (aileron and rudder).

In the following subsections, the dynamic response of the
penetrating aircraft are investigated for the model A, the model B and
tha hingeless-roior helicopter for various flight conditions with
different parameters such as separation distance x, flight path
angle 7 and flight course angle ‘Pw.

5-1. Effects of the separation distance (x)

The separation distance between the penetrating aircraft and
the preceding airpiane is8 one of the important parameters in the
dynamic response of the aircraft. Figures 6 (a), (b) and {c} show
maximum attitudes, maximum angular velocities, and maximum
accelerations of the penelrating aircraft (model! A) respectively. The
flight path angle and the flight course angle were assumed to he 7:=0
degree and ‘Pw=90 degrees respectively. The separation distances were

taken' from x=5,000 m to x=20,000 m. The attitudes of the penetrating
aircraft were not changed against the separation distance (Xx).

However, the pitch angular velocity (q)} attains over 30 deg/sec at
separation distance of x=5,000 m. As the separation distance
increases, this angular velocity decrease graduailly. On the other

hand, the vertical acceleration, as shown in Figure 6 (¢), exceeds 2g
within x < 18,000 m. This is resulted from strong up- and down-wash
caused by the tip vortices.

Similar calculations were performed for the model B airplane
which had larger gross weight and wing span than those of the model A.
The results are shown in Figure 7 (a), (b) and (¢). The flight
attitudes did not change so much like the case ¢f the model A. In the
angular velocities, the pitch rate 1is smaller than that of
model A {(less than 10 deg/sec). DBesides, the vertical acceleration of



model B is less than 2g over the whole range investigated.

Shown in Figures 8 {(a), (b) and (¢) are calculated results for
the response of the hingeless-rotor helicopter. In Comparison with
the results of the airplanes, the trend of the maximum attitudes is
almost same as that of the model A. Different from the
airplanes (model A and B), the roll rate in the angular velocities is
predominant,

5-2. Effects of the flight path angle (7)

Effects of the flight path angle (7 ) on the dynamic response
of the penetrating aircraft, the model airplane, A and B, and the
helicopter, are investigated. An initial vertical position (z) was
taken at 2=15 m for positive 7 and z=-15 m for negative ¥ as shown
in Figure 9 (a) and (b). Within ! 7 1=2 degrees, the calculation was
omitted because the initial position is located inside of the vortex
core.  Shown in Figure 10, 11 and 12 respectively are (a) the maximum
attitudes, (b) maximum angular velocities and {(c) maximum
accelerations. Compared with the perpendicular penetration, the
penetrating aircraft were drastically influenced by the flow field of
the tip wvortices. Specifically the response in roll angle and the
roll rate is very significant for three aircraft. For the model A,
the rolling attitude exceeds 110 degrees at x=5%,000 m. On the other
hand, maximum value of the model B shows a more mild than that of the
model A. The trend of the response is also guite different from that
of the model A. For the positive 7 the model B responds much severer
than the model A, vwhereas for the negative 7, the situation is
reversed. For the accelerations about the respective body axes, both
the model A and the model B get the 2g acceleration in the z axis,
whereas the helicopter has small amount of .the acceleration about
1.58. As the separation distance increases, the magnitude of these
accelerations tends to decrease. For the helicopter, the dynamic
response is vwvery mild and the magnitude of the highest value in the
pitch response is less than 40 degrees.

Shown in Figure 13 are flight trajectories viewed from the rear
side of three types of the penetrating aircraft. Since the {light
velocity of the model A is less than that of the model B, the former
" is kicked out from the core before it reaches the core center. As
results, the model A rolls severely with negative bank angle.

5-3. Effects of the flight course angle (‘Pw)

In this case, as shown in Figure 14, the penetrating aircraft
is directed to hit the center of vortex core with the flight path
angle of 7 =b degrees and the separation distance of x=5,000 m.

Figure 15, 16 and 17 show the effects of the flight course ‘Pw on the

dynamic response of airplanes, the model A and model B and the
helicopter. As the ‘Pw decreases or the flight course approaches to

be paraliel to the tip vortex, the roli response increases for all



three types of sircraft. At ‘Pw:O degree, the magnitude of the body

attitudes decreases only for the model A. This is because the model A
is kicked out by the tip vortex as shown in Figure 18 (a), (b)
and (¢).

Finpally the minimum distance between the CG position of the
penetrating airplane or the center of hub of the helicopter and the

core of the tip vortex is shown in Figure 19 (a), (b} and {(c). As
shown in {(a), the every penetrating aircraft pass through inside of
the wvortex core. In (b) and (¢) the model A is often kicked out by

the tip vortex because of the roll upset, whereas the helicopter can
penetrate the vortex core.

6. CONCLUSIONS AND RECOMMENDATIONS

The Local Circulation Method (LCM) and the Local Momentum
Theory (LMT) have been applied to analyze the dynamic responses of the
fixed wing and rotary wing aircraft in six-degrees of freedom
respectively, which penetrate a pair of trailing wvortices of a
preceding large airplane. Parametric studies have been performed to
investigate important parameters which may influence on the dynamic
respense of the penetrating aircraft. The major results in this
theoretical study are drawn as follows:

(1) There 1is good correiation between the simulated data of
flow field by a pair of tip vortices and the experimental measured
data in flight,

(2) For the penelrating airplanes, the dynamic response becomes
large as the flight course angle (‘Pw) approaches to zero (paralie!
penetration).

(3) For the penetrating helicopter, the dynamic response, which
is coupled with the longitudinal and lateral motion, is generally mild
in comparison with the results of the airplanes.

(4) The minimum distance between the penetrating aircraft and
the core center o0f the vortex depends on the individual {flight
condition for all types of the aircraft. The small airplane is often
kicked out by the tip vortex even though it is directed to hit the
center of the vortex core.

In the present work, two types of airplanes and a helicopter
were used to investigate the dynamic response when they penetrate the
trailing vortices generated by a preceding large airplane. Al though
the calculations were performed in limited cases, they are many
combinations of other types of airplane and helicopters and their
flight conditions with respect to the trailing vortices of the
preceding airplane. Furthermore, the flight configuration of the
preceding airplane may be altered in the future calculations.
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NOMENCLATURE

a empirical constant of effective eddy viscosity
{(a,, ,a, ,a, ) acceleration of aircraft about body axis

X Y Z

B B "B
b wing span of airplane
D0 profile drag of aireraft
Dmin minimum distance between the penetrating aircraft and

the vortex core center

(FXB’FYB’FZB} external forces given by eq.(7)
g acceleration of gravity
(ix ’lY 'IZ ) moments of inertia of aircraft

B B B
JX 7 product of inertia of aircrafl
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(lH,hH)
(IR,hR)
(1y.hy)
(M, M, M. )
XB YB' ZB
m
{(p,a,m)
(qx.qy,qz)
* ok ok
(qx.qy,qz)
R
r
*
r
5
Ty Ty
t
U
(u,v,w)
X,Y,2)
(XB,YB.ZB)
KegrYegrZeg?
{(x%,¥,2)
X
(XCG'YCG’ZCG)
Yy
o
r
Iﬂo_
¥
A
n
(¢,0,¥)
U
v
v
e
Jol
qu
Q

Fift
posilion of horizontal wing from CG position

position of hub center from CG position
position of vertical wing from CG position

external moments given by eq.(8)

mass of aircraft

angular velocity of body

longitudinal, radial and circumferential gust components
shown in Fig. 1

longitudinal, radial and circumferential gust components
at core center

rotor radius

radial position or distance from the center of vortex core

radius of tip vortex core
wing area or rotor disk area
transformation matrix

time

flight speed of aircraft

gust velocity components shown in Fig. 1

coordinate system fixed to airplane shown in Fig. 1
coordinate system fixed to helicopter shown in Fig. 1

longitudinal, lateral and vertical position of helicopter
center of gravity in (X,Y,Z) coordinate system
coordinate system fixed to wing tip shown in Fig. 1

nondimensional radial position = r/R, or separation distance

longitudinal, lateral and vertical position of helicopter
center of gravity in {(x,y,2) coordinate system
spanvise position

angle of attack
circutation
circulation of aircraft at midspan

flight path angle of a penetrating aircraft
small increment

efficiency or spanwise position

attitudes of a penetrating aircraft

initial setting angle of body frame

advance ratio = U/RQ
kKinematic viscosity
effective eddy viscosity

air density

flight course angle of a penetrating aircraft
with respect to wake

rotor rotational speed
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Subscripts:

{ )A quantily concerning with a preceding airplane

{ )H guantity concerning with helicopter

( )P quantity concerning with a penetrating airplane
(') time derivation

Table 1. Dimensions of a preceding airplane.

I tems Dimensions
Wing span by (m) 59.8
Wing area Sa (m?) 511.0
Flight speed Uy (m/s) 94.4
Mass m, {(Kg) 2.11x10°

Table 2. Dimensions of

three types af aireraft.

Airplanes
|tens Helicopter
Hode! A Modet B
Gross mass B (kg 980.0 28,557.2 2,850.0
Moment of inertia of body [, C(kum?) 1,460.0 80,8500.0 2.380.0
Moment of inertia of body |, (kgw?) 1,770.0 539,000.0 7.314.0
Moment of inertia of body |; (kgm?) 3.070.0 1.342,600.0 5,560.0
Product of inertia Jxz Ckem?) 718.5 0.0 1.057.0
For Main Ving
Span b {m) 9.42 30.5 ---
Hean aerodynamic chord ¢ (= 1.525 3.205 ---
Ving area Sa (=) i4.0 32.9 .-
Aspect ratio AR 6.34 10.0 .-
Sweep angle A {deg) 0.0 0.0 ---
Dihedral angle I (deg) 7.0 5.0 ---
Setting angle iv {deg) 2.5 0.0 .-
For Main Rotor
-- --- See Ref.23
For Tail Rotor
-- —.- See Ref.23
For Horizontal Ving
Wing ares Se () 3.32 21.5 1.0
Span b (a) 3.41 10.51 2.5
Chord cy {m) 1.03 1.97 0.4
Aspect ratio ARy 3.62 5.0 6.25
Position (T h) (4.07, 0.0) (11.88, 0.0y | (5.06, 0.617)
Efficiency 7 0.8 0.8 0.7
For Yertical Ving
Ving area S () £.5 16.72 2.24
Span by {m) 1.7 4.9 1.28
Chord () 1.1 3.07 1.75
Aspect ratio AR 1.03 1.44 5.73
Position (o} (44.6, 0.45) | (10.79, 3.77)» | (5.27, 0.21®)
Efficiency F 0.4 0.8 0.8
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Table 3.

Flight conditions of the penetrating aircraft
with respect to the preceding airplane.

2R/by

Aircraft Figs w/m | or b/by | U/Ua (xo/ba,¥o/ba-Za/be) | Puldeg) | 7{deg) Flight
7-(ay| 0.0047 §{ 0.158 | 0.597| (167.78, 3.88, 0 ) 90 0 Level

Mode! A | 12-(a)| 0.0047 | 0.158 | 0.597) (170.89, 2.18,-0.29) 30 5 Climb

g 17-¢a) | 0.0047 | 0.158 | 0.597] (167.78, 0.5, -0.25) 0 4 Climb

s

> 7-(a) | 0.135 0.512 | 0.8 | Q167.78, 3.86, 0 ) 90 0 Level
Model B | 12-(a) | 0.135 0.512 | 0.8 | (170.69, 2.18,-0.29) 30 5 Cligb
17-(a) | 0.135 0.512 | 0.8 (167.78, 0.5, -0.25) 0 4 Climb

7-(a)| 0.0135 | 0.185 | 0.468) (167.78, 1.34, 0 ) 90 0 Level

Helicopter | 12-(a)| 0.0135 | 0.185 | 0.468| (170.69, 1.08,-0.14) 30 5 Clisd
17-(ay | 0.0135 | 0.185 | 0.468| (167.78, 0.5, -0.13) 0 4 Climh

Figure 1. Geometrical relation among a preceding airplane,

ils trailing vortices and a penetrating aircraft.
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(b) Gust profile at separation distance of x=24,000 m

Figure 2. Comparison of calculated gust profile of airplane
wake with the experimental data [8].
{Preceding airplane : Boeing 747)
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Figure 5. Comparison of the calculated result of the dynamic
response with the flight test data at separation distance
0of x=5,180 m [13]. (Preceding airplane : Convair 990,
Penetrating airplane : Cassna 210)
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Figure 6. Maximum dynamic response of the model A airplane against
the separation distance. (\Ifw=90 degrees, 7 =0 degree)
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Figure 10. Maximum dynamic response of the model A airplane against
the flight path angle. (\I}w=0 degree, x=5,000 m)
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